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D’Alembert’s and similar wave equations are not fundamental relations, but result from

a continuity equation and internal dynamics. The continuity equation is considered to be

an elementary persistent element in a ’permanently changing world’ (Heraclitus).

Generalizing a reasoning by Euler, the principle of sufficient reason implies inertial

motion in a homogeneous and isotropic space-time to be straight and uniform.

For an empty as well as an homogeneously and isotropically filled universe, the principle

of sufficient reason implies the universe to be spatially and temporarily homogeneous and

isotropic (in agreement with Cusanus’ metaphysical arguing). With Euclidian metric,

the coordinate transformation which leads ds2 invariant is not the Galileo, but the

’Cusanus transformation’, a rotation in R4. The wave equation, however, corresponds to

Minkowski’s metric. For physical (there is no Galileo space-time) and logical reasons

(asymmetry of space and time coordinates), the Galileo transformation is at most a

useful approximation in problems, where Galileo invariant equations are useful.
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Introduction

When discussing the propagation of electromagnetic fields or the range
of applicability of the Galileo transformation, one is inevitably led to wave
equations. Indeed, the physical world is full of wave processes. However,
wave equations are as little axiomatically founding as Newton’s equation of
motion, md2~r/dt2 = ~F , is. It is the continuity equation which is axiomatically

comparable with Newton’s Law 2 in the form d~p/dt = ~F .
Furthermore, the symmetry of an equation of motion should be com-

patible with the symmetry of the space-time the motion proceeds in. In
discussing this issue, inspiration is gained from metaphysical thoughts by
Heraclitus and Cusanus and from logical reasoning by Euler, while the
verification of the results is done according to physical criteria.
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Thus, Section 2 encompasses, (i), the continuity equation; (ii), related
wave equations; (iii), related relations like Gauss’ law and Ampere-Maxwell’s
flux law, and generalizations of them. Section 3 treats the relationship be-
tween the symmetry of space-time and the symmetry of physical laws, in
particular, with respect to inertial motion and the metric tensor. Section 4
summarizes and concludes this paper.

Heraclitian foundation of the wave equation

Conservation in a world of permanent change
According to Plato (428/427 BC - 348/347 BC), Heraclitus of Eph-

esus (c. 535 - c. 475 BC) stated, ”Tα Παντα ρει” (all things are flowing)
[25] [23]. He concluded this from the observation of nature as well as from
the rapid changes in the society he lived in [29]. However, if all changes are
irregular, science is impossible. In turn, if science exists, there are regulari-
ties.

Indeed, Heraclitus’ fragment 12 gives reason to doubt Plato’s and
other’s overestimation of the change as it states, that different waters flow
onto people stepping into the same rivers. Although their waters change, the
rivers remain the same. Therefore, Heraclitus’ understanding of change
does support constancy as well. [21]

But which are the persistent elements, or regular patterns, the realization
of which lies at the heart of scientific work?

According to Hegel [23], the essence of that flowing is not the changes,
but the becoming, the dialectic solution to the contradiction of being and
nothing. The goal of science would thus be the understanding of the evolution
laws.

Physics of conservation laws versus Physics of equations of motion
On the other hand, the most fundamental laws in Descartes’, Huy-

gens’ and Newton’s representations of mechanics concern the conservation
of state (rest and straight uniform motion, respectively) and the change of
state (speed, velocity and momentum, respectively). The motion as described
through the time-dependent change of position, eg, in Newton’s equation
of motion, is not part of the axiomatic.

Later, Lagrange’s and Hamilton’s representations of mechanics put
the equation of motion at the forefront. The principle of least action has been
favoured by authorities like Planck and virtually assumed an axiomatic
status.
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The results of the representations classical mechanics basing, on the one
hand, on conserved quantities and, on the other hand, on equations of mo-
tions are equivalent, as first shown by Daniel Bernoulli.

