
Apeiron, Vol. 18, No. 1, January 2011 9

How applicable is Maxwell-
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In  a  recent  article1,  Enders  raised  queries  concerning  the 
existence  of  physical  systems  which  obey  Maxwell-
Boltzmann statistics. Here the question is considered from a 
different  angle and answers are proposed which support  the 
existence of such statistics within the framework of physics.
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Recently1,  Enders,  following  an  argument  of  Gibbs,  claimed  that 
Maxwell-Boltzmann statistics did not apply to classical gases. It was 
claimed further that the said statistics apply only to ordered sets of 
distinguishable elements and the query of whether or not such sets 
exist  in  physics  was raised.  It  was  pointed  out  that,  according to 
Gibbs,  the  interchange  of  two  entirely  similar  particles  does  not 
change the phase of an ensemble and so, are not counted as different 
for calculating such quantities as the entropy. It was pointed out also 
that, in Maxwell-Boltzmann statistics, equal particles may assume the 
same state but, for classical particles, although this is possible if the 
state is defined via the velocity or momenta alone, it is not possible 
for any situation where the state is given through position and either 
velocity or momentum. The latter description is the one used by such 
as Lagrange and Hamilton. 

One further important point was included at the very end of the 
article and that is the claim that Gibbs’ paradox shows that the correct 
counting for classical gases is Bose’s counting which yields the Bose-
Einstein  statistics.  This  point,  if  true,  would  have  serious 
consequences for physics and, consequently, is addressed here also.

It should be admitted from the outset that the ideal quantum gases 
are not meant to be real gases but, rather, approximations to such. 
However,  over  the  years  these  simple  models  have  proved  very 
successful in describing some physical situations; the ideal Fermi gas 
has  dealt  competently  with  electrons  in  metals  and  with  the 
description  of  white  dwarf  stars,  while  the  ideal  Bose  gas’s 
condensation phenomenon3 has helped give insight into the properties 
of liquid 4He. Hence, although concerned with somewhat unrealistic 
ideal situations, both models have served science well. 

In the case of the ideal Fermi gas, the examples quoted both refer 
to the degenerate state of such a gas and, as has been shown2, the first 
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case  holds  when  the  relation  between  density  n and  absolute 
temperature T is

n  >>  3.71 × 1015T3/2 cm-3 (1)

whereas, in the white dwarf case, these variables must satisfy

n  >>  2.871 × T3 cm -3. (2)

In both cases, the numerical values refer specifically to an electron 
gas.

As was shown in the same reference, the so-called non-degenerate 
situation applies when the same two variables, n and T, are related by

n  <<  4.8 × 1015T3/2 cm-3. (3)

This non-degenerate situation is, of course, what might be termed 
the classical approximation for either type of ideal quantum gas and 
refers,  therefore,  to  the  case  commonly  described  by  Maxwell-
Boltzmann  statistics.  Hence,  if  Maxwell-Boltzmann  statistics  are 
unphysical, the above relations, especially (1) and (3), would imply 
values of n and T for which neither type of quantum gas could exist. 
However, it  is known that,  to a very good approximation,  the so-
called classical gas does exist in the laboratory. This is seen regularly 
in  demonstrations  of  the  validity,  within  acceptable  limits  of 
experimental  error,  of such well-known laws as Boyle’s Law and 
Charles’ Law. No-one would claim these to be exact but they, and 
other  results,  are  known  to  be  approximately  valid  and  are, 
incidentally, explainable in terms of Maxwell-Boltzmann statistics. It 
does seem that it is verifiable experimentally that the ideal quantum 
gases do exist,  at  least  approximately,  over an exceptionally wide 
range of values of both n and T and certainly over a range covering 
all the inequalities listed above.
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It  is  not  without  interest  at  this  point  to  note  that  Zemansky 
considers ideal gases at length in his book4. He goes to great lengths 
to show how real gases may be approximated by the ideal gas model 
under certain reasonably stringent conditions. This goes some way to 
confirming the assertion made above relating to some fairly well-
known laws commonly met in school physics laboratories.  

All this shows that the answer to the question posed by Enders1 is 
quite  definitely  ‘Yes;  there  are  physical  systems  which  obey 
Maxwell-Boltzmann  statistics’.  This  answer  may  actually  refer  to 
limiting cases which are not exactly fulfilled in practice but, as every 
A-level  physics  student  should  know  from  practical  experience, 
within the limits  of experimental  error gases in  certain prescribed 
conditions do obey the so-called perfect gas laws.

Of course, as always when dealing with physical systems, great 
care must be exercised with mathematical arguments. Mathematical 
argument5 shows  quite  clearly  that  there  are  only  three  types  of 
particle allowable in physics and they are fermions, bosons and so-
called classical particles. The argument leading to this result is purely 
mathematical, relying on knowledge of distributions. It was, in fact, 
shown quite clearly that the stationary probability distributions of so-
called intermediate statistics are not compatible with any mechanism 
which  allows  variation  between  Fermi-Dirac  and  Bose-Einstein 
statistics.  The  binomial  and  negative  binomial  distributions, 
characterising Fermi-Dirac and Bose-Einstein statistics, respectively, 
transform  into  the  Poisson  distribution,  descriptive  of  classical 
statistics, as the number of energy cells increases without limit. These 
distributions were shown to be the laws of error leading to the average 
value as the most probable value. Hence, it  has been shown quite 
clearly  under  what  mathematical  circumstances  classical  statistics 
applies  and this  has  been verified  in  the  laboratory  on  numerous 
occasions.
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Finally,  we consider the Gibbs paradox. Despite its seeming to 
have been resolved many years ago papers continue to be published 
on the topic. Indeed, Enders himself7 has contributed to the debate 
with an article in which he shows that BE statistics arise not from 
considerations of indistinguishability, which he calls “questionable”, 
but from the definition of a state, which he chooses to be invariant 
under permutation of the particles. Enders’ contribution to the Gibbs 
paradox is but one of many that continue to be published. It resolves 
the paradox, but through the implication that classical systems should 
be considered as BE systems. We have argued that the evidence does 
not support this view and that there are indeed many systems that 
obey, at least approximately, Maxwell-Boltzmann statistics. We have 
considered  mainly  gaseous  systems,  but  equally  we  could  have 
considered  dilute  solutions  or  colloidal  systems  which  exhibit 
Brownian  motion.   The  latter  is  particularly  interesting,  not  only 
because  the  motion  of  one  Brownian  particle  is  essentially 
independent of any other but because such systems have also been 
considered in the light of the Gibbs paradox8. Swendsen argues that 
the  colloidal  Gibbs  paradox  shows  that  the  currently  accepted 
definition  of  entropy  is  incorrect  and  that  in  fact  Boltzmann’s 
definition  of  entropy,  based  of  course  on  Boltzmann  statistics,  is 
correct. This is yet another resolution of the Gibbs paradox, different 
from that  of Enders,  and with diametrically  opposite implications. 
Thus, Enders’ is only one of many solutions to the Gibbs paradox. It 
is  neither  unique  nor  necessarily  correct  and  the  overwhelming 
evidence is to the effect that many physics systems obey classical 
statistics.
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