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Introduction

It was established recently by the author that the Dirac equation modified
by the γ5-term arising due to the Snyder noncommutative geometry model,
yields the conventional Dirac theory with nonhermitian mass, or equivalently
to the massive neutrinos model given by the Weyl equation with a diagonal
and hermitian mass matrix. The model describes 4 massive chiral fields re-
lated to any original, i.e. non-modified, massive or massless quantum state.
Due to spontaneous global chiral symmetry breaking mechanism it leads to
the isospin-symmetric effective field theory, that is composed chiral conden-
sate of massive neutrinos. All these results violate CP symmetry manifestly,
however, their possible physical application can be considered in a diverse
way. On the one hand the effective theory is beyond the Standard Model,
yet can be considered as its part due to the noncommutative geometry model
contribution. On the other in the massive neutrinos model masses of the two
left- and two right-handed chiral Weyl fields arise due to mass and energy
of an original state, and a minimal scale (e.g. the Planck scale), and its
quantum mechanical face becomes the mystic riddle.

This paper is mostly concentrated on the quantum mechanics aspect. It
is shown that the model in itself yields consistent physical explanation of the
Snyder noncommutative geometry model and consequently leads to energy
renormalization of an original quantum relativistic particle. Computations
arising directly from the Schrödinger formulation of both the Dirac and the
Weyl equations, are presented. First, the manifestly non hermitian modified
Dirac Hamiltonian is discussed. Its integrability is formulated by straight-
forward application of the Zassenhaus formula for exponentialization of sum
of two noncommuting operators. It is shown, however, that this approach
does not lead to well-defined solutions; for this case the exponents are still
sums of two noncommuting operators, so that this procedure has a cyclic
problem which can not be finished, and by this reason is not algorithm. For
solving the problem instead of the Dirac equation we employ the Weyl equa-
tion with pure hermitian mass matrix rewritten in the Schrödinger form. Its
integration is straightforward and elementary. We present computations in
both the Dirac and the Weyl representations of the Dirac gamma matrices.

The paper is organized as follows. The Section 2 presents the motivation
for further studies - the massive neutrinos model is recalled briefly. Next, in
the Sections 3 particle’s energy renormalization is discussed. In the Section
4 we present integrability problem for the modified Dirac equation. Section
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5 is devoted for the massive Weyl equation integrability, and the Section 6
discusses some special case related to ultra-high energy physics. Finally in
the Section 7 the results of the entire paper are summarized briefly.

The massive neutrinos model

Let us recall briefly the massive neutrinos model resulting from [1]. The
starting point is the noncommutative geometry model [2] of phase-space and
space of a relativistic particle due to a fundamental scale ` proposed by
Snyder [3] (Cf. also Ref. [4]), and given by the following lattice model [5]

x = ndx , dx = ` , n ∈ Z −→ ` =
l0
n
e1/n , lim

n→∞
` = 0, (1)

where l0 > 0 is a constant, together with the De Broglie formula relating the
coordinate x with its conjugate momentum p

p =
~
x
. (2)

Application of the Kontsevich star-product [6] to the phase space (x, p) and
two space points x and y

x ? p = px+
∞∑
n=1

(
αi~
2

)n
Cn(x, p), (3)

x ? y = xy +
∞∑
n=1

(
iβ

2

)n
Cn(x, y), (4)

where for correctness α ∼ 1, β are dimensionless constants, and Cn(f, g) are
the Hochschild cochains, is yielding to the deformed Lie brackets (For review
of deformation quantization see e.g. Ref. [7])

[x, p]? = [x, p] +
∞∑
n=1

(
αi~
2

)n
Bn(x, p), (5)

[x, y]? = [x, y] +
∞∑
n=1

(
iβ

2

)n
Bn(x, y), (6)

where Bn(f, g) ≡ Cn(f, g) − Cn(g, f) are the Chevalley cochains. Using
[x, p] = −i~ and [x, y] = 0, and doing the first approximation one obtains

[x, p]? = −i~ +
αi~
2
B1(x, p) , [x, y]? =

iβ

2
B1(x, y). (7)
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or in the Dirac ”method of classical analogy” form [8]

1

i~
[p, x]? = 1− α

2
B1(x, p) ,

1

i~
[x, y]? =

β

2~
B1(x, y). (8)

Because, for any f, g ∈ C∞(M) holds B1(f, g) = 2θ(df ∧ dg), one obtains

1

i~
[p, x]? = 1− α

~
(dx ∧ dp) ,

1

i~
[x, y]? =

β

~
dx ∧ dy, (9)

where ~ in first relation was introduced for dimensional correctness. Applying
now the lattice model (1) and the De Broglie relation (2) one receives

i

~
[x, p]? = 1 +

α

~2
`2p2 ,

i

~
[x, y]? = −β

~
`2, (10)

that defines the Snyder model. Note that this model was studied in some
aspect by previous authors [9], but the model is related to this direction to a
slight degree. The model developed in this paper arise mostly from the idea
of the papers [1].

If we consider ` as a minimal scale, e.g. Planck or Compton scale, then
the model (10) can be rewritten in terms of the maximal energy ε

i

~
[x, p] = 1 +

1

ε2
c2p2 ,

i

~
[x, y] = O

(
1

ε2

)
, ε ≡ ~c√

α`
. (11)

The lattice model (11) straightforwardly yield the contribution to the Ein-
stein Hamiltonian constraint of Special Relativity

E2 − c2p2 ≡ (γµpµ)2 = m2c4 +
1

ε2
c4p4 , pµ = [E, cp], (12)

where m and E are mass and energy of a particle, and consequently leads to
the generalized Sidharth γ5-term within the usual Dirac equation(