However, the laws of state conservation and of state change are much more
general than the equations of motions. For example, the energy conservation
law holds true not only in physics, but also in chemistry. In contrast, the
equations of motion are different even in different branches of physics. This
has brought Bohr (1913), Heisenberg (1925) and Schroedinger (1926)
to the conclusion, that the principles of state conservation are the same in
classical and quantum physics, while that of state change are different, so
that classical mechanics cannot be generalized in a smooth manner.

This holds true, indeed, for Newton’s axiomatic, but not for Euler’s
one which contains only the conservation of states, not their changes. Eu-
ler’s principles of state change for single bodies can be formulated such, that
they apply also to non-relativistic conservative point-mechanical systems and
quantum systems. I will not elaborate this in more detail, because in this
paper, I’m concentrating on continuous systems.

Continuum theory
If ”all is flowing”, the elementary persistent elements are reflected in con-

servation laws of type continuity equation, while the becoming is expressed
through evolution laws like inhomogeneous wave equations.

The conservation of scalar and possibly distributed quantities like the
electrical charge is described through the rate equation1

dq

dt
=

d

dt

∫∫∫
Ω

ρ(~r, t)d3r = −I = −
∮
∂Ω

~j(~r, t) · d2~r (1)

or, if the boundary, ∂Ω, is time-independent, through the equation of conti-
nuity,

ρ̇(~r, t) = −∇~j(~r, t) (2)

In order to solve for ρ(~r, t) or for ~j(~r, t), one has to externally impress

1Concentrating on the wave equation, I discard any atomism. A more fundamental
treatment should be possible in terms of differential forms, where metric and coordinates
are not presupposed. This contribution, however, is more interested in the axiomatic
status of the Galileo and Lorentz transformations, respectively.

All fields are supposed to be sufficiently smooth; all integrals are taken over simply
connected domains and assumed to exists.
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~j(~r, t) or ρ(~r, t), respectively.2 The alternative is the presence of an internal
dynamics as described by constitutive laws. In what follows, diffusive and
relaxation processes will be considered.

Laws of motion depending on internal dynamics
Pure diffusion

In a first attempt, one may assume – as published first for heat diffusion
by Fourier [19] and for matter diffusion by Fick [18] –, that the flux density
is proportional to the density gradient (’Fick’s 1st law’).

~j = −D∇ρ (3)

The resulting equation of motion is the diffusion equation (’Fick’s 2nd law’).3

ρ̇(~r, t) = D∆ρ(~r, t) (4)

Diffusion and relaxation

In order to remove the artifact of infinite speed of propagation, one may
slow down the instantaneous reaction of the flow to a density gradient by
means of a Maxwellian relaxation term [39].

τ
∂~j

∂t
+~j = −D∇ρ (5)

In this case, the resulting equation of motion is the equation of hyperbolic
heat transfer, a damped wave equation.4

τ
∂2ρ

∂t2
+
∂ρ

∂t
= D∆ρ (6)

It exhibits an intrinsic speed of propagation, c =
√
D/τ . Like D and τ ,

it is determined through internal processes and, consequently, is an internal

2External volume sources would appear on the r.h.s. of the continuity equation, see
below. External sources at the boundary, such as electrodes, require a closed system of
equations.

3A short historical review is given in [45]. – For simplicity, all ’material coefficients’
are treated as being scalar and independent of space and time.

4This equation is a starting point for non-equilibrium thermodynamics [41]. It also
applies to the Helmholtz-transverse component of the electrical field strength in vacuo.
With an additional term proportional to ρ on the l.h.s., it is called the telegrapher’s
equation. This demonstrates the wide applicability of the approach described here.
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parameter, ie, it is independent of the manner of excitation of variations of
ρ, the propagation of which eq. (6) describes.

Pure relaxation
Finally, for pure relaxation, diffusionless intrinsic dynamics, the consti-

tutive law reads
∂~j

∂t
= −c2∇ρ (7)

leading to the elementary d’Alembertian wave equation.

