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Snyder noncommutative geometry due to minimal scale `,
like e.g. Planck’s or Compton’s one, yields `2-shift within
Einstein’s Hamiltonian constraint of Special Relativity,
which quantized and square root taken results in Lorentz
symmetry violation by γ5-term supplementing free Dirac’s
equation. We study this equation within the approach
preserving Minkowski’s hyperbolic geometry of momentum
space, grounded in mutual independency of phase space,
spacetime, and momentum space in physical description.
Employing Weyl’s spinors yields 1) kinetic mass generation
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spontaneous symmetry breaking into isospin group.
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Introduction

In 1947 an American physicist H. S. Snyder, for elimination of the infrared
catastrophe in the Compton effect and effectively resolving the ultraviolet
infinity problem in quantum field theory, proposed employing the model [1]

i

~
[x, p] = 1 + α

(
`

~

)2

p2 ,
i

~
[x, y] = O(`2) , (1)

with p - a particle’s momentum, x, y - space points, ` - a fundamental length
scale, ~ - the Planck constant, α ∼ 1 - a dimensionless constant, [·, ·] - an ap-
propriate Lie bracket. For the Lorentz and Poincaré invariance modified due
to `, Snyder considered a momentum space of constant curvature isometry
group, i.e. the Poincaré algebra deformation into the De Sitter one.

The model (1) is a noncommutative geometry and a deformation (Basics
and applications: e.g. Ref. [2]). Let us see first it in some general detail.
Let A - an associative Lie algebra, Ã = A[[λ]] - the module due to the ring of
formal series K[[λ]] in a parameter λ. A deformation of A is a K[[λ]]-algebra
Ã such that Ã/λÃ ≈ A. If A is endowed with a locally convex topology with
continuous laws, i.e. a topological algebra, then Ã is topologically free. If in
A composition law is ordinary product and related bracket is [·, ·], then Ã is
associative Lie algebra if for f, g ∈ A a new product ? and bracket [·, ·]? are

f ? g = fg +
∞∑
n=1

λnCn(f, g), (2)

[f, g]? ≡ f ? g − g ? f = [f, g] +
∞∑
n=1

λnBn(f, g), (3)

where Cn, Bn are the Hochschild and Chevalley 2-cochains, and for f, g, h ∈ A
hold (f ? g) ? h = f ? (g ? h) and [[f, g]?, h]? + [[h, f ]?, g]? + [[g, h]?, f ]? = 0.
For each n and j, k > 1, j + k = n the equations are satisfied

bCn(f, g, h) =
∑
j,k

[Cj (Ck(f, g), h)− Cj (f, Ck(g, h))] , (4)

∂Bn(f, g, h) =
∑
j,k

[Bj (Bk(f, g), h) +Bj (Bk(h, f), g) +Bj (Bk(g, h), f)] , (5)

where b, ∂ are the Hochschild and Chevalley coboundary operators - b2 = 0,
∂2 = 0. Let C∞(M) - an algebra of smooth functions on a differentiable
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manifold M . Associativity yields the Hochschild cohomologies. An antisym-
metric contravariant 2-tensor θ trivializing the Schouten-Nijenhuis bracket
[θ, θ]SN = 0 on M , defines the Poisson bracket {f, g} = iθdf ∧ dg with the
Jacobi identity and the Leibniz rule; (M, {·, ·}) is called a Poisson manifold.

In 1997 a Russian mathematician M. L. Kontsevich [3] defined defor-
mation quantization of a general Poisson differentiable manifold. Let Rd

endowed with a Poisson bracket α(f, g) =
∑

16i,j0n α
ij∂if∂jg, ∂k = ∂/∂xk,

1 6 k 6 d. For ?-product, n > 0, exists a family Gn,2 of (n(n+ 1))n oriented
graphs Γ. VΓ - the set of vertices of Γ; has n+2 elements - 1st type {1, . . . , n},
2nd type {1̄, 2̄}. EΓ - the set of oriented edges of Γ; has 2n elements. There
is no edge starting at a 2nd type vertex. Star(k) - EΓ starting at a 1st
type vertex k with cardinality ]k = 2,

