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We present an approach for particle mass generation in which

the physical vacuum is assumed as a medium at zero tempera-

ture and where the dynamics of the vacuum is described by the

Standard Model without the Higgs sector. In this approach

fermions acquire masses from interactions with vacuum and

gauge bosons from charge fluctuations of vacuum. The obtained

results are consistent with the physical mass spectrum, in such

a manner that left-handed neutrinos are massive. Masses of

electroweak gauge bosons are properly predicted in terms of ex-

perimental fermion masses and running coupling constants of

strong, electromagnetic and weak interactions. An existing em-

pirical relation between the top quark mass and the electroweak

gauge boson masses is explained by means of this approach.

Keywords: Particle mass generation, physical vacuum, Stan-

dard Model without Higgs sector, self-energy, polarization ten-

sor.

c©2011 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 18, No. 2, April 2011 162

Introduction

The Higgs mechanism is the current accepted procedure to
generate masses of electrically charged fermions and electroweak
bosons in particle physics [1]. The implementation of this mech-
anism requires the existence of a sector of scalar fields which
includes a Higgs potential and Yukawa terms in the Lagrangian
density of the model. In the Minimal Standard Model (MSM),
the Higgs field is a doublet in the SU(2)L space carrying a non-
zero hypercharge, and a singlet in the SU(3)C space of color.
The Higgs mechanism is based on the fact that the neutral
component of the Higgs field doublet spontaneously acquires
a non-vanishing vacuum expectation value. Since the vacuum
expectation value of Higgs field is different from zero, the Higgs
field vacuum can be interpreted as a medium with a net weak
charge. In this way the SU(3)C ×SU(2)L ×U(1)Y symmetry is
spontaneously broken into the SU(3)C × U(1)em symmetry [2].

As a consequence of the MSM Higgs mechanism, the elec-
troweak gauge bosons acquire their masses so that the masses
depend on the vacuum expectation value of Higgs field, which
is a free parameter in the MSM. This parameter can be fixed by
means of calculating the muon decay at tree level using the Fermi
effective coupling constant. Simultaneously, Yukawa couplings
between the Higgs field and fermion fields lead to the genera-
tion of masses for electrically charged fermions that depend on
Yukawa coupling constants, which also are free parameters in
the MSM. These constants can be fixed by means of experimen-
tal values of fermionic masses. The above mechanism implies
the existence of a neutral Higgs boson in the physical spectrum
being its mass a free parameter in the MSM. Because it just
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exists left-handed neutrinos in the Lagrangian density of the
MSM, then neutrinos remain massless after the spontaneously
electroweak symmetry breaking.

In the current picture of Higgs mechanism [1], masses of the
MSM particles spectrum are generated through interactions be-
tween electroweak gauge bosons and electrically charged fermions
with weakly charged Higgs field vacuum. However there are
some physical aspects in this picture of mass generation that are
not completely satisfactory summarized in the following ques-
tions: What is the possible description of interactions between
fermions and electroweak bosons with Higgs field vacuum? How
possible is it to show fundamentally that particle masses are gen-
erated by these interactions? Why is it that the origin of particle
masses is just related to the weak interaction? Why is it that
the most-intense interactions (strong and electromagnetic) are
not related to the mass generation mechanism? Why are there
no interactions between weakly charged left-handed neutrinos
and the weakly charged Higgs field vacuum? Why left-handed
neutrinos are massless if they have a weak charge?

All the above questions might have a trivial answer if we
only look at things through the current picture of Higgs mecha-
nism. However we are interested in exploring a possible physics
behind the Higgs mechanism. On this manner we propose an
approach for particle mass generation in which fermions acquire
their masses from theirs interactions with physical vacuum and
gauge bosons from charge fluctuations of vacuum.

Physical vacuum is the state of lowest energy of all gauge
bosons and fermion fields [3]. As it is well known from the co-
variant formulation of Quantum Field Theory [4], the state of
lowest energy of gauge bosons and matter fields has an infinite
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energy. This physical vacuum is a rich medium where there are
processes involving particles and antiparticles with unlimited en-
ergy. The physical vacuum is then assumed as a medium at zero
temperature which is formed by fermions and antifermions in-
teracting among themselves by exchanging gauge bosons. From
a cosmological point of view the physical vacuum can be as-
sumed as an almost equilibrated medium which corresponds to
an infinitely evolving vacuum [5, 6].

The fundamental model describing the dynamics of phys-
ical vacuum is the Standard Model without the Higgs Sector
(SMWHS), which is based on the SU(3)C × SU(2)L × U(1)Y
gauge symmetry group. We assume that each fermion in the
physical vacuum has associated a chemical potential which de-
scribes the excess of antifermions over fermions. Then there
are twelve fermionic chemical potentials µf associated with the
six leptons and the six quarks implying an antimatter-matter
asymmetry in the physical vacuum. Hence the physical vac-
uum is considered as a virtual medium having antimatter finite
density. This antimatter-matter asymmetry of physical vacuum
is related to CP violation by electroweak interactions. Natu-
rally the mentioned asymmetry has an inverse sign respect to
the one of the matter-antimatter asymmetry of Universe. The
existence of fermionic chemical potentials in physical vacuum
does not imply that this vacuum itself carries net charges. This
can be understood in a similar way as the existence of the max-
imal matter-antimater asymmetry of Universe which does not
mean that the baryonic matter carries net charges. This idea to
have fermionic vacuum densities responsible for distinct fermion
masses has also been suggested by [7].

The masses of fermions are obtained starting from their self-
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energies which give account of the fundamental interactions of
massless fermions with physical vacuum [3]. While quark masses
are generated by strong, electromagnetic and weak interactions,
the electrically charged lepton masses are only generated by elec-
tromagnetic and weak interactions and the neutrino masses are
generated from the weak interaction. On the other hand, gauge
boson masses are obtained from charge fluctuations of the phys-
ical vacuum which are described by the vacuum polarization
tensors [3].

We use the following general procedure to calculate particle
masses: Initially we write one-loop self-energies and one-loop
polarization tensors at finite temperature and density, next we
calculate dispersion relations by obtaining the poles of fermion
and gauge boson propagators, from these dispersion relations we
find fermion and gauge boson effective masses at finite temper-
ature and density, finally we identify these effective masses at
zero temperature with physical masses. This identification can
be performed because the virtual medium at zero temperature
is representing the physical vacuum.