∂2ρ

∂t2
= c2∆ρ (8)

c persists to be an internal parameter; its numerical value is independent
of the manner of excitation as well as of the motion of the source. Through
c = λf , it connects the external parameters wavelength, λ, and frequency, f ;
these are ’external’ ones, because they depend on boundary conditions and
excitation, respectively.

Inhomogeneous wave equation
In case of external volume sources, P , the continuity equation becomes

∂ρ

∂t
(~r, t) = −∇~j(~r, t) + P (~r, t) (9)

There is no physically reasonable possibility to extent the continuity equation
through a non-local term. All remote sources, P (~r′, t′), would sum up to

P (~r, t) =

∫ +∞

−∞
K(~r, t;~r′, t′)P (~r′, t′)d3r′dt′ (10)

where the kernel, K(~r, t;~r′, t′), describes the propagation of the source at
the source space-time point, (~r′, t′), to the point, (~r, t), under consideration.
Actually, there is even no need for such an extension. For the reaction of the
density, ρ, to the production rate, P , is not instantaneous, but ’fully relaxed’.
As above, this will lead to a finite speed of propagation of the effect of P
upon ρ.

Moreover, the constitutive law may be extended by an external current
source, ~J , as

∂~j

∂t
(~r, t) = −c2∇ρ(~r, t) + ~J(~r, t) (11)
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For the same reasons by which P = P (~r, t), there are effectively only local

current sources: ~J = ~J(~r, t). And, again, the fact, that not ~j itself, but

∂~j/∂t is related to ~J(~r, t), leads to a finite propagation speed of the effect of
~J upon ~j.

Both extensions together lead to the inhomogeneous wave equation

c2∆ρ− ∂2ρ

∂t2
= ∇ ~J − ∂P

∂t
(12)

Here, the signs have been chosen such, that the transition from Euclidian to
Minkowskian space-time is most natural, see below. Since, when compared
with the basic equations, the orders of the time- and space-derivates of ρ
have been risen by one, those of P and ~J , respectively, have been, too.

Secondary fields and their wave equations
Mie’s approach to Maxwell’s equations
The following arguing is pioneered by Mie for electromagnetism, though

it is quite general.
The conserved quantity, q, in eq. (1) can be related to a flux, ~D(~r, t), as

q =

∫∫∫
Ω

ρ(~r, t)d3r =

∮
∂Ω

~D(~r, t) · d2~r (13)

~D represents the ”excitation” of the surrounding of q.

• If ρ is the density of gravitating mass, ~D describes the spatial distri-
bution of the corresponding force of gravity (the ”accelerating force”
in [43], Definitions). Newton’s force law follows almost immediately.
[13]

• If ρ(~r, t) is the density of ”free electricity”, ~D represents the ”dielectric
displacement” [37][38].

By virtue of Gauss’ integral theorem, again, this is equivalent to

∇ ~D(~r, t) = ρ(~r, t) (14)

Then,
dq

dt
=

d

dt

∮
∂Ω

~D(~r, t) · d2~r =

∮
∂Ω

∂

∂t
~D(~r, t) · d2~r (15)
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if the surface, ∂Ω, is time-independent, again. Hence,∮
∂Ω

[
~j(~r, t) +

∂

∂t
~D(~r, t)

]
· d2~r = 0 (16)

Since ∮
∂Ω

[
∇× ~H(~r, t)

]
· d2~r ≡ 0 (17)

we have
~j(~r, t) +

∂

∂t
~D(~r, t) = ∇× ~H(~r, t) (18)

~H may be called the ”excitation” (Mie, No. 289) of the surrounding of the

”total current density” [38], ~C = ~j + ∂ ~D/∂t.

• Within Maxwell’s theory, this is Ampere-Maxwell’s flux law, ~H
being the magnetic field strength.