γµp̂µ ±mc2 ±
1

ε
c2p̂2γ5

)
ψ = 0 , p̂µ = i~[∂0, c∂i], (13)

violating the Lorentz symmetry manifestly. In fact the equation (13) de-
scribes 4 cases, that are dependent on the choice of the signs of mass m and
the γ5-term. Here we will consider, however, positive signs case only. The
negative ones are due to the changes ε → −ε and m → −m in the results
obtained from the positive signs case.
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Preservation of the Minkowski momentum space structure within the
modified Einstein constraint (12)

pµp
µ = (γµpµ)2 = m2c4, (14)

moves back considerations to the generic Einstein theory with ε ≡ ∞, while
application of the hyperbolic relation (14) within the modified Dirac equation
(13) leads to two the conventional Dirac theories(

γµp̂µ +M±c
2
)
ψ± = 0, (15)

where ψ± are the Dirac fields related to the nonhermitian mass matrices M±,
that in general are dependent on an energy E and a mass m of an original
quantum relativistic particle. It is of course the case of positive signs in the
equation (13). In fact for any signs case there 2 the Dirac fields, so that the
equation (13) describes 8 the Dirac fields.

With using of the basis of projectors, M± can be decomposed as follows

M± = µ±R
1 + γ5

2
+ µ±L

1− γ5

2
, (16)

µ±R = − 1

c2

( ε
2
±
√
ε2 − 4εmc2 − 4E2

)
, (17)

µ±L =
1

c2

( ε
2
±
√
ε2 + 4εmc2 − 4E2

)
, (18)

where µ±R,L are the projected masses, or equivalently can be presented as a
sum of its hermitian H(M) and antihermitian A(M) parts

M± = H(M±) + A(M±), (19)

H(M±) =
µ±R + µ±L

2
14 , A(M±) =

µ±R − µ
±
L

2
γ5. (20)

Introducing the chiral right- and left-handed Weyl fields ψ±R,L related to the

Dirac field ψ± according to the standard transformation ψ±R,L =
1± γ5

2
ψ±

one obtains two the massive Weyl equations with diagonal and hermitian
mass matrices µ±(

γµp̂µ + µ±c
2
) [ ψ±R

ψ±L

]
= 0 , µ± =

[
µ±R 0
0 µ±L

]
, (21)
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so that we have totally 16 chiral fields describing by the Weyl equations (21)
received from the Dirac equations (13). The massive Weyl theories (21) are
the Euler–Lagrange equations of motion for the gauge field theory with chiral
symmetry SU(3)TOTC = SU(3)+

C ⊕ SU(3)−C

L = L+ + L−, (22)

where L± are the Lagrangians associated with the fields ψpmR,L as follows

L± = ψ̄±Rγ
µp̂µψ

±
R + ψ̄±Lγ

µp̂µψ
±
L + µ±Rc

2ψ̄Rψ
±
R + µ±Lc

2ψ̄Lψ
±
L , (23)

which is spontaneously broken to the composed gauge field theory with the
isospin symmetry SU(2)TOTV = SU(2)+

V ⊕ SU(2)−V

L = ψ̄+
(
γµp̂µ + µ+

effc
2
)
ψ+ + ψ̄−

(
γµp̂µ + µ−effc

2
)
ψ− = (24)

= Ψ̄
(
γµp̂µ +Meffc

2
)

Ψ, (25)

where µ±eff are the effective mass matrices of the gauge fields ψ±, and Meff

is the mass matrix of the effective composed field Ψ =

[
ψ+

ψ−

]
given by

µ±eff =
µ±R − µ

±
L

2
γ5 , Meff =

[
µ+
eff 0

0 µ−eff

]
. (26)

The Lagrangian (25) describes the effective field theory – composed chiral
condensate of massive neutrinos.

In this paper we will consider both the Dirac equations (15) and the
massive Weyl equations (21), but we are not going to discuss the gauge field
theory (25) that will be studying in our next topical papers. We will assume
that both the neutrinos masses (17) and (18) are real numbers, i.e. we will
consider situation when the maximal energy ε deforming Special Relativity
is determined by a relativistic particle characteristics as follows

ε ∈

−∞,−2mc2

1 +

√
1 +

(
E

mc2

)2
 ∪

∪

−2mc2

1−

√
1 +

(
E

mc2

)2
 , 2mc2

1 +

√
1 +

(
E

mc2

)2
 ∪

∪

2mc2

1 +

√
1 +

(
E

mc2

)2
 ,∞

 , (27)
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or for the case of massless relativistic particle possessing an energy E is

ε ∈ (−∞,−2|E|] ∪ [2|E|,∞) . (28)

Energy renormalization

In fact existence of the massive neutrinos allows to explain in a consistent
physical way the nature of the Snyder noncommutative geometry model. Let
us see that by direct elementary algebraic manipulations the relations for
masses of left- and right- chiral Weyl fields (17) and (18) can be rewritten in
the form of the system of equations

(
µ±Rc

2 +
ε

2

)2

= ε2 − 4εmc2 − 4E2(
µ±Lc

2 − ε

2

)2

= ε2 + 4εmc2 − 4E2
(29)

which allows to study dependence of the deformation energy parameter ε
and the particle energy E from the masses m,µ±R, µ

±
L treated as physically

measurable quantities. By subtraction of the second equation from the first
one (29) one establishes the relation(

µ±Lc
2 − ε

2

)2

−
(
µ±Rc

2 +
ε

2

)2

= 8εmc2, (30)

which after application of elementary algebraic manipulations allows to derive
the deformation energy in the Snyder model (11) as

ε =

(
µ±L − µ

±
R

)
c2

1− 8m

µ±L + µ±R

. (31)

A maximal energy (31) does not vanish for all µ±L 6= µ±L 6= 0, and is finite for
all µ±R + µ±L 6= 8m. Here m is the mass of an original quantum state, and
both µ±R and µ±L are assumed as physical quantities. In supposition all the
masses can be fixed by experiments. In the case, when an original state is
massless, one obtains