∑
16k6n ]k = 2n. {e1

k, . . . , e
]k
k } are the

edges of Γ starting at vertex k. Vortices starting and ending in the edge v are
v = (s(v), e(v)), s(v) ∈ {1, . . . , n} and e(v) ∈ {1, . . . , n; 1̄, 2̄}. Γ has no loop
and no parallel multiple edges. A bidifferential operator (f, g) 7→ BΓ(f, g),
f, g ∈ C∞(Rd) is associated to Γ. αe

1
ke

2
k are associated to each 1st type ver-

tex k from where the edges {e1
k, e

2
k} start; f is the vertex 1, g is the vertex

2̄. Edge e1
k acts ∂/∂xe

1
k on its ending vertex. BΓ is a sum over all maps

I : EΓ → {1, . . . , d}

BΓ(f, g) =
∑
I

(
n∏
k=1

n∏
k′=1

∂I(k′,k)α
I(e1k)I(e2k)

)(
n∏

k1=1

∂I(k1,1̄)f

)(
n∏

k2=1

∂I(k2,2̄)g

)
. (6)

Let Hn - an open submanifold of Cn, the configuration space of n distinct
points in H = {x ∈ C|=(z) > 0} with the Lobachevsky hyperbolic metric.
For the vertex k, 1 6 k 6 n, zk ∈ H - a variable associated to Γ. The vertex
1 associated to 0 ∈ R, the vertex 2̄ to 1 ∈ R. If φ̃v = φ(s(v), e(v)) - a function
on Hn, associated to v, with φ : H2 → R/2πZ - the angle function

φ(z1, z2) = Arg
z2 − z1

z2 − z̄1

=
1

2i
Log

z̄2 − z1

z2 − z̄1

z2 − z1

z̄2 − z̄1

, (7)

then w(Γ) ∈ R, the integral of 2n-form, is a weight associated to Γ ∈ Gn,2

w(Γ) =
1

n!(2π)2n

∫
Hn

∧
16k6n

(
dφ̃e1k ∧ dφ̃e2k

)
. (8)

The weight does not depend on the Poisson structure or the dimension d.
On (Rd, α) the Kontsevich ?-product maps C∞(R)× C∞(R)→ C∞(R)[[λ]]

(f, g) 7→ f ? g =
∑
n>0

λnCn(f, g) , Cn(f, g) =
∑

Γ∈Gn,2

w(Γ)BΓ(f, g), (9)
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with C0(f, g) = fg, C1(f, g) = {f, g}α = αdf ∧ dg. Equivalence classes of (9)
are bijective to the Poisson brackets αλ =

∑
k>0 λ

kαk ones. For linear Poisson
structures, i.e. on coalgebra A?, (8) of all even wheel graphs vanishes, and
(9) coincides with the ?-product given by the Duflo isomorphism. This case
allows to quantize the class of quadratic Poisson brackets that are in the
image of the Drinfeld map which associates a quadratic to a linear bracket.

Let us consider the deformations of phase-space and space given by the
parameters λph, λs being

λph =
αi~
2

, λs =
iβ

2
, α ∼ 1, (10)

and leading to the star products (2), or equivalently the Kontsevich ones (9),
on the phase space (x, p) and between two distinct space points x and y

x ? p = px+
∞∑
n=1

(
αi~
2

)n
Cn(x, p), (11)

x ? y = xy +
∞∑
n=1

(
iβ

2

)n
Cn(x, y), (12)

where Cn(x, p), Cn(x, y) are the appropriate Hochschild cochains in (9). The
brackets arising from the star products (11) and (12) are

[x, p]? = [x, p] +
∞∑
n=1

(
αi~
2

)n
Bn(x, p), (13)

[x, y]? = [x, y] +
∞∑
n=1

(
iβ

2

)n
Bn(x, y), (14)

where Bn(x, p), Bn(x, y) are the Chevalley cochains. By using [x, p] = −i~
and [x, y] = 0, and taking the first approximation of (13) and (14) one obtains