• By analogy, Heaviside [22] has proposed a gravito-electromagnetic

theory of gravity, where ~H is related to the gravito-magnetic field
strength.5

It is often stated, that charge conservation is contained in the inhomoge-
neous Maxwell equations.6 This statement supposes, however, that the
Maxwell equations are more fundamental than, or at equal level with
charge conservation. For metaphysical reasons (eg, the Heraclitian deriva-
tion above) and in view of the fact, that charge conservation persists in
quantum electrodynamics, the opposite holds true.

Moreover, the resulting wave equation for ~D rather than for its Helmholtz-
transverse component, ~DT , and Poynting’s theorem implicitly assume, that
the longitudinal field components behave in the same manner as the trans-
verse ones. However, free electromagnetic waves are purely transverse ones,
and the longitudinal photons are quite different from the transverse ones.7

5The nowadays gravito-electromagnetic equations represent a linear approximation to
Einstein’s field equations, see, eg [7] [36]. By virtue of the non-linearity of the latters,
they differ by a factor of 2 from Heaviside’s ones.

6Maxwell’s original set of ”20 equations for 20 variables” contain both the flux law
and the continuity equation, though the current density, ~j, means the conduction current
only. I agree with Heaviside, that it is compatible with Maxwell’s methodics ~j to
include the convection current.

7For a more detailed discussion, see [14].
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Wave equations for ~DT und ~HT

For the calculation of ~D(~r, t) and ~H(~r, t), one needs an equation for ~DT

or ∂ ~DT/∂t and ~HL or ∂ ~HL/∂t. The derivation of them is beyond the scope
of this contribution. In vacuo,

~HL ≡ ~0 (19)

(∇ ~H ≡ 0) and

∂ ~HT

∂t
= −c2

0∇× ~DT (20)

where c0 is the speed of light in vacuo.
Separating ~HT and ~DT , one obtains the inhomogeneous wave equations

∆ ~DT −
∂2 ~DT

c2
0∂t

2
=
∂~jT
c2

0∂t
(21)

∆ ~HT −
∂2 ~HT

c2
0∂t

2
= −∇×~jT (22)

The signs have been chosen such, that the transition from Euclidian to
Minkowskian space-time is most natural, see below.

All that refers to a Cartesian system of coordinates fixed to the material
in which the transport proceeds. Tentatively, the corresponding geometry of
space-time is Euclidian, because the theory has been developed entirely
along classical lines of thought.8 I will return to this issue below.

Generalization of ∇ ~D = ρ
Before leaving this topic, I notice, that eq. (14) can be generalized to

~DL(~r, t) = −∇φ ~D(~r, t) (23)

where φ ~D, the scalar potential of ~D, obeys not the Poisson equation

∆φ ~D(~r, t) = −ρ(~r, t) (24)

but the Helmholtz equation

∆φ ~D(~r, t) + κ ~Dφ ~D(~r, t) = −ρ(~r, t) (25)

where the new coefficient, κ ~D, depends on the application under consideration
[28].

8For a deeper foundation, see Felix Klein’s ’Erlangen program’ [31], according to
which the geometry is determined by the transformation group of coordinates.
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• In Yukawa’s classical meson theory of nuclear forces [52], κ ~D is pro-
portional to the meson mass; here, ρ(~r, t) = Pδ(~r) and

φ ~D(~r, t) =
P

4πr
e−r/r~D ; r ~D =

1
√
κ ~D

(26)

The exponential factor makes the nuclear force to be (very) short-range;

• in Neumann’s [42] and Seeliger’s [48] theories of gravity, κ ~D serves to
solve the cosmological problem to make the potential of a homogeneous
mass density: ρ = const, finite.

φ ~D =
ρ

κ ~D
(27)

• in systems with a high concentration of charge carriers (strong elec-
trolytes, metals, highly doped semiconductors), the ’naked’ Coulomb
potential is screened to become (approximately) φ ~D (26), r ~D being the
linear screening length;

• in Fritz and Heinz London’s extension of Maxwell’s theory to
describe superconductivity [34], r ~D is the field penetration depth into
the superconductor.