ε(m = 0) =
(
µ±L − µ

±
R

)
c2 ≡ ε0, (32)
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that is finite and non vanishing for finite µ±R 6= 0 and µ±L 6= 0. In this manner
we have

ε = ε0

[
1 +

8m

µ±R + µ±L
+O

((
8m

µ±R + µ±L

)2
)]

, (33)

for all |µ±R + µ±L | > 8m, and

ε = ε0

[
µ±R + µ±L

8m
+O

((
µ±R + µ±L

8m

)2
)]

, (34)

for all |µ±R + µ±L | < 8m. On the other hand, however, addition of the second
equation to the first one in (29) gives the relation(

µ±Lc
2 − ε

2

)2

+
(
µ±Rc

2 +
ε

2

)2

= 2
(
ε2 − 4E2

)
, (35)

which can be treated as the constraint for the energy E of a relativistic
particle, immediately solved with respect E, and presented in the canonical
quadratic form with respect to the energy parameter ε

E2 =
3

16

{[
ε+

µ±L − µ
±
R

3
c2
]2

−
[
µ±L − µ

±
R

3
c2
]2
[

7 +
12µ±Lµ

±
R(

µ±L − µ
±
R

)2
]}

. (36)

By application of the deformation parameter energy (31) into the energetic
constraint of a relativistic particle (36) one obtains the formula

E2 =

[(
µ±L − µ

±
R

)
c2
]2

48


4− 8m

µ±L + µ±R

1− 8m

µ±L + µ±R


2

−

[
7 +

12µ±Lµ
±
R(

µ±L − µ
±
R

)2
] , (37)

which for the case of originally massless state reduces into the form

E2(m = 0) =
1

16

[(
µ±L − µ

±
R

)
c2
]2 [

3− 4
µ±Lµ

±
R(

µ±L − µ
±
R

)2
]
≡ E2

0 . (38)

In fact, for given E0 the equation (38) can be used for establishment of the
relation between masses of the neutrinos. In result one receives two possible
solutions

µ±R =
4

3
µ±L

5

4
±

√
1 + 3

(
µ0

µ±L

)2
 , µ0 ≡

E0

c2
, (39)
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which are minimized for the value µ0 ≡ 0 by the values

µ±R =

{
3µ±L ,

1

3
µ±L

}
. (40)

Interestingly, there is a possibility of the one solution between the masses µ±L
and µ±R that is given by putting µ0 as a tachyonic mass

µ0 = i
µ±L√

3
, (41)

and results in the relation

µ±R =
5

3
µ±L . (42)

For all |µ±R + µ±L | > 8m the constraint (37) can be approximated by

E2 − E2
0 =

(
µ±L − µ

±
R

2
c2
)2
[

2
8m

µ±L + µ±R
+O

[(
8m

µ±L + µ±R

)2
]]

, (43)

and for |µ±R + µ±L | < 8m the leading approximation is

E2 − E2
0 =

(
µ±L − µ

±
R

2
c2
)2
[
−5

4
− 1

2

8m

µ±L + µ±R
+O

[(
8m

µ±L + µ±R

)2
]]

, (44)

From the relation (35) one sees that, because the LHS as a sum of two squares
of real numbers is always positive, it follows that the RHS must be positive
also. In result we obtain the renormalization of a relativistic particle’s energy
E values

− ε
2

6 E 6
ε

2
, (45)

Naturally, for the generic case of Special Relativity we have ε ≡ ∞ and by
this energy E values are not limited. In this manner, in fact the Snyder
noncommutative geometry results in energy renormalization of a relativistic
particle.

Integrability I: The Dirac equation

The modified Dirac equation (15) can be straightforwardly rewritten in
the Schrödinger evolutionary equation form (See e.g. the papers [11] and the
books [12])

i~∂0ψ
± = Ĥψ±, (46)
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where in the present case the Hamilton operator Ĥ can be established as

Ĥ = −i~cγ0γi∂i −
µ±L + µ±R

2
c2γ0 +

µ±L − µ
±
R

2
c2γ0γ5, (47)

and splitted into its hermitian H(Ĥ) and antihermitian A(Ĥ) parts

Ĥ = H(Ĥ) + A(Ĥ), (48)

H(Ĥ) = −i~cγ0γi∂i −
µ±L + µ±R

2
c2γ0, (49)

A(Ĥ) =
µ±L − µ

±
R

2
c2γ0γ5, (50)

with (anti)hermiticity defined standardly∫
d3xψ̄±H(Ĥ)ψ± =

∫
d3xH(Ĥ)ψ±ψ±, (51)∫

d3xψ̄±A(Ĥ)ψ± = −
∫
d3xA(Ĥ)ψ±ψ±. (52)

Note that in the case of equal masses µ±R = µ±L ≡ µ the antihermitian part
(50) vanishes identically, so that the hermitian one (49) gives the full contri-
bution, and consequently (48) becomes the usual Dirac Hamiltonian

ĤD = −γ0
(
i~cγi∂i + µc2

)
. (53)

For this usual case, however, from (31) one concludes that

ε ≡ 0, (54)

so in fact the minimal scale becomes infinite formally ` ≡ ∞, and by (37)

relativistic particle’s energy becomes E = i
1

2
µc2 with some mass µ. If we,

however, take into account the tachyonic mass case µ → iµ = µ′ then (53)
becomes

ĤD = −γ0
(
i~cγi∂i + iµ′c2

)
, (55)

and E ≡ 1

2
µ′c2. The relation (45), however, is not validate in this case.