From a different perspective other works have intended to
show that the inertial reaction force appearing when a macro-
scopic body is accelerated by an external agent [9]. This re-
action force is originated as a reaction by the physical vacuum
that opposes the accelerating action [9]. All these works involve
just the electromagnetic quantum vacuum and have been able to
yield the expression F = ma as well as its relativistic generaliza-
tion. An expression for the contribution by the electromagnetic
quantum vacuum to the inertial mass of a macroscopic object
has been found and this has been extended to the gravitational
case. Originally these works have used a semiclassical approach
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[9] which has been easily extended to a quantum version [10].
We find that the fermion and gauge boson masses are func-

tions of the vacuum fermionic chemical potentials µf which are
fixed using experimental fermion masses. From the values of all
fermionic chemical potentials obtained we calculate the masses
of electroweak gauge bosons obtaining an agreement with their
experimental values. In this approach for particle mass genera-
tion is obtained that left-handed neutrinos are massive because
they have a weak charge. The weak interaction among mass-
less neutrinos and the physical vacuum is the source of neutrino
masses. Additionally this approach can explain an existing em-
pirical relation between the top quark mass and the electroweak
gauge boson masses.

Before considering the case of physical vacuum described by
the SMWHS, in section 2 we first show how to obtain gauge
invariant masses of fermions and gauge bosons for the case in
which the dynamics of the vacuum is described by a non-abelian
gauge theory. In section 3 we consider the SMWHS as the model
which describes the dynamics of physical vacuum and we obtain
fermion (quark and lepton) and electroweak gauge boson (W±

and Z0) masses. We have consistently the masses of electroweak
gauge bosons in terms of the masses of fermions and running
coupling constants of the three fundamental interactions. In
section 4 we focus our interest in finding a restriction about the
possible number of families. Additionally we predict the mass
of the quark top and a highest value for the sum of the square
of neutrino masses. Our conclusions are summarized in section
5.
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Non-abelian gauge theory case

In this section we first consider a more simple case in which
the dynamics of vacuum is described by a non-abelian gauge the-
ory, and in this context we calculate fermion and gauge boson
masses. The vacuum is assumed to be a quantum medium at
zero temperature constituted by fermions and antifermions in-
teracting among themselves through non-abelian gauge bosons.
We also assume that there exist an excess of antifermions over
fermions in vacuum. This antimatter-matter asymmetry of vac-
uum is described by non-vanishing fermionic chemical potentials
µfi, where fi represents different fermion species. In this section,
for simplicity we will take µf1 = µf2 = . . . = µf .

The non-abelian gauge theory describing the dynamics of
vacuum is given by the following Lagrangian density [11]

L = −1

4
F µν
A FA

µν + ψ̄mγ
µ
(

δmni∂µ + gLA
mnA

A
µ

)

ψn, (1)

where A runs over the generators of the gauge group and m,n
run over the states of the fermion representation. The covariant
derivative is Dµ = δµ + igTAA

A
µ , being TA the generators of the

SU(N) gauge group and g the gauge coupling constant. The
representation matrices LA

mn are normalized by Tr(LALB) =
T (R)δAB where T (R) is the index of the representation. In
the calculation of fermionic self-energy appears (LALA)mn =
C(R)δmn, where C(R) is the quadratic Casimir invariant of the
representation [11].

At finite temperature and density, Feynman rules for vertices
are the same as those at T = 0 and µf = 0, while propagators in
the Feynman gauge for massless gauge bosons Dµν(p), massless
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scalars D(p) and massless fermions S(p) are [12]

Dµν(p) = −gµν
[

1

p2 + iǫ
− iΓb(p)

]

, (2)

D(p) =
1

p2 + iǫ
− iΓb(p), (3)

S(p) =
p/

p2 + iǫ
+ ip/Γf(p), (4)

where p is the particle four-momentum and the medium tem-
perature T is introduced through the functions Γb(p) and Γf(p)
which are given by

Γb(p) = 2πδ(p2)nb(p), (5)

Γf(p) = 2πδ(p2)nf(p), (6)

with

nb(p) =
1

e|p·u|/T − 1
, (7)

nf(p) = θ(p · u)n−
f (p) + θ(−p · u)n+

f (p), (8)

being nb(p) the Bose-Einstein distribution function. Fermi-Dirac
distribution functions for fermions n−

f (p) and for anti-fermions

n+
f (p) are

n∓
f (p) =

1

e(p·u∓µf )/T + 1
. (9)

In the distribution functions (7) and (8), uα is the four-velocity
of the center-of-mass frame of the medium, with uαuα = 1.
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Self-energy and fermion mass

We first consider the propagation of a massless fermion in a
medium at finite temperature and density. The finite density of
the medium is associated with the fact that medium has more
antifermions than fermions. The fermion mass is calculated by
following the general procedure that we have described in the
introduction.

For a non-abelian gauge theory with parity and chirality con-
servation, the real part of the self-energy for a massless fermion
is written as

ReΣ′(K) = −aK/− bu/, (10)

a and b are Lorentz-invariant functions and Kα the fermion mo-
mentum. These functions depend on Lorentz scalars ω and k
defined as ω ≡ (K · u) and k ≡ [(K · u)2 −K2]1/2. For conve-
nience uα = (1, 0, 0, 0) and then we have K2 = ω2 − k2, where
ω and k can be interpreted as the energy and three-momentum
respectively. From (10) we can write

a(ω, k) =
1

4k2
[Tr(K/ReΣ′)− ωTr(u/ReΣ′)] , (11)

b(ω, k) =
1

4k2
[

(ω2 − k2)Tr(u/ReΣ′)− ωTr(K/ReΣ′)
]

.(12)

The fermion propagator including only mass corrections is
given by [14]

S(p) =
1

K/− ReΣ′(K)
=

1

r

γ0ωn− γik
i

n2ω2 − k2
, (13)

where n = 1+ b(ω, k)/rω and r = 1+ a(ω, k). Propagator poles
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can be found when
[

1 +
b(w, k)

w(1 + a(w, k))

]2

w2 − k2 = 0. (14)

We observe in (14) that n plays a role similar to that of the
index of refraction in optics. To solve the equation (14), a(ω, k)
and b(ω, k) are first calculated from the relations (11) and(12)
in terms of the real part of the fermionic self-energy. The con-
tribution to the fermionic self-energy from the one-loop diagram
which can be constructed in this theory is given by

Σ(K) = ig2C(R)

∫

d4p

(2π)4
Dµν(p)γ

µS(p+K)γν , (15)

where g is the interaction coupling constant and C(R) is the
quadratic Casimir invariant of the representation. For the fun-
damental representation of SU(N), C(R) = (N2 − 1)/2N [13].
We have that C(R) = 1 for the U(1) gauge symmetry group,
C(R) = 1/4 for SU(2) and C(R) = 4/3 for SU(3).