I am not aware of attempts to exploit the freedom in choosing κ ~D to
adjust the electromagnetic mass of an electron to the experimental value of
its rest mass, or to make the electrical field energy of a point-like charge to
be finite.

Generalization of ∇× ~H = ∂ ~D/∂t+~j
Analogously, eq. (18) can be generalized to

∇× ~H = ∇×∇× ~a ~H = −∆~a ~H (28)

(∇ · ~a ~H ≡ 0), where ~a ~H , the vector potential of ~H, obeys not the vector
Poisson equation

∆~a ~H = −~C (29)

but the vector Helmholtz equation

∆~a ~H + κ̂ ~H · ~a ~H = −~C (30)
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I am not aware of an application, where κ̂ ~H 6= 0̂. It is conceivable,
however, that, within gravito-electromagnetism [7][36] , κ̂ ~H plays a role being
analogous to that of κ ~D in eq. (27).

According to eq. (9),

P = − ∂

∂t
(κ ~Dφ ~D)−∇ (κ̂ ~H · ~a ~H) (31)

This means, that P is also the source of another scalar conserved quantity
of density (κ ~Dφ ~D), the flux of which equals (κ̂ ~H · ~a ~H). The meaning of these
relations remains to be explored.

Symmetry of laws versus symmetry of space-time

Inertial motion and the principle of sufficient reason
Let us consider a single body in the sense of Euler [16]; ie, the body is

impenetrable and cannot exert forces upon itself. This body be located in a
Newtonian space-time ([43] Definitions, Scholium9).

1. Absolute, true, and mathematical time, in and of itself and
of its own nature, without reference to anything external, flows
uniformly...

2. Absolute space, of its own nature, without reference to
anything external, always remains homogeneous and immovable.

Due to the principle of sufficient reason, these properties exhibit essential
implications for the laws of motion.

1. If space is isotropic and, (i), the body is at rest, it remains at rest
(because there is no reason for starting to move in one direction and
not in the opposite one), cf [16]; (ii), if the body is in straight motion,
it perserveres in straight motion (because there is no preference for any
other direction to change to it).

2. If space is homogeneous, the behavior of the body is independent of its
position; hence, it perserveres in rest or in uniform motion.

3. If space-time is isotropic and the body is in uniform motion, it perserveres
in uniform motion.

9Newton has further developed his concepts on space and time in his Opticks, see [2].
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4. If space-time is homogeneous and isotropic and the body is in straight
uniform motion, it perserveres in straight uniform motion.10

In what follows, both metaphysical and physical points of view will be
explored.

Cusanian space-time
Aristotle (384 BC – 322 BC) [1][26] (and many others) imagined, that

space is, (i), inhomogeneous insofar as the Earth represents the distinguished
center of the Universe, and, (ii), anisotropic insofar as ’the ordinary things’
are attracted towards the Earth, while the natural motion of the other things
is flying towards the Heaven. In contrast, the bishop Nikolaus von Kues
(Cusanus, 1401 – August 11, 1464) assumed, that the Lord is everywhere in
the Universe in the same manner11. In physical words, the Universe is spa-
tially homogeneous and isotropic [30]. The spatial geometry of the Universe
is thus Euclidian.12

Accordingly, if no region of the Universe (in particular, not the Earth)
is distinguished, no local history (in particular, not that of the Earth) is
distinguished as well: the presence of the Lord is one and the same at all
times, all time points being equivalent (cf [30] p.37). This means that the
Universe is temporally homogeneous and isotropic, too.13

The simplest Cusanian space-time is the one, in which time is dealt with
as a fourth spatial dimension. Rotations in space are extended to rotations
in space-time. This requires a unique measure for the space and time coordi-
nates through a reference velocity, Vref . With (x1 = x, x2 = y, x3 = z, x4 =
Vref t), a general rotation in space-time reads

xµ = Rµ
νx
′ν ; µ, ν = 1 . . . 4 (32)

where R̂ is a 4× 4 rotation matrix.