The full modified Hamiltonian (47) has nonhermitian character evidently,
so consequently the time evolution (46) is manifestly non unitary. Its formal
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integration, however, can be carried out in the usual way with the following
time evolution operator

ψ±(x, t) = G(t, t0)ψ
±(x, t0) , G(t, t0) ≡ exp

{
− i

~

∫ t

t0

dτĤ(τ)

}
. (56)

By this reason, the integrability problem for (46) is contained in the appro-
priate Zassenhaus formula

exp {A+B} = exp(A) exp(B)
∞∏
n=2

expCn, (57)

C2 = −1

2
C, (58)

C3 = −1

6
(2[C,B] + [C,A]), (59)

C4 = − 1

24
([[C,A], A] + 3[[C,A], B] + 3[[C,B], B]), (60)

. . .

where C = [A,B]. By the formula (56) one has identification

A ≡ A(t) = − i
~

∫ t

t0

dτH(Ĥ)(τ), (61)

B ≡ B(t) = − i
~

∫ t

t0

dτA(Ĥ)(τ), (62)

so that the commutator C is established as

C = − 1

~2

∫ t

t0

dτ ′
∫ t

t0

dτ ′′C (τ ′, τ ′′) , (63)

where
C (τ ′, τ ′′) ≡

[
H(Ĥ)(τ ′),A(Ĥ)(τ ′′)

]
. (64)

Straightforward calculation of C can be done by elementary algebra

C =

(
i~
µ±R − µ

±
L

2
c3∂i

)
γ0γiγ0γ5 +

(
(µ±R)2 − (µ±L)2

4
c4
)
γ0γ0γ5 − (65)

−
(
i~
µ±R − µ

±
L

2
c3∂i

)
γ0γ5γ0γi −

(
(µ±R)2 − (µ±L)2

4
c4
)
γ0γ5γ0 = (66)

= 2

(
i~
µ±R − µ

±
L

2
c3∂i

)
γ0γiγ0γ5 + 2

(
(µ±R)2 − (µ±L)2

4
c4
)
γ0γ0γ5,(67)
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where we have applied the relations

γ0γ5γ0γi = −γ0γiγ0γ5 , γ0γ5γ0 = −γ0γ0γ5, (68)

arising by employing the usual Clifford algebra of the Dirac matrices

{γµ, γν} = 2ηµν14 ,
{
γ5, γµ

}
= 0 , γ5 = iγ0γ1γ2γ3. (69)

So, consequently one obtains the result

C(τ ′, τ ′′) = 2H(Ĥ)(τ ′)A(Ĥ)(τ ′′), (70)

that leads to the equivalent statement – for any times τ ′ and τ ′′ the Poisson
bracket between the hermitian H(Ĥ)(τ ′) and the antihermitian A(Ĥ)(τ ′′)
parts of the total Hamiltonian (48) is trivial{

H(Ĥ)(τ ′),A(Ĥ)(τ ′′)
}

= 0. (71)

Naturally, by simple factorization one obtains also

C = 2AB , {A,B} = 0, (72)

and consequently

[C,A] = CA, (73)

[C,B] = CB, (74)

[[C,A] , A] = 2 [C,A]A, (75)

[[C,A] , B] = 2 [C,A]B, (76)

[[C,B] , A] = 2 [C,B]A, (77)

and so on. In result the 4th order approximation of the Zassehnaus formula
(57) in the present case is

exp {A+B} ≈ exp(A) exp(B) expC2 expC3 expC4, (78)

C2 = −1

2
C, (79)

C3 = −1

6
(CA+ 2CB), (80)

C4 = − 1

12

(
CA2 + 3CB2 +

3

2
C2

)
. (81)
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For the case of constant in time masses µ±R and µ±L one determine the relations

A =
i

~
(t− t0)

(
−i~cγi∂i +

µ±L + µ±R
2

c2
)
γ0, (82)

B =
i(µ±L − µ

±
R)c2

2~
(t− t0)γ5γ0, (83)

C =
(µ±L − µ

±
R)c2

~2
(t− t0)2

(
−i~cγi∂i +

µ±L + µ±R
2

c2
)
γ5, (84)

and consequently by elementary algebraic manipulations one establishes the
Zassenhaus exponents as

C2 = −(µ±L − µ
±
R)c2

2~2
(t− t0)2

(
−i~cγi∂i +

µ±L + µ±R
2

c2
)
γ5, (85)

C3 = − i

6~3
(µ±L − µ

±
R)c2(t− t0)3

(
−i~cγi∂i +

µ±L + µ±R
2

c2
)
×

×
[(
−i~cγi∂i +

µ±L + µ±R
2

c2
)
γ5 + (µ±L − µ

±
R)c2

]
γ0, (86)

C4 =
(µ±L − µ

±
R)c2

12~4
(t− t0)4

(
−i~cγi∂i +

µ±L + µ±R
2

c2
)
×

×

{[(
−i~cγi∂i +

µ±L + µ±R
2

c2
)2

+ 3

(
µ±L − µ

±
R

2
c2
)2
]
γ5 +

+ 3
µ±L − µ

±
R

2
c2
(
−i~cγi∂i +

µ±L + µ±R
2

c2
)}

. (87)

Exponents Cn show in a manifest way that the integrability problem is not
well defined. Namely, the Zassenhaus coefficients Cn are still a sums of two
noncommuting operators. The fundamental stage, i.e. the exponentializa-
tion procedure, must be applied again, so that consequently in the next step
one has the same problem, i.e. the cyclic problem. Therefore this recurrence
is not algorithm, that is the symptom of non integrability of (46).