[x, p]? = −i~ +
αi~
2
B1(x, p) , [x, y]? =

iβ

2
B1(x, y). (15)

or in the Dirac ”method of classical analogy” form [4]

1

i~
[p, x]? = 1− α

2
B1(x, p) ,

1

i~
[x, y]? =

β

2~
B1(x, y). (16)
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Because, however, for f, g ∈ C∞(M): B1(f, g) = 2θ(df ∧ dg), so one has

1

i~
[p, x]? = 1− α

~
(dx ∧ dp) ,

1

i~
[x, y]? =

β

~
dx ∧ dy, (17)

where ~ in first relation was introduced for dimensional correctness. Taking
into account the simplest space lattice with a fundamental length scale `

x = ndx , dx = ` , n ∈ Z −→ ` =
l0
n
e1/n , lim

n→∞
` = 0, (18)

where l0 > 0 is a constant, and the De Broglie coordinate-momentum relation

p =
~
x
, (19)

one receives finally the brackets

i

~
[x, p]? = 1 +

α

~2
`2p2 ,

i

~
[x, y]? = −β

~
`2, (20)

that are defining the Snyder model (1).
In the 1960s a Soviet physicist M. A. Markov [5] proposed to take a

fundamental length scale as the Planck length ` = `Pl =

√
~c
G

, and suppose

that a mass m of any elementary particle is m 6 MPl =
~
c`Pl

=

√
G~
c3

. Using

this idea, since 1978 a Soviet and Russian theoretician V. G. Kadyshevsky
and collaborators (See e.g. papers in Ref. [6]) have studied widely some
aspects of the Snyder noncommutative geometry model. Recently also V.
N. Rodionov has developed the Kadyshevsky current independently [7]. The
problems discussed in this paper seem to be more related to a general current
[8], where the Snyder model (1) is partially employed.

Beginning 2000 an Indian scholar B. G. Sidharth [9] showed that in spite
of self-evident Lorentz invariance of the structural deformation (1), in general
the Snyder modification both breaks the Einstein special equivalence prin-
ciple as well as violates the Lorentz symmetry so celebrated in relativistic
physics. In that case the Einstein Hamiltonian constraint receives an addi-
tional term proportional to 4th power of spatial momentum of a relativistic
particle and 2nd power of ` that is a minimal scale, e.g. the Planck scale or
the Compton one, of a theory (Cf. Ref. [10])

E2 = m2c4 + c2p2 + α
( c

~

)2

`2p4. (21)
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Neglecting negative mass states as nonphysical, Sidharth established a new
fact. Namely, as the result of application of the Dirac-like linearization proce-
dure within the modified equivalence principle (21) one concludes the appro-
priate Dirac Hamiltonian constraint which, however, differs from the stan-
dard one by an additional γ5-term, that is proportional to 2nd power of the
spatial momentum of a relativistic particle and to a minimal scale ` [11]

γµpµ +mc2 +
√
α
c

~
`γ5p2 = 0. (22)

The modified Dirac Hamiltonian constraint (22) formally can be deduced
from the equation (21) rewritten in the following compact form

(γµpµ)2 = m2c4 + α
( c

~

)2

`2p4, (23)

where pµ is a relativistic momentum four-vector

pµ =

[
E
−cp

]
. (24)

However, in both papers as well as books Sidharth has been blatantly ne-
glected the fact that the Hamiltonian constraint (23) leads to a one more
additional possibility physically nonequivalent to (22), namely, it is given by
the Dirac constraint with the correction possessing a negative sign

γµpµ +mc2 −
√
α
c

~
`γ5p2 = 0. (25)

Fortunately, however, the possible physical results following from the Hamil-
tonian constraint (25) can be deduced by application of the mirror reflection
` → −` within the results following from the Dirac Hamiltonian constraint
with the positive γ5-term (22). We are not going to neglect also the negative
mass states as nonphysical, because this situation is in strict correspondence
with results obtained from the equation (22) by a mirror reflection in mass of
a relativistic particle m→ −m. It means that after employing the canonical
quantization in the momentum space of a relativistic particle

E → Ê = i~∂0 , p→ p̂ = i~∂i , (26)

in general one can consider the generalized modification of Dirac’s equation
of the form (