Substituting (2) and (4) into (15), the fermionic self-energy
can be written as Σ(K) = Σ(0) + Σ′(K), where Σ(0) is the
zero-density and zero-temperature contribution and Σ′(K) is the
contribution at finite temperature and density. Then we have
that

Σ(0) = −ig2C(R)
∫

d4p

(2π)4
gµν
p2
γµ

p/+K/

(p+K)2
γν (16)

and

Σ′(K) = 2g2C(R)

∫

d4p

(2π)4
(p/+K/)

×
[

Γb(p)

(p+K)2
− Γf(p+K)

p2
+ iΓb(p)Γf(p)

]

. (17)
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If we take only the real part (ReΣ′(K)) of the contribution at
finite temperature and density we obtain

ReΣ′(K) = 2g2C(R)

∫

d4p

(2π)4

× [(p/+K/)Γb(p) + p/Γf(p)]
1

(p+K)2
. (18)

Now we multiply (18) by either K/ or u/, then we take the trace
and perform the integrations over p0 and the two angular vari-
ables, and finally we find that functions (11) and (12) can be
written as

a(ω, k) = g2C(R)A(w, k, µf), (19)

b(ω, k) = g2C(R)B(w, k, µf), (20)

where we have used the notation given in [15]. In the last expres-
sion, A(ω, k, µf) and B(ω, k, µf) are integrals over the modulus
of the three-momentum p = |~p| and they are defined as

A(ω, k, µf) =
1

k2

∫ ∞

0

dp

8π2

[

2p− ωp

k
log

(

ω + k

ω − k

)]

×
[

2nb(p) + n−
f (p) + n+

f (p)
]

, (21)

B(ω, k, µf) =
1

k2

∫ ∞

0

dp

8π2

[

p(ω2 − k2)

k
log

(

ω + k

ω − k

)

− 2ωp

]

×
[

2nb(p) + n−
f (p) + n+

f (p)
]

.

(22)

The integrals (21) and (22) have been obtained using the high
density approximation, i .e. µf ≫ k and µf ≫ ω, and keeping
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the leading terms in temperature and chemical potential [16].
Evaluating these integrals we obtain that a(ω, k) and b(ω, k) are
given by

a(ω, k) =
M2

F

k2

[

1− ω

2k
log

ω + k

ω − k

]

, (23)

b(ω, k) =
M2

F

k2

[

ω2 − k2

2k
log

ω + k

ω − k
− ω

]

, (24)

where fermion effective mass MF is

M2
F (T, µf) =

g2C(R)

8

(

T 2 +
µ2
f

π2

)

. (25)

The value ofMF given by (25) is in agreement with [17]-[20]. We
are interested in the effective mass at T = 0, which corresponds
precisely to the case in which the vacuum is described by a
medium at zero temperature. For this case

M2
F (0, µF ) =M2

F =
g2C(R)

8

µ2
f

π2
. (26)

Substituting (23) and (24) into (14), we obtain for the limit
k ≪MF that

ω2(k) =M2
F

[

1 +
2

3

k

MF
+

5

9

k2

M2
F

+ . . .

]

. (27)

This dispersion relation is gauge invariant due to that the calcu-
lation has been done at leading order in temperature and chem-
ical potential [16].

It is well known that the relativistic energy in the vacuum
for a massive fermion at rest is ω2(0) = m2

f . From (27) we have
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that for k = 0 then ω2(0) = M2
F and thereby we can identify

the fermion effective mass at zero temperature as the rest mass
of the fermion, i. e. m2

f = M2
F . So the gauge invariant fermion

mass which is generated by the SU(N) gauge interaction of the
massless fermion with the vacuum is

m2
f =

g2C(R)

8

µ2
f

π2
, (28)

where µf is a free parameter.

Polarization tensor and gauge boson mass

The gauge boson mass is due to the charge fluctuations of
vacuum. This mass is calculated following the general procedure
presented in the introduction. The most general form of the
polarization tensor which preserves invariance under rotations,
translations and gauge transformations is [21]

Πµν(K) = PµνΠT (K) +QµνΠL(K), (29)

where Lorentz-invariant functions ΠL and ΠT , which charac-
terize the longitudinal and transverse modes respectively, are
obtained by contraction

ΠL(K) = −K
2

k2
uµuνΠµν , (30)

ΠT (K) = −1

2
ΠL +

1

2
gµνΠµν . (31)

Bosonic dispersion relations are obtained by looking at the poles
of the full propagator which results from adding all vacuum po-
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larization insertions. The full bosonic propagator is [21]

Dµν(K) =
Qµν

K2 − ΠL(K)
+

Pµν

K2 − ΠT (K)
− (ξ − 1)

KµKν

K4
, (32)

where ξ is a gauge parameter. The gauge invariant dispersion
relations describing the two propagation modes are found from

K2 −ΠL(K) = 0, (33)

K2 − ΠT (K) = 0. (34)

The one-loop contribution to vacuum polarization from the di-
agram which can be constructed in this theory is given by

Πµν(K) = ig2C(R)

∫

d4p

(2π)4
Tr [γµS(p)γνS(p+K)] , (35)

where S is the fermion propagator (4). Substituting (4) into (35)
the polarization tensor can be written as Πµν(K) = Πµν(0) +
Π′

µν(K), where Πµν(0) is the contribution at zero density and
temperature and Π′

µν(K) is the contribution at finite tempera-
ture and density.