10Such a motion corresponds to straight lines in space-time – cf [33] –, and, again, there
is no reason to change the motion to any other direction and not to the direction opposite
to that.

11”For this, the universe behaves as if it would have got its center everywhere and its
circumfere nowwhere, since its circumfere and its center are God, who is everwhere and
nowhere.” (quoted after [30], p.36)

12Thus, Kues’ formulation, that all positions in space exhibit the same distance to the
Lord [30][33], should not be taken too literally.

13The modern notion of this view is the ’Principle of local position invariance’ [50].
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The 1 + 1 ’Cusanus transformation’ thus reads

x =
x′ + V t′√
1 + V 2

V 2
ref

; t =
t′ − V

V 2
ref
x′√

1 + V 2

V 2
ref

(33)

The rotation angle equals

ϕ = arctan(
V

Vref
) (34)

The Euclidian arc length is conserved.

ds2 = dxµdxµ = d~r2 + V 2
refdt

2 = ds′2; xµ = xµ (35)

The Cusanian metric tensor is the 4× 4 unit tensor.

ĝ(C) = diag(1, 1, 1, 1) (36)

With this metric, the spatial Laplace operator,

∆ ≡ ∇2 =
∂2

∂~r2
(37)

is invariant w.r.t. spatial rotations, and the operator

∂2

∂xµ∂xµ
=

∂2

V 2
ref∂t

2
+ ∆ (38)

is invariant w.r.t. the Cusanus transformation (33).
Minkowskian space-time
However, the d’Alembert operator in the wave equations above,

� ≡ ∆− ∂2

c2∂t2
(39)

is not invariant w.r.t. the Cusanus transformation (33) but for Vref = ±ic.
For imaginary-valued Vref , the Cusanus transformation (33) becomes the
Lorentz transformation [35][46].14

x =
x′ + V t′√

1− V 2

c2

; t =
t′ + V

c2
x′√

1− V 2

c2

(40)

14A quite similar transformation had been proposed by Voigt in 1886 [50], where the

denominator,
√

1− V 2/c2, appears as factor for the directions perpendicular to ~V . The
coefficients had been determined such that the wave equation remains unchanged. But
ds2 (41) is not invariant under Voigt’s transformation.
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The invariant arc length squared (35) becomes

ds2 = dxµdxµ = −c2dt2 + d~r2 = ds′2;

µ = 0 . . . 3; x0 = ct = −x0, xn = xn = (~r); n = 1, 2, 3 (41)

the metric thus being Minkowskian [40].

ĝ(M) = diag(−1, 1, 1, 1) (42)

The d’Alembert operator (39) assumes the compact and manifest Lorentz
covariant form

� ≡ ∂µ∂µ = g(M)µν∂ν∂µ (43)

The source term of the inhomogeneous wave equation (12) fits uninten-
tionally ’automatically’ into this scheme as it can be written as 4-vector.

Jµ = (cP, ~J); Jµ = (−cP, ~J) (44)

The inhomogeneous wave equation (12) thus reads

�ρ = ∂µJ
µ (45)

Often, the negative of ds2 (41) is used.

ds2 = dxµdxµ = c2dt2 − d~r2 = ds′2; x0 = ct = x0, xn = −xn = (~r) (46)

It exhibits the advantage that τ = ds/c immediately provides the proper
time. When starting from Voigt’s [50] question, which transformation leaves
the wave equation invariant, this sign (the signature of the metric tensor) is
largely a matter of taste, however.