γµpµ ±mc2 ±
√
α
c

~
`γ5p2

)
ψ = 0, (27)
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which describes 4 physically nonequivalent situations. Here is assumed that
in analogy to the conventional Dirac theory, a solution ψ of the equation (32)
is four component spinor

ψ =


φ0

φ1

φ2

φ3

 , (28)

and that the four-dimensional Clifford algebra of the Dirac γ-matrices is
given in the standard representation

γ0 =

[
0 12

12 0

]
, γi =

[
0 σi

−σi 0

]
, (29)

γ5 = γ0γ1γ2γ3 = i

[
12 0
0 −12

]
,
(
γ5
)2

= −14, (30)

where σ’s are the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (31)

A presence of Dirac’s matrix γ5 in the Dirac equation (27) causes that it
violates parity symmetry manifestly, so in fact there is CP violation and
the γ5-term breaks the full Lorentz symmetry. For simplicity, however, it is
useful to consider one of the four situations describing by the equation (27),
that is given by the Dirac equation modified due to the Sidharth term(

γµp̂µ +mc2 +
√
α
c

~
`γ5p̂2

)
ψ = 0, (32)

and finally discuss results of application of the mentioned mirror transforma-
tions.

Recently it was shown [12] that there are some nonequivalent possibil-
ities for establishment of the Hamiltonian from the constraint (21), and it
crucially depends on the functional relation between a mass of a relativis-
tic particle and a minimal scale m(`). It leads to some nontrivial classical
solutions and associated with them nonequivalent quantum theories. This
energy-momentum relation is currently under astrophysics’ interesting [13].
Originally the equation (32) was proposed some time ago [11] as an idea
for ultra-high energy physics, but any concrete physical predictions arising
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from this idea still are not well-established. Currently there are only specu-
lations possessing laconic character that the extra term violating the Lorentz
symmetry manifestly lies in the new foundations of physics [14]. In fact its
meaning is still a great riddle to the same degree as it is an amazing hope.
The best test for checking the corrected theory (32) and in general all the
theories given by (27) seem to be astrophysical phenomena i.e. ultra-high-
energy cosmic rays coming from gamma bursts sources, neutrinos coming
from supernovas, and other effects observed in this energy region. This cog-
nitive aspect of the thing is the motivation for reconsidering the equation
(32) arising due to the Snyder noncommutative geometry (1), and try pull
out possibly novel valuable extensions of well-grounded physical knowledge.

Massive neutrinos

Let us reconsider the modified Dirac equation (32). In fact the Sidharth
γ5-term is the additional effect – the shift of the conventional Dirac theory –
arising due to the Snyder noncommutative geometry of phase space (p, x) of
a relativistic particle (1). However, it does not mean that Special Relativity
will be also modified - the Minkowski hyperbolic geometry of the relativistic
momentum space as well as the structure of space-time in fact are preserved.
The Einstein theory describes dynamics of a relativistic particle while in
the philosophical as well as physical foundations of the algebra deformation
we have not any arguments following from dynamics of a particle – strictly
speaking the correction is due to finite sizes of a particle. In this manner,
the best interpretation of the deformation (21), as well as the appropriate
constraint (22), is the energetic constraint corrected by the non-dynamical
term. By this reason we propose here to take into account the formalism
of the Minkowski geometry of the momentum space independently from a
presence of the γ5-term, and apply it within both the modified Einstein
Hamiltonian constraint as well as the modified Dirac equation.

Application of the standard identity holding in the momentum space of
a relativistic particle

pµp
µ = (γµpµ)2 = E2 − c2p2, (33)

to the modified Dirac equation (32) yields the equation[
γµp̂µ +mc2 +

√
α

~c
`γ5
[
E2 − (γµp̂µ)2]]ψ = 0, (34)
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which can be rewritten as[
−
√
α

~c
`γ5 (γµp̂µ)2 + γµp̂µ +mc2 +

√
α

~c
`γ5E2

]
ψ = 0, (35)

or equivalently by using of the combination γ5γµpµ[(
γ5γµp̂µ

)2 − ε
(
γ5γµp̂µ

)
+ E2 − εmc2γ5

]
ψ = 0, (36)

where ε is the energy

ε =
~c√
α`
. (37)