Integrability II: The Weyl equation

For solving the problem, let us consider the integrability procedure with
respect to the massive Weyl equation (21). This equation can be straightfor-
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wardly rewritten in the form of the Schrödinger time evolution

i~∂0

[
ψ±R(x, t)
ψ±L (x, t)

]
= Ĥ (∂i)

[
ψ±R(x, t)
ψ±L (x, t)

]
, (88)

where the hermitian Hamilton operator Ĥ defines to the unitary evolution

Ĥ = −γ0

(
i~cγi∂i +

[
µ±Rc

2 0
0 µ±Lc

2

])
, (89)

so that the integration can be done in the usual quantum mechanical way.
Integrability of (88) is well defined. The solutions are[

ψ±R(x, t)
ψ±L (x, t)

]
= U(t, t0)

[
ψ±R(x, t0)
ψ±L (x, t0)

]
, (90)

where U(t, t0) is the unitary time-evolution operator, that for the constant
masses is explicitly given by

U(t, t0) = exp

{
− i

~
(t− t0)Ĥ

}
, (91)

and ψ±R,L(x, t0) are the initial time t0 eigenstates with defined momenta

i~σi∂iψ±R,L(x, t0) = p±R,L
0
ψ±R,L(x, t0), (92)

where the momenta p±R
0

and p±L
0

are related to the right- ψ±R(x, t0) or left-
handed ψ±L (x, t0) chiral fields, respectively. The eigenequation (92), however,
can be straightforwardly integrated. The result can be presented in the
compact form

ψ±R,L(x, t0) = exp

{
− i

~
p±R,L

0
(x− x0)iσ

i

}
ψ±R,L(x0, t0), (93)

or after direct exponentialization

ψ±R,L(x, t0) =

{
12 cos

∣∣∣∣∣p±R,L
0

~
(x− x0)i

∣∣∣∣∣−

− i

[
p±R,L

0

~
(x− x0)iσ

i

] sin

∣∣∣∣∣p±R,L
0

~
(x− x0)i

∣∣∣∣∣∣∣∣∣∣p±R,L
0

~
(x− x0)i

∣∣∣∣∣
}
ψ±R,L(x0, t0). (94)
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Currently the embarrassing problem presented in the integration procedure
of the Dirac equation, discussed in the previous section, is absent. The
Zessenhaus formula is not troublesome now because the matrix γ5 is by def-
inition included into the Weyl fields, so that the Hamilton operator (89) is
pure hermitian, and consequently the exponentialization (91) can be done
is the usual way. At first glance, however, the mass matrix presence in the
Hamilton operator (89) causes that one chooses at least two nonequivalent
representations of the Dirac γ matrices. Straightforward analogy to the mass-
less Weyl equation says that the appropriate choice is the Weyl basis. On the
other hand, however, the Hamilton operator (89) is usual hermitian Dirac
Hamiltonian, so consequently the Dirac basis is the right representation. In
this manner, in fact, we should consider rather both the chiral fields and the
time evolution operator (91) strictly related the chosen representation (r)

U(t, t0) → U r(t, t0), (95)

ψ±R,L(x, t0) → (ψ±R,L)r(x, t0), (96)

ψ±R,L(x0, t0) → (ψ±R,L)r(x0, t0) (97)

where the upper index r = D,W means that the quantities are taken in the
Dirac or the Weyl basis. The eigenequation (92), however, is independent
on the representation choice, so that it physical condition - the fields have
measurable momenta p±R,L

0
. For full correctness, let us test both choices.

The Dirac basis

The Dirac basis of the gamma matrices is defined as

γ0 =

[
I 0
0 −I

]
, γi =

[
0 σi

−σi 0

]
, γ5 =

[
0 I
I 0

]
, (98)

where I is the 2× 2 unit matrix, and σi = [σx, σy, σz] is a vector of the 2× 2
Pauli matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (99)

Consequently, by using of (98) the Hamilton operator (89) becomes

Ĥ =

 µ±R i
~
c
σi∂i

i
~
c
σi∂i −µ±L

 c2, (100)
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and for the case of constant in time neutrinos masses yields a solution by the
unitary time evolution operator U

UD = exp

−ic
2

~
(t− t0)

 µ±R i
~
c
σi∂i

i
~
c
σi∂i −µ±L


 . (101)

After straightforward exponentialization (101) can be written in the compact
form

UD =

{[
I 0
0 I

]
cos

t− t0
~

c2

√(
µ±R + µ±L

2

)2

+

(
i
~
c
σi∂i

)2
−

− i

 µ±L + µ±R
2

i
~
c
σi∂i

i
~
c
σi∂i −µ

±
L + µ±R

2

×

×

sin

t− t0
~

c2

√(
µ±R + µ±L

2

)2

+

(
i
~
c
σi∂i

)2


√(
µ±R + µ±L

2

)2

+

(
i
~
c
σi∂i

)2

}
×

× exp

{
−i(µ

±
R − µ

±
L)c2

2~
(t− t0)

}
, (102)

where we understand the all the functions are treated by the appropriate
Taylor series expansions.

The Weyl basis

Equivalently, however, one can consider employing of the Weyl represen-
tation of the Dirac γ matrices. This basis is defined as

γ0 =

[
0 I
I 0

]
, γi =

[
0 σi

−σi 0

]
, γ5 =

[
−I 0
0 I

]
. (103)

For the choice of a representation in the form (103) the massive Weyl equation
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(88) is governed by the Hamilton operator (89) having the following form

Ĥ =

 i
~
c
σi∂i −µ±L

−µ±R −i~
c
σi∂i

 c2. (104)

Consequently, for the case of constant in time neutrinos masses one estab-
lishes the unitary time evolution operator in the following formal form

UW = exp

−ic
2

~
(t− t0)

 i
~
c
σi∂i −µ±L

−µ±R −i~
c
σi∂i


 , (105)

which after straightforward elementary exponentialization procedure can be
presented in the form

UW =

[
I 0
0 I

]
cos

t− t0
~

c2

√
µ±Lµ

±
R +

(
i
~
c
σi∂i

)2
−

− i

 i
~
c
σi∂i −µ±L

−µ±R −i~
c
σi∂i

×

×

sin

t− t0
~

c2

√
µ±Lµ

±
R +

(
i
~
c
σi∂i

)2


√
µ±Lµ

±
R +

(
i
~
c
σi∂i

)2
. (106)

Evidently, time evolution operator derived in the Weyl representation
(106) has simpler form then its Dirac’s equivalent (102). In this way the
choices are not physically equivalent, i.e. will yield different solutions of
the same equation. It is not, however, the strangest result. Namely, both
the choices can be related to physics in different energy regions. So that it
is useful to solve the massive Weyl equation in both mentioned representa-
tions. It must be emphasized that strictly speaking the results obtained in
this subsection are related to the massive Weyl equations presented in the
Schrödinger time-evolution form (88).
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The space-time evolution

Presently, one can employ the results received above, i.e. the momentum
eigenequations (92), the spatial evolutions (93), and the unitary time evolu-
tion operators (102) and (106), for an exact determination of the appropriate
solutions of the massive Weyl equation (88) in both the Dirac and the Weyl
representations of the Dirac gamma matrices.