There is no Galilean space-time
According to the Galileo transformation,

~r = ~r′ + ~V t′; t = t′ (47)

the time coordinates are absolute, independent of space: dt = dt′, while the
space coordinates are not as they depend on the velocity, ~V , of their origin
and on time: d~r = d~r′ + V dt′. For this, the Galileo transformation is not
a rotation in space-time, and there is no coordinate-independent Galilean
metric tensor, g

(G)
µν , such, that

ds2 = g(G)
µν dx

µdxν = ds′2; dxµ = (d~r, dt) (48)
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In other words, there is no ’Galilean space-time’ with an Galileo-invariant
arc length, ds.

Indeed, space and time coordinates are treated quite differently. This may
be appropriate for classical mechanics as long as time is the independent
variable of motion along trajectories, ~r(t). However, it is not suitable for
diffusion and wave processes, where space and time coordinates are treated
on equal footing in the sense that both are the independent variables the
fields depend on.

Last but not least, the asymmetry between spatial and temporal coor-
dinates in the Galileo transformation (48) is doubtful for the following
reason. The coordinates of absolute space and absolute time are absolute.
The Galileo transformation thus refers to relative space and relative time
coordinates. There is no reason, that the measurement of relative space is af-
fected by relative time, while the measurement of relative time is not affected
by relative space.

Summary and Conclusions

D’Alembert’s and other wave equations have been derived starting
with the question of elementary persistence in a Heraklitian, permanently
changing world. The fundamental equations are of first order in time, as
required by Huygens’ principle [17][11]. The experiment is responsible for
the decision, which quantities are conserved this way. As a matter of fact,
even charge conservation can be questioned [27][32].

Continuing Mie’s approach to the inhomogeneous Maxwell equations,
generalized equations for – from the points of view of the continuity equation
– ’secondary fields’ like the dielectric displacement and the magnetic field
strength have been discussed, including proposals for new applications. In
certain cases, the generalized potentials are connected with a novel conserved
quantity.

The symmetry of the equations of motion is supposed to comply with
the symmetry of space-time. The latter one has been examined, starting
from Cusanus’ metaphysical point of view. The tempting direct general-
ization of Euclidian space [metric tensor ĝ = diag(1, 1, 1)] to Cusanian
(Euclidian) space-time [ĝ = diag(1, 1, 1, 1)] is not supported by the wave
equation, however – in contrast, the latter favours the Lorentz transforma-
tion. Minkowski’s euphoria, ”that there will no longer be space and time,
but only one single thing: space-time” [40] actually applies to Cusanian
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rather than to Minkowskian space-time. For the corresponding signs in the
metric tensor are opposite, and there is a time arrow, but not a space ar-
row. In contrast, Balashov [4] argues that Einsteinian relativity supports
fourdimensionalism.

The Galileo transformation – although being suggested by Newton’s
equation of motion [15] – is, (i), metaphysically and logically doubtful, be-
cause the (measured) relative time affects the (measured) relative space, but
not vice versa. It is, (ii), physically doubtful, because there is no metric
tensor, ĝ(G), such, that the arc length squared (48) is invariant under it.

The derivation of the Lorentz transformation within the approach pre-
sented here cannot replace a fully dynamic approach to relativity like Dirac’s
one [8][49]. Another alternative consists in the deduction of the space-time
metric from the electromagnetic constitutive relations [3]. Anyway, it is
necessary to pose some (metaphysical) postulates about space-time and its
relationship to matter (including fields).
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[20] J. I. Frankel, B. Vick & M. N. Ösiçik, Flux formulation of hyperbolic heat conduction,

J. Appl. Phys. 58 (1985) 3340-3345

[21] D. W. Graham, Once More Unto the Stream, subm. for publ.

15All papers of the Eneström index are available on
http://www.math.dartmouth.edu/˜euler/.

c©2011 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 18, No. 2, April 2011 219

[22] O. Heaviside, On the Forces, Stresses and Fluxes of Energy in the Electromagnetic

Field, Phil. Trans. Roy. Soc. 183A (1892) 423ff.

[23] G. W. F. Hegel, Wissenschaft der Logik, Erster Teil. Die objektive Logik, Stuttgart:
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