The real part of the contribution at finite temperature and
density to the polarization tensor ReΠ′

µν(K) is given by

ReΠ′
µν(K) =

g2C(R)

2

∫

d4p

π4

×(p2 + p ·K)gµν − 2pµpν − pµKν − pνKµ

(p+K)2
Γf(p). (36)

Substituting (36) in (30) and (31) and keeping the leading terms
in temperature and chemical potential we obtain that for the
high density approximation (µf ≫ k and µf ≫ ω)
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ReΠ′
L(K) = 3M2

B

[

1− ω

2k
log

ω + k

ω − k

]

, (37)

ReΠ′
T (K) =

3

2
M2

B

[

ω2

k2
+

(

1− ω2

k2

)

ω

2k
log

ω + k

ω − k

]

, (38)

where the gauge boson effective mass MB is

M2
B(T, µf) =

1

6
Ng2T 2 +

1

2
g2C(R)

[

T 2

6
+

µ2
f

2π2

]

, (39)

being N the gauge group dimension. The non-abelian effective
mass (39) is in agreement with [20]. The abelian gauge boson as-
sociated with a U(1) gauge invariant theory acquires an effective
mass MB(a) defined by

M2
B(a)(T, µf) = e2

[

T 2

6
+

µ2
f

2π2

]

, (40)

where e is the interaction coupling constant associated with the
U(1) abelian gauge group. The abelian effective mass (40) is
in agreement with [22]. Because the vacuum is described by a
virtual medium at T = 0, then the non-abelian gauge boson
effective mass generated by quantum fluctuations of vacuum is

M2
B(na)(0, µf) =M2

B(na) = g2C(R)
µ2
f

4π2
, (41)

and the abelian gauge boson effective mass generated by quan-
tum fluctuations of vacuum is
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M2
B(a)(0, µf) =M2

B(a) = e2
µ2
f

2π2
, (42)

in agreement with the result obtained at finite density and zero
temperature [23]. For the limit k ≪MBµ

, we can obtain the dis-
persion relations for the transverse and longitudinal propagation
modes [21]

ω2
L =M2

B +
3

5
k2L + . . . (43)

ω2
T =M2

B +
6

5
k2T + . . . (44)

We note that (43) and (44) have the same value when the three-
momentum goes to zero. We van observe from (43) and (44) that
for k = 0 then ω2(0) = M2

B and we recognize the gauge boson
effective mass as a real gauge boson mass. The non-abelian
gauge boson mass is

m2
b(na) =M2

B(na) = g2C(R)
µ2
f

4π2
, (45)

and the abelian gauge boson mass is

m2
b(a) =M2

B(a) = e2
µ2
f

2π2
. (46)

We observe that the gauge boson mass is a function on the
chemical potential that is a free parameter on this approach. We
note that if the fermionic chemical potential has an imaginary
value, then the gauge boson effective mass is given by (45) or
(46), and it would be negative [24].
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SMWHS case

In this section we follow the same procedure as the previous
one. We calculate fermion and electroweak gauge boson masses
for the case in which the dynamics of physical vacuum is de-
scribed by the SMWHS. The physical vacuum is assumed to
be a medium at zero temperature constituted by quarks, anti-
quarks, leptons and antileptons interacting among themselves
through gluons G (for the case of quarks and antiquarks), elec-
troweak gauge bosons W±, non-abelian gauge bosons W 3 and
abelian gauge bosons B. In this quantum medium there exist an
excess of virtual antifermions over virtual fermions. This fact is
described by non-vanishing chemical potentials associated with
different fermion flavors. The chemical potentials for the six
quarks are represented by µu, µd, µc, µs, µt, µb. For the chemical
potentials of charged leptons we use µe, µµ, µτ and for neutrinos
µνe, µνµ, µντ . These non-vanishing chemical potentials are input
parameters in the approach of particle mass generation.

The dynamics of the vacuum associated with the strong in-
teraction is described by Quantum Chromodynamics (QCD),
while the electroweak dynamics of physical vacuum is described
by the SU(2)L×U(1)Y electroweak standard model without the
Higgs sector. This last model is defined by the following La-
grangian density

Lew = LYM + LFB + LGF + LFP , (47)

where LYM is the Yang-Mills Lagrangian density, LFB is the
fermionic-bosonic Lagrangian density, LGF is the gauge fixing
Lagrangian density and LFP is the Fadeev-Popov Lagrangian
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density. The LYM is given by

LYM = −1

4
W µν

A WA
µν −

1

4
F µνFµν , (48)

where WA
µν = ∂µW

A
ν − ∂µW

A
µ + gwF

ABCWB
µ W

C
ν is the energy-

momentum tensor associated with the group SU(2)L and Fµν =
∂µBν − ∂µBµ is the one associated with the group U(1)Y . The
LFB is written as

LFB = iL̄γµDµL + iψi
Rγ

µDµψ
i
R + iψI

Rγ
µDµψ

I
R, (49)

where DµL = (∂µ + igeYLBµ/2 + igwTiW
i
µ)L and DµR = (∂µ +

igeYRBµ/2)R, being gw the gauge coupling constant associated
with the group SU(2)L , ge the one associated with the group
U(1)Y , YL = −1, YR = −2 and Ti = σi/2. The SU(2)L left-
handed doublet (L) is given by

L =

(

ψi

ψI

)

L

. (50)

Masses of fermions

Initially we consider the propagation of massless fermions in
a medium at finite temperature and density. The fermion masses
are calculated following the same procedure as on previous sec-
tion. For a non-abelian gauge theory with parity violation and
chirality conservation like the SMWHS, the real part of the self-
energy for a massless fermion is [15]

ReΣ′(K) = −K/(aLPL + aRPR)− u/(bLPL + bRPR), (51)
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where PL ≡ 1
2
(1−γ5) and PR ≡ 1

2
(1+γ5) are the left- and right-

handed chiral projectors respectively. The functions aL, aR, bL
and bR are the chiral projections of Lorentz-invariant functions
a, b and they are defined as follows

a = aLPL + aRPR, (52)

b = bLPL + bRPR. (53)

The inverse fermion propagator is given by

S−1(K) = L/PL + ℜ/PR, (54)

where

Lµ = (1 + aL)K
µ + bLu

µ, (55)

ℜµ = (1 + aR)K
µ + bRu

µ. (56)

The fermion propagator follows from the inversion of (54)

S =
1

D

[(

L2ℜ/
)

PL +
(

ℜ2L/
)

PR

]

, (57)

where D(ω, k) = L2ℜ2. The poles of the propagator correspond
to values ω and k for which the determinant D in (57) vanishes

L2ℜ2 = 0. (58)

In the rest frame of the dense plasma u = (1,~0), Eq.(58) leads to
fermion dispersion relations for a chirally invariant gauge theory
with parity violation, as from the case of the SMWHS. Thus
fermion dispersion relations are given by [15]

[ω(1 + aL) + bL]
2 − k2 [1 + aL]

2 = 0, (59)

[ω(1 + aR) + bR]
2 − k2 [1 + aR]

2 = 0. (60)
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Left- and right-handed components of the fermion dispersion re-
lations are decoupled relations. The Lorentz invariant functions
a(ω, k) and b(ω, k) are calculated from expressions (11) and (12)
through the real part of fermion self-energy. This self-energy is
obtained adding all posible gauge boson contributions admitted
by the Feynman rules of the SMWHS.

We work on the basis of gauge bosons given by Bµ, W
3
µ ,

W±
µ , where the charged electroweak gauge bosons are W±

µ =

(W 1
µ ∓ iW 2

µ)/
√
2. The diagrams with an exchange of a W±

gauge boson induce a flavor change in the incoming fermion i to
a different outgoing fermion j.

i
i

i

G,B,W 3

+
i

I
i

W+

Figure 1: Feynmann diagrams contributing to the self-energy of

the left-handed quark i.

Quark masses

The quark masses are obtained from flavor change contribu-
tions previously mentioned. For the quark sector, the flavor i
(I) of the internal quark (inside the loop) runs over the up (i)
or down (I) quark flavors according to the type of the external
quark (outside the loop). Feynman diagrams at one-loop order
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which contribute to the self-energy of the left-handed quark i
(i = uL, cL, tL) are shown in Figure 1. As for each contribu-
tion to the quark self-energy is proportional to (21)-(22), the
functions aL, aR, bL and bR are given by

aL(ω, k)ij = [fS + fW 3 + fB]A(ω, k, µi)

+
∑

I

fW±A(ω, k, µI), (61)

bL(ω, k)ij = [fS + fW 3 + fB]B(ω, k, µi)

+
∑

I

fW±B(ω, k, µI), (62)

aR(ω, k)ij = [fS + fB]A(ω, k, µi), (63)

bR(ω, k)ij = [fS + fB]B(ω, k, µi). (64)

In the last expressions the coefficients f are

fS =
4

3
g2sδij , (65)

fW 3 =
1

4
g2wδij , (66)

fB =
1

4
g2eδij , (67)

fW± =
1

2
g2wK

+
ilKlj, (68)

where K represents the CKMmatrix and gs is the strong running
coupling constant associated with the group SU(3)C . The inte-
grals A(ω, k, µf) and B(ω, k, µf) are obtained in a high density
approximation (µf ≫ k and µf ≫ ω). These integrals keep-
ing the leading terms in temperature and chemical potential are
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given by

A(ω, k, µf) =
1

8k2

(

T 2 +
µ2
f

π2

)[

1− ω

2k
log

ω + k

ω − k

]

, (69)

B(ω, k, µf) =
1

8k2

(

T 2 +
µ2
f

π2

)[

ω2 − k2

2k
log

ω + k

ω − k
− ω

]

.(70)

The chiral projections of the Lorentz-invariant functions are

aL(ω, k)ij =
1

8k2

[

1− F (
ω

k
)
]

×
[

lij(T
2 +

µ2
i

π2
) + hij(T

2 +
µ2
i

π2
)

]

, (71)

bL(ω, k)ij = − 1

8k2

[

ω

k
+ (

k

ω
− ω

k
)F (

ω

k
)

]

×
[

lij(T
2 +

µ2
i

π2
) + hij(T

2 +
µ2
i

π2
)

]

,

(72)

aR(ω, k)ij =
1

8k2

[

1− F (
ω

k
)
]

[

rij(T
2 +

µ2
i

π2
)

]

, (73)

bR(ω, k)ij = − 1

8k2

[

ω

k
+ (

k

ω
− ω

k
)F (

ω

k
)

]

×
[

rij(T
2 +

µ2
i

π2
)

]

, (74)

where F (x) is

F (x) =
x

2
log

(

x+ 1

x− 1
,

)

(75)
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and the coefficients lij , hij and rij are given by

lij =

(

4

3
g2s +

1

4
g2w +

1

4
g2e

)

δij , (76)

hij =
∑

l

(

g2w
2

)

K+
ilKlj, (77)

rij =

(

4

3
g2s +

1

4
g2e

)

δij. (78)

Substituting (71)-(72) into (59), and (73)-(74) into (60), for the
limit k ≪M(i,I)L,R

we obtain

ω2(k) =M2
(i,I)L,R

[

1 +
2

3

k

M(i,I)L,R

+
5

9

k2

M2
(i,I)L,R

+ . . .

]

, (79)

where

M2
(i,I)L

(T, µf) = (lij + hij)
T 2

8
+ lij

µ2
(i,I)L

8π2
+ hij

µ2
(I,i)L

8π2
, (80)

M2
(i,I)R

(T, µf) = rij
T 2

8
+ rij

µ2
(i,I)R

8π2
. (81)

As it was explained on previous section, we are interested in
effective masses at T = 0. For this case

M2
(i,I)L

(0, µf) = lij
µ2
(i,I)L

8π2
+ hij

µ2
(I,i)L

8π2
, (82)

M2
(i,I)R

(0, µf) = rij
µ2
(i,I)R

8π2
. (83)

Keeping the same argument as in section 2, we can identify
quark effective masses at zero temperature with the rest masses
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of quarks. Coming from the left-handed and right-handed rep-
resentations, we find that masses of the left-handed quarks are

m2
i =

[

4

3
g2s +

1

4
g2w +

1

4
g2e

]

µ2
iL

8π2
+

[

1

2
g2w

]

µ2
IL

8π2
, (84)

m2
I =

[

4

3
g2s +

1

4
g2w +

1

4
g2e

]

µ2
IL

8π2
+

[

1

2
g2w

]

µ2
iL

8π2
, (85)

and the masses of the right-handed quarks are

m2
i =

[

4

3
g2s +

1

4
g2e

]

µ2
iR

8π2
, (86)

m2
I =

[

4

3
g2s +

1

4
g2e

]

µ2
IR

8π2
, (87)

where the couple of indexes (i, I) run over quarks (u, d), (c, s)
and (t, b). It is known that the masses of left-handed quarks
are the same as the masses of right-handed quarks. This means
that left-handed quark chemical potentials µqL are different from
right-handed quark chemical potentials µfR.