Dirac-like solutions

Applying first the Dirac representation, by elementary algebraic manip-
ulations one receives straightforwardly the right-handed chiral Weyl fields in
the following form

(ψ±R)D(x, t) =

{[
cos

[
t− t0

~
ED(p±R

0
)

]
−

− iµD±c
2

sin

[
t− t0

~
ED(p±R

0
)

]
ED(p±R

0
)

]
exp

{
− i

~
p±R

0
(x− x0)iσ

i

}
(ψ±R)D0 −

− ip±L
0
c

sin

[
t− t0

~
ED(p±L

0
)

]
ED(p±L

0
)

exp

{
− i

~
p±L

0
(x− x0)iσ

i

}
(ψ±L )D0

}
×

× exp

{
−i(µ

±
R − µ

±
L)c2

2~
(t− t0)

}
, (107)

where for shorten notation (ψ±R,L)D0 = (ψ±R,L)D(x0, t0), µ
D
± =

µ±R + µ±L
2

and

ED(p±R
0
) ≡ c2

√√√√(µD±)
2

+

(
p±R

0

c

)2

. (108)

Similarly, the left-handed chiral Weyl fields also can be determined in an
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exact way, the result is analogical to the right-handed case

(ψ±L )D(x, t) =

{[
cos

[
t− t0

~
ED(p±L

0
)

]
+

+ iµD±c
2

sin

[
t− t0

~
ED(p±L

0
)

]
ED(p±L

0
)

]
exp

{
− i

~
p±L

0
(x− x0)iσ

i

}
(ψ±L )D0 −

− ip±R
0
c

sin

[
t− t0

~
ED(p±R

0
)

]
ED(p±R

0
)

exp

{
− i

~
p±R

0
(x− x0)iσ

i

}
(ψ±R)D0

}
×

× exp

{
−i(µ

±
R − µ

±
L)c2

2~
(t− t0)

}
. (109)

Weyl-like solutions

Similar line of thought can be carried out in the Weyl basis. An elemen-
tary calculation leads to the right-hand chiral Weyl fields in the form

(ψ±R)W (x, t) =

{
cos

[
t− t0

~
EW (p±R

0
)

]
−

− ip±R
0
c

sin

[
t− t0

~
EW (p±R

0
)

]
EW (p±R

0
)

}
exp

{
− i

~
p±R

0
(x− x0)iσ

i

}
(ψ±R)W0 +

+ iµ±Lc
2

sin

[
t− t0

~
EW (p±L

0
)

]
EW (p±L

0
)

exp

{
− i

~
p±L

0
(x− x0)iσ

i

}
(ψ±L )W0 , (110)

where similarly as in the Dirac-like case we have introduced the shorten

notation (ψ±R,L)W0 = (ψ±R,L)W (x0, t0), µ
W
± = µW± =

√
µ±Lµ

±
R and

EW (p±R
0
) ≡ c2

√√√√(µW± )
2

+

(
p±R

0

c

)2

. (111)

c©2010 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 17, No. 4, October 2010 262

For the left-hand chiral Weyl fields one obtains the formula

(ψ±L )W (x, t) =

{
cos

[
t− t0

~
EW (p±L

0
)

]
−

+ ip±L
0
c

sin

[
t− t0

~
EW (p±L

0
)

]
EW (p±L

0
)

}
exp

{
− i

~
p±L

0
(x− x0)iσ

i

}
(ψ±L )W0 +

+ iµ±Rc
2

sin

[
t− t0

~
EW (p±R

0
)

]
EW (p±R

0
)

exp

{
− i

~
p±R

0
(x− x0)iσ

i

}
(ψ±R)W0 . (112)

In this manner one sees that the difference between obtained solutions
is crucial. Direct comparing of the Weyl-like solutions (110) and (112) with
the Dirac-like solutions (107) and (109) shows that in the Dirac basis case
there are different coefficients of cosinuses and sinuses, there is additional
time-exponent, and moreover the functions MD(p±R

0
) and MW (p±R

0
) having

a basic status for both the solutions also have different form with respect to
choice of the Dirac γ matrices representation.

Probability density. Normalization

If we know the chiral Weyl fields, then in the Dirac representation, one
can derive the usual Dirac fields by the following way

(ψ±)D =

 (ψ±R)D + (ψ±L )D

2
12

(ψ±R)D − (ψ±L )D

2
12

(ψ±R)D − (ψ±L )D

2
12

(ψ±R)D + (ψ±L )D

2
12

 , (113)

where for shorten notation (ψ±)D = (ψ±)D(x, t), and (ψ±R,L)D = (ψ±R,L)D(x, t).
Similarly in the Weyl representation, the Dirac fields can be determined as

(ψ±)W =

[
(ψ±L )W12 02

02 (ψ±R)W12

]
, (114)

where also we have used the shorten notation (ψ±)W = (ψ±)W (x, t), and
(ψ±R,L)W = (ψ±R,L)W (x, t). It is evident now, that in general these two cases
are different from physical, mathematical, and computational points of view.
In this manner, if we consider the quantum mechanical probability density
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and its normalization, we are forced to relate the Lorentz invariant probabil-
ity density to the chosen representation

ΩD,W ≡ (ψ̄±)D,W (ψ±)D,W , (115)∫
d3xΩD,W = 14. (116)

Using of (113) by elementary calculation one obtains

ΩD =

 (ψ̄±R)D(ψ±R)D + (ψ̄±L)D(ψ±L )D

2
12

(ψ̄±R)D(ψ±R)D − (ψ̄±L)D(ψ±L )D

2
12

(ψ̄±R)D(ψ±R)D − (ψ̄±L)D(ψ±L )D

2
12

(ψ̄±R)D(ψ±R)D + (ψ̄±L)D(ψ±L )D

2
12

 ,
(117)

By application of (114) the probability density (115) becomes

ΩW =

[
(ψ̄±R)W (ψ±R)W12 02

02 (ψ̄±L)W (ψ±L )W12

]
. (118)

Employing the normalization condition (116) in the Dirac representation one
obtains the system of equations

1

2

(∫
d3x(ψ̄±R)D(ψ±R)D +

∫
d3x(ψ̄±L)D(ψ±L )D

)
= 1, (119)

1

2

(∫
d3x(ψ̄±R)D(ψ±R)D −

∫
d3x(ψ̄±L)D(ψ±L )D

)
= 0, (120)

which leads to ∫
d3x(ψ̄±R)D(ψ±R)D = 1, (121)∫
d3x(ψ̄±L)D(ψ±L )D = 1. (122)

In the case of Weyl representation one receives straightforwardly∫
d3x(ψ̄±R)W (ψ±R)W = 1, (123)∫
d3x(ψ̄±L)W (ψ±L )W = 1. (124)
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In this manner one sees that in fact both the conditions (121), (122) and
(123), (124)) are invariant with respect to choice of gamma matrices repre-
sentations ∫

d3x(ψ̄±R,L)D,W (ψ±R,L)D,W = 1, (125)

that means they are physical. Using of the fact that full space-time evolution
is determined as

(ψ±R,L)D,W (x, t) = UD,W (t, t0)(ψ
±
R,L)D,W (x, t0), (126)[

UD,W (t, t0)
]†
UD,W (t, t0) = 12, (127)

one finds easily the condition∫
d3x(ψ̄±R,L)D,W (x, t0)(ψ

±
R,L)D,W (x, t0) = 1. (128)

By using of the spatial evolution (94) one obtains the relation

C

∫
d3x

(
12 +

(x− x0)i
|x− x0|

=σi sin

∣∣∣∣∣2p±R,L
0

~
(x− x0)i

∣∣∣∣∣
)

= 1, (129)

where C ≡
∣∣(ψ±R,L)D,W (x0, t0)

∣∣2 is a constant, and =σi =
σi − σi†

2i
is a imagi-

nary part of the vector σi. The decomposition σi = [σx, 0, σz] + i[0,−iσy, 0]
yields =σi = [0,−iσy, 0], and the equation (129) becomes

C

∫
d3x

(
12 − i

(x− x0)y
|x− x0|

σy sin

∣∣∣∣∣2p±R,L
0

~
(x− x0)i

∣∣∣∣∣
)

= 1. (130)

Introducing the change of variables (x− x0)i → x′i in the following way

x′i ≡ 2
p±R,L

0

~
(x− x0)i, (131)

and the effective volume V ′ due to the vector x′i

V ′12 =

∫
d3x′

{
12 − iσyx′y

sin |x′|
|x′|

}
, (132)
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the equation (130) can be rewritten in the form∫
d3x′V ′12 =

1

C
12, (133)

so that one obtains easily

(ψ±R,L)D,W (x0, t0) =

(
2
p±R,L

0

~

)3/2
1√
V ′

exp iθ±, (134)

where θ± are arbitrary constant phases. The volume (132) differs from the
standard one by the presence of the extra axial (y) volume Vy

Vy = −iσy
∫
d3x′x′y

sin |x′|
|x′|

, (135)

which is the axial effect and has nontrivial feature, namely

Vy =


0 on finite symmetrical spaces
∞ on infinite symmetrical spaces
<∞ on sections of symmetrical spaces

. (136)

One sees now that the normalization is strictly speaking dependent on the
choice of a region of integrability. For infinite symmetric spatial regions this
procedure is not well defined, because the axial effect is infinite. However, one
can consider some reasonable cases that consider the quantum theory on finite
symmetric spatial regions. Moreover, the problem of integrability is defined
with respect to choice of the initial momentum of the Weyl chiral fields p±R,L

0
.

In fact there are many possible nonequivalent physical situations connected
with a concrete choice of this eigenvalue. The one of this type situations
related to a finite symmetric spatial region, we are going to discuss in the
next section as the example of the massive neutrinos model, which in general
was solved in this paper.

The reasonable case: ultra-relativistic neutrinos

Let us consider finally the reasonable case, that is based on the normal-
ization in a finite symmetrical box and putting by hands the value of initial
momenta of the chiral Weyl fields according to the Special Relativity

p±R,L
0

= µ±R,Lc. (137)
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For that simplified case the normalization discussed in the previous section
leads to the following initial data condition

(ψ±R,L)D,W (x0, t0) =

√(
2
c

~

)3 µ3
R,L

V ′
exp iθ± =

1√
V

exp iθ±, (138)

where V =
∫
d3x. Introducing the function ED(x, y)

ED(x, y) ≡ c2

√(
x+ y

2

)2

+ x2, (139)

the right- and the left-hand chiral Weyl fields in the Dirac representation
take the following form

(ψ±R)D(x, t) =

{[
cos

[
t− t0

~
ED(µ±R, µ

±
L)

]
−

− i
µD±c

2

ED(µ±R, µ
±
L)

sin

[
t− t0

~
ED(µ±R, µ

±
L)

]]
exp

{
−ic

~
µ±R(x− x0)iσ

i

}
−

− i
µ±Lc

2

ED(µ±L , µ
±
R)

sin

[
t− t0

~
ED(µ±L , µ

±
R)

]
exp

{
−ic

~
µ±L(x− x0)iσ

i

}}
×

× 1√
V

exp

{
i

[
θ± −

(µ±R − µ
±
L)c2

2~
(t− t0)]

]}
. (140)

and

(ψ±L )D(x, t) =

{[
cos

[
t− t0

~
ED(µ±L , µ

±
R)

]
+

+ i
µD±c

2

ED(µ±L , µ
±
R)

sin

[
t− t0

~
ED(µ±L , µ

±
R)

]]
exp

{
−ic

~
µ±L(x− x0)iσ

i

}
−

− i
µ±Rc

2

ED(µ±R, µ
±
L)

sin

[
t− t0

~
ED(µ±R, µ

±
L)

]
exp

{
−ic

~
µ±R(x− x0)iσ

i

}}
×

× 1√
V

exp

{
i

[
θ± −

(µ±R − µ
±
L)c2

2~
(t− t0)]

]}
. (141)

Similarly, introducing the function EW (x, y)

EW (x, y) ≡ c2
√
xy + x2, (142)
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for the studied case the right- and the left-hand chiral Weyl fields in the Weyl
representation have a form

(ψ±R)W (x, t) =
exp iθ±√

V

{[
cos

[
t− t0

~
EW (µ±R, µ

±
L)

]
−

− iµ±Rc
2

EW (µ±R, µ
±
L)

sin

[
t− t0

~
EW (µ±R, µ

±
L)

]]
exp

{
−ic

~
µ±R(x− x0)iσ

i

}
+

+
iµ±Lc

2

EW (µ±L , µ
±
R)

sin

[
t− t0

~
EW (µ±L , µ

±
R)

]
exp

{
−ic

~
µ±L(x− x0)iσ

i

}}
, (143)

and

(ψ±L )W (x, t) =
exp iθ±√

V

{[
cos

[
t− t0

~
EW (µ±L , µ

±
R)

]
−

− iµ±Lc
2

EW (µ±L , µ
±
R)

sin

[
t− t0

~
EW (µ±L , µ

±
R)

]]
exp

{
−ic

~
µ±L(x− x0)iσ

i

}
+

+
iµ±Rc

2

EW (µ±R, µ
±
L)

sin

[
t− t0

~
EW (µ±R, µ

±
L)

]
exp

{
−ic

~
µ±R(x− x0)iσ

i

}}
. (144)

The ”reasonable case” considered above is only the example following
from the massive neutrinos model given by the massive Weyl equations (21)
obtained due to the Snyder model of noncommutative geometry (11), and
naturally it is not the only case. Actually there are many other possibilities
for determination of the relation between the initial eigenmomentum values
p±R,L

0
and the masses µ±R,L of the right- and left- hand chiral Weyl fields ψ±R,L.

However, the concrete choice (137) tested in this section presents a crucial
reasonability contained in its special-relativistic-like character. Naturally
this choice is connected with the special equivalence principle applied to
the massive neutrinos in at the beginning of their space-time evolution, i.e.
E±R,L = µ±R,Lc

2 = p±R,L
0
c. This case, however, is also nontrivial from the

high energy physics point of view [13], namely it is related to the region of
ultra-high energies, widely considered in the modern astrophysics (See e.g.
[14] and suitable references therein). So, the presented reasonable case of the
massive neutrinos evolution in fact describes their physics in this region, and
has possible natural application in ultra-high energy astrophysics.
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Outlook

In this paper we have discussed in some detail the consequences of the
massive neutrinos model arising due to the Snyder model of noncommuta-
tive geometry. The massive neutrinos model is a consequence of the Dirac
equations for a usual relativistic quantum state supplemented by the gener-
alized γ5-term [1]. In fact, Sidharth has suggested that this term could give a
neutrino mass, however, in spite of a good physical intuition he has finished
considerations on a laconic statement only, with no any concrete calculations
and propositions for a generation mechanism of neutrinos masses [15].

First we have considered the physical status of the Snyder model. By
detailed calculation we have shown that, in contrast to Special Relativity
theory, within the massive neutrinos model an energy of any original rela-
tivistic massive or massless quantum state is strictly renormalized due to a
maximal energy, directly related to a minimal scale ` being the deformation
parameter in the Snyder noncommutative geometry. In this manner the Sny-
der model has received a deep physical sense, that is in some partial relation
to the Markov–Kadyshevsky approach [9].

Next the integrability problem of the massive neutrinos model was de-
tailed discussed. First we have considered the modified Dirac equations,
which rewritten in the Schrödinger form have yielded manifestly nonhermi-
tian Hamiltonian being a sum of a hermitian and a antihermitian parts. By
employing the 4th order approximation of the Zassenhaus formula we have
proven that the procedure is not algorithm by the presence of the cyclic
problem in exponentialization. Consequently, the Dirac equations are not
integrable exactly. By this formal reason we have redefined the integrabil-
ity problem with respect to the massive Weyl equations corresponding to
the Dirac equations. The massive Weyl equations was also rewritten in the
Schrödinger form, and by using of both the Dirac and the Weyl represen-
tations of the Dirac γ matrices, we have constructed its analytical exact
solutions. We have shown that the normalizability of a solution is correctly
defined only for special regions of spatial integration, i.e. sections of sym-
metric spaces or finite symmetric spaces.

Finally, the case related to ultra-high energy physics and astrophysics was
shortly discussed. The all obtained results in general present interesting new
physical content. In itself the investigated quantum-mechanical approach to
the massive Weyl equation is novel. There are still possible applications of the
proposed massive neutrinos model to phenomenology of particle physics and
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astrophysics, especially in the ultra-high energy region. The open question
is the gauge field theory related to the massive neutrinos model, possessing
some features of QCD.
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