Note that for the Planck scale holds ` = `Pl =

√
~c
G

and the energy (37)

coincides with the Planck energy scaled by the factor
1√
α

ε = εPl =
1√
α

√
~c5

G
=

1√
α
MPlc

2. (38)

Similarly for the Compton scale ` = `C = 2π
~
mpc

is the Compton wavelength

of a particle possessing the rest mass mp. In this case the energy ε is a

particle’s rest energy scaled by the factor
1

2π
√
α

ε = εC =
1

2π
√
α
mpc

2. (39)

If the particle has the rest mass that equals the Planck mass mp ≡MPl then

`C =
2πG

c2
MPl , εC =

εPl
2π
. (40)

In the other words for this case the doubled Compton scale is a circumference
of a circle with a radius of the Schwarzschild radius of the Planck mass (Cf.
also Ref. [15])

2`C = 2πrS (MPl) , rS(m) =
2Gm

c2
. (41)
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The equation (36) expresses projection of the operator(
γ5γµp̂µ

)2 − ε
(
γ5γµp̂µ

)
+ E2 − εmc2γ5, (42)

on the Dirac spinor ψ. With using of elementary algebraic manipulations,
however, one can easily deduce that in fact the operator (42) can be rewritten
in the reduced form

(γ5γµp̂µ − µ+)(γ5γµp̂µ − µ−), (43)

where µ± are the manifestly nonhermitian quantities

µ± =
ε

2

1±
√

1− 4E2

ε2

√
1 +

4εmc2

ε2 − 4E2
γ5

 . (44)

Principally the quantities (44) are due to the order reduction, and also cause
the Dirac-like linearization.

Treating energy E, mass m, and ε (or equivalently the scale `) in (44) as
free parameters one obtains easily that formally the modified Dirac equation
(32) and also the generalized equation (27) are equivalent to the following
two nonequivalent Dirac equations(

γµp̂µ −M+c
2
)
ψ = 0 ,

(
γµp̂µ −M−c2

)
ψ = 0, (45)

where M± are the mass matrices of the Dirac theories generated as the result
of the dimensional reduction

M± =
ε

2c2

(
−1∓

√
1− 4E2

ε2
+

4mc2

ε
γ5

)
γ5. (46)

This is nontrivial result – we have obtained two usual Dirac theories, where
the mass matrices M± are manifestly nonhermitian M †

± 6= M±. However,
the total effect from a minimal scale `, and in fact from Snyder’s geometry,
sits within the matrices M± only, while the four-momentum operator p̂µ
remains exactly the same as in both the conventional Einstein and Dirac
theories. Note that this procedure formally is not incorrect - we preserve
the Minkowski geometry formalism for the square of spatial momentum that
in fact is the fundament of the γ5-correction, but blatantly has not been
noticed or has been omitted in the superficial analysis due to Sidharth. In
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this manner we have constructed new type mass generation mechanism which
deduction within the usual frames of Special Relativity only, i.e. for the case
of vanishing sizes of the particle ` = 0 or equivalently for the maximal energy
ε = ∞, can not be done formally. Strictly speaking this mass generation
mechanism has purely kinetic form and is due to the order reduction in
the operator (42) of the modified Dirac equation. It must be emphasized
that this kinetic effect results from noncommutative geometry and algebra
deformation. Both the mass matrices (46) have been builded by taking of
Dirac-like square root applied to the expression containing the matrix γ5.
Let us present now the mass matrices in equivalent way, where the Dirac
matrix γ5 will be presented in a linear way.

Let us see details of the mass matrices M±. Fist, by application of the
Taylor series expansion to the square root present in the defining formula
(46) one obtains

√
1− 4E2

ε2
+

4mc2

ε
γ5 =

√
1− 4E2

ε2

√√√√√√1 +

4mc2

ε

1− 4E2

ε2

γ5 =

=

√
1− 4E2

ε2

∞∑
n=0

(
1/2

n

) 4mc