If we call

aq =
1

8π2

[

4

3
g2s +

1

4
g2w +

1

4
g2e

]

, (88)

bq =
1

8π2

[

1

2
g2w

]

, (89)

the expressions (84) and (85) lead us to

µ2
uL

=
aqm

2
u − bqm

2
d

a2q − b2q
, (90)

µ2
dL

=
−bqm2

u + aqm
2
d

a2q − b2q
. (91)
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Naming

cq =
1

8π2

[

4

3
g2s +

1

4
g2e

]

, (92)

the expressions (86) and (87) can be written as

µ2
uR

=
m2

u

cq
, (93)

µ2
dR

=
m2

u

cq
, (94)

and similar expressions for the other two quark doublets (c, s)
and (t, b).

If we take the experimental central values for the strong
constant as αs = 0.1184, the fine-structure constant as αe =
7.2973525376 × 10−3 and the cosine of the electroweak mixing
angle as cos θw = MW/MZ = 80.399/91.1876 = 0.88168786 [8],
then gs = 1.21978, gw = 0.641799 and ge = 0.343457. Fix-
ing the central values for quark masses as [8] mu = 0.0025
GeV, md = 0.00495 GeV, mc = 1.27 GeV, ms = 0.101 GeV,
mt = 172.0 GeV, mb = 4.19 GeV, into the expressions (90),
(91), (93) and (94), we obtain that the squares of left-handed
quark chemical potentials are given by

µ2
uL

= 1.4559× 10−4, (95)

µ2
dL

= 9.0× 10−4, (96)

µ2
cL

= 60.7141, (97)

µ2
sL

= −5.5280, (98)

µ2
tL

= 1.1143× 106, (99)

µ2
bL

= −1.0778× 105, (100)
c©2011 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 18, No. 2, April 2011 186

and the squares of right-handed quark chemical potentials are

µ2
uR

= 2.4511× 10−4, (101)

µ2
dR

= 9.6092× 10−4, (102)

µ2
cR

= 63.254, (103)

µ2
sR

= 0.4, (104)

µ2
tR

= 1.1602× 106, (105)

µ2
bR

= 688.508, (106)

where the left- and right-handed chemical potentials are given
in GeV2 units.

Lepton masses

For the lepton sector, the contributions to the fermion self-
energy are proportional to (21)-(22) and functions aL, aR, bL
and bR are given by

aL(ω, k)ij = [fW 3 + fB]A(ω, k, µi)

+
∑

I

fW±A(ω, k, µI), (107)

bL(ω, k)ij = [fW 3 + fB]B(ω, k, µi)

+
∑

I

fW±B(ω, k, µI), (108)

aR(ω, k)ij = [fB]A(ω, k, µi), (109)

bR(ω, k)ij = [fB]B(ω, k, µi), (110)

where fW± = g2w/2 and the other coefficients fW 3 and fB are
given by (66) and (67) respectively.
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The dispersion relation for leptons are similar to the relations
(79), but in this case the effective masses (80) and (81) are given
by

M2
(i,I)L

(T, µf) = (l + h)
T 2

8
+ l

µ2
(i,I)L

8π2
+ h

µ2
(I,i)L

8π2
, (111)

M2
(i,I)R

(T, µf) = r
T 2

8
+ r

µ2
(i,I)R

8π2
, (112)

where the coefficients l, h and r for the charged leptons are given
by

l =

(

1

4
g2w +

1

4
g2e

)

, (113)

h =

(

1

2
g2w

)

, (114)

r =

(

1

4
g2e

)

, (115)

and for the neutrinos these coefficients are

l =

(

1

4
g2w

)

, (116)

h =

(

1

2
g2w

)

, (117)

r = 0. (118)

The leptonic effective masses (111) and (112) at zero tem-
perature can be interpreted as lepton masses. Coming from left-
handed and right-handed representations, we find that masses
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of left-handed leptons are given by

m2
i =

[

1

4
g2w

]

µ2
iL

8π2
+

[

1

2
g2w

]

µ2
IL

8π2
, (119)

m2
I =

[

1

4
g2w +

1

4
g2e

]

µ2
IL

8π2
+

[

1

2
g2w

]

µ2
iL

8π2
, (120)

and masses of the right-handed charged leptons are

m2
I =

[

1

4
g2e

]

µ2
IR

8π2
, (121)

where couple of indexes (i, I) run over leptons (νe, e), (νµ, µ)
and (ντ , τ). We observe that the approach predicts that neutri-
nos are massive. The W 3 and W± interactions among massless
neutrinos with physical vacuum are the source for left-handed
neutrinos masses, as we can observe from (119).

If we call

al =
1

8π2

[

1

4
g2w

]

, (122)

bl =
1

8π2

[

1

2
g2w

]

, (123)

cl =
1

8π2

[

1

4
g2w +

1

4
g2e

]

, (124)

then the expressions (119) and (120) lead us to

µ2
νL

=
clm

2
ν − blm

2
e

alcl − b2l
, (125)

µ2
eL

=
−blm2

ν + alm
2
e

alcl − b2l
. (126)
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Calling

dl =
1

8π2

[

1

4
g2e

]

, (127)

the expression (121) can be written as

µ2
eR

=
m2

e

dl
, (128)

and similar expressions for the other two lepton doublets (νµ, µ)
and (ντ , τ). Assuming that neutrinos are massless mνe = mνµ =
mντ = 0, and fixing the experimental central values for charged
lepton masses as [8] me = 0.510998910 × 10−3 GeV, mµ =
0.105658367 GeV,mτ = 1.77682 GeV, into the expressions (125),
(126) and (128), we obtain that the squares of left-handed lepton
chemical potentials are

µ2
νeL

= 1.4699× 10−4, (129)

µ2
eL

= −7.3492× 10−5, (130)

µ2
νµL

= 6.30867, (131)

µ2
µL

= −3.1543, (132)

µ2
ντL

= 1.7841× 103 (133)

µ2
τL

= −8.9205× 103, (134)

and the squares of right-handed charged lepton chemical poten-
tials are

µ2
eR

= 6.9637× 10−4, (135)

µ2
µR

= 29.8888, (136)

µ2
τR

= 8.4526× 103, (137)
c©2011 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 18, No. 2, April 2011 190

where the left- and right-handed chemical potentials are given
in GeV2 units. Experimental neutrino masses are unknown but
experimental results show that neutrino masses are of order 1
eV [8], and cosmological interpretations from five-year WMAP
observations find a limit over the total mass of massive neutrinos
of Σmν < 0.6 eV (95% CL) [25]. These results assure that val-
ues of left-handed lepton chemical potentials obtained by taking
neutrinos to be massless will change a little if we have the real
small neutrinos masses.

We observe that for five from the six fermion doublets the
square of the chemical potential associated to the down fermion
of the doublet has a negative value. This behavior is observed if
there is a large difference between the masses of the two fermions
of the doublet. This means that for the quark doublet which is
formed by the up and down quarks this behavior is not observed
due to that the masses for these two quarks are quite near. In
this case, the chemical potentials associated to these two quarks
are positive.

From expressions (84), (85), (119) and (120) it can be seen
that our approach does not predict fermion mass values owing
to the fermionic chemicals potentials µfi are free parameters.
However, we have fixed the values of these µfi starting from the
known experimental values for fermion masses. This limitation
of our approach is similar to what happens in the MSM with
Higgs mechanism in the sense that fermion masses depend on
the Yukawa coupling constants which are free parameters. Sim-
ilarly to occur here when we find the values of vacuum chemical
potentials, the Yukawa coupling constants can be fixed by means
of the experimental values of fermion masses.
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Masses of electroweak gauge bosons

The masses of electroweak gauge bosons are originated from
charge fluctuations of vacuum. These masses are calculated fol-
lowing a sequence of steps that we present now: On the outset
we write the one-loop polarization tensor at finite temperature
and density, then we calculate the one-loop bosonic dispersion
relations in the high density approximation by obtaining the
poles of gauge boson propagators, next from these dispersion re-
lations we obtain the electroweak gauge boson effective masses
at finite temperature and density, finally we identify these effec-
tive masses at zero temperature with masses of the electroweak
gauge bosons.

To evaluate the bosonic polarization tensor associated with
the W±

µ , W 3
µ , Bµ gauge boson propagators, we follow the same

procedure as in section 2.2. Applying the expressions (45) and
(46) in the SMWHS we obtain that the masses of the gauge
bosons are

M2
W± =

g2w
2

S(µ2
qL
) +

∑3
i=1(µ

2
νiL

− µ2
eiL

)

4π2
, (138)

M2
W 3 =

g2w
4

S(µ2
qL
) +

∑3
i=1(µ

2
νiL

− µ2
eiL

)

2π2
, (139)

M2
B =

g2e
4

S(µ2
qL
) +

∑3
i=1(µ

2
νiL

− µ2
eiL

)

2π2
, (140)

where S(µ2
qL
) = µ2

uL
+ µ2

dL
+ µ2

cL
− µ2

sL
+ µ2

tL
− µ2

bL
and the

sum runs over the three lepton families. We remind you that if
the left-handed fermionic chemical potential has an imaginary
value, then its contribution to the gauge boson effective mass, as
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in the case (45) or (46), would be negative. This fact means that
finally the contribution from each fermionic chemical potential
to gauge boson masses is always positive.

Substituting the obtained left-handed fermionic chemical po-
tential values (101)-(106) and (129)-(137) into the expressions
(138)-(140), we obtain

MW± =MW 3 = 79.9344GeV , (141)

MB = 42.7767GeV , (142)

We observe that the value ofMW is smaller respect to its exper-
imental value given by Mexp

W = 80.399± 0.023 GeV [8].
Due to well known physical reasonsW 3

µ and Bµ gauge bosons
are mixed. After diagonalization of the mass matrix, we obtain
that the physical fields Aµ and Zµ corresponding to massless
photon and neutral Z0 boson of massMZ respectively are related
by means of [26, 27]

M2
Z =M2

W +M2
B, (143)

cos θw =
MW

MZ

, sin θw =
MB

MZ

, (144)

where θw is the weak mixing angle

Z0
µ = Bµ sin θw −W 3

µ cos θw, (145)

Aµ = Bµ cos θw +W 3
µ sin θw. (146)

Substituting (141) and (142) into (143) we obtain

MZ = 90.6606GeV , (147)
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which is also smaller respect to its experimental value given by
Mexp

Z = 91.1876± 0.0021 GeV [8].
Substituting the expressions for the fermionic chemical po-

tentials given by (90), (91), (125), (126) into the expressions
(138), (139), (140) we obtain that the masses of the electroweak
gauge bosons W and Z are given by

M2
W = g2w(A1 + A2 + A3 −A4), (148)

M2
Z = (g2e + g2w)(A1 + A2 + A3 − A4), (149)

where the parameters A1, A2, A3 and A4 are

A1 =
m2

u +m2
d

B1
, (150)

A2 =
m2

c −m2
s +m2

t −m2
b

B2
, (151)

A3 =
3(m2

e +m2
µ +m2

τ )

B3
, (152)

A4 =
(3 + g2e/g

2
w)(m

2
νe +m2

νµ +m2
ντ )

B3

, (153)

being

B1 =
4

3
g2s +

3

4
g2w +

1

4
g2e , (154)

B2 =
4

3
g2s −

1

4
g2w +

1

4
g2e , (155)

B3 =
3

4
g2w − 1

4
g2e . (156)
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We observe thatMW andMZ are written in terms of the masses
of fermions and running coupling constants of the strong, weak
and electromagnetic interactions.

If we take the experimental central values for the strong run-
ning coupling constant as αs = 0.1184, the fine-structure con-
stant as αe = 7.2973525376 × 10−3 and the cosine of the elec-
troweak mixing angle as cos θw = MW/MZ = 80.399/91.1876 =
0.88168786 [8], then gs = 1.21978, gw = 0.641799 and ge =
0.343457. Substituting the values of gs, gw and ge and the values
for the experimental masses of the electrically charged fermions,
given by [8] mu = 0.0025 GeV, md = 0.00495 GeV, mc = 1.27
GeV, ms = 0.101 GeV, mt = 173.0015 GeV, mb = 4.19 GeV,
me = 0.510998910× 10−3 GeV, mµ = 0.105658367 GeV, mτ =
1.77682 GeV, into the expressions (148) and (149), and assuming
neutrinos as massless particles, mνe = mνµ = mντ = 0, we ob-
tain that theoretical masses of the W and Z electroweak gauge
bosons are given by

M th
W± = 79.9344± 1.0208GeV , (157)

M th
Z = 90.6606± 1.1587GeV . (158)

These theoretical masses are in agreement with theirs experi-
mental values given by Mexp

W = 80.399± 0.023 GeV and Mexp
Z =

91.1876±0.0021 GeV [8]. Central values for parameters A1, A2,
A3 and A4 in expressions (148) and (149) are A1 = 1.32427 ×
10−5, A2 = 15478, A3 = 34.0137 and A4 = 0. We observe that
A2 is very large respect to A3 and A1. Taking into account the
definition of parameter A2 given by (151) we can conclude that
masses of electroweak gauge bosons coming specially from top
quark mass mt and strong running coupling constant gs.
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We obtain also a prediction for top quark mass starting
from the expression (149). Using central experimental values
Mexp

W = 80.399 GeV, Mexp
Z = 91.1876 GeV and considering

the uncertainties for running coupling constants and for fermion
masses, and assuming neutrinos as massless particles, we pre-
dict from (149) that top quark mass is mth

t = 173.0015± 0.6760
GeV. This theoretical value is in agreement with the experi-
mental value for top quark mass given by [8] mexp

t = 172.0± 2.2
GeV.

Some relations between mt and MW , MZ

The square of the electroweak gauge boson masses MW and
MZ were written in terms of the fermion masses and the running
coupling constants of strong, weak and electromagnetic interac-
tions, such as shown in (148) and (149). If we sum up (148) and
(149) we can write that

M2
W +M2

Z = (g2e + 2g2w)(A1 + A2 + A3 − A4). (159)

Since the top quark massmt is very large in comparison to other
fermion masses, it is very easy to prove that

A1 + A2 + A3 −A4 ≈
m2

t

B2

. (160)

Substituting (160) into (159) we can obtain that the square of
the top quark mass and the squares of the electroweak gauge
boson masses are related as

m2
t = C1(M

2
W +M2

Z), (161)
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where

C1 =
B2

g2e + 2g2w
. (162)

On the other hand, if we take the square root of expressions
(148) and (149) we can prove that

(MW +MZ)
2 = (gw +

√

g2w + g2e)
2(A1 + A2 + A3 − A4). (163)

Substituting (160) into (163) and after taking the square root,
we can obtain that the top quark mass and the electroweak
gauge boson masses satisfy the following relation

mt = C2(MW +MZ) ≈ MW +MZ , (164)

where

C2 =

√
B2

gw +
√

g2w + g2e
. (165)

Substituting the values gs = 1.21978, gw = 0.641799 and
ge = 0.343457 into (162) and (165) we obtain that C1 = 2.02843
and C2 = 1.00907. Using the central values for the electroweak
gauge boson masses Mexp

W = 80.399 GeV and Mexp
Z = 91.1876

GeV, from (161) and (164) we obtain that mt = 173.143 GeV,
which is in agreement with the experimental value for top quark
mass.

Rewriting the mathematical relation (164), we can obtain
the empirical relation given by

mt − (MW +MZ)

mt

= 0.0023, (166)

which has been a motive of interest in references [28, 29].
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In the approach of particle mass generation that we have
introduced on this paper, the top quark has acquired its mass
from the interactions with physical vacuum and the electroweak
gauge bosons have acquired their masses from the charge fluctu-
ations of physical vacuum. The common origin from vacuum for
these particle masses on this approach allow us to give a theoret-
ical explanation to the empirical mass relation given by (166).
Some other works in the literature [28, 29] have also suggested
that the relation (166) is perhaps more than a mere coincidence.

Conclusions

We have presented an approach for particle mass genera-
tion in which we have extracted some generic features of Higgs
mechanism that do not depend on its interpretation in terms
of a Higgs field. The physical vacuum has been assumed to
be a medium at zero temperature constituted by fermions and
antifermions interacting among themselves by means of gauge
bosons. The fundamental approach describing the dynamics of
this physical vacuum is the SMWHS. We have assumed that
each fermion flavor in the physical vacuum is associated with a
chemical potential µf in such manner that there is an excess of
antifermions over fermions. This fact implies that the vacuum
is thought to be a virtual medium having a net antimatter finite
density.

Fermion masses are calculated starting from the fermion self-
energy which represents fundamental interactions of a fermion
with physical vacuum. The gauge boson masses are calculated
from charge fluctuations of physical vacuum which are described
by the vacuum polarization tensor. We have used the following
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general procedure to calculate these particle masses: Initially we
have written one-loop self-energies and polarization tensors at
finite temperature and density, next we have calculated disper-
sion relations obtaining the poles of fermion and gauge boson
propagators, from here we have obtained the fermion and gauge
boson effective masses at finite temperature and density, finally
we have identified these particle effective masses at zero tem-
perature as physical particle masses. This identification can be
performed because in our approach the medium at finite density
and zero temperature represents the physical vacuum.

Using this approach for particle mass generation, we have
obtained masses of electroweak gauge bosons in agreement with
their experimental values. A further result is that left-handed
neutrinos are massive because they have a weak charge. Addi-
tionally this approach has given an explanation to an existing
empirical relation between the top quark mass and the elec-
troweak gauge boson masses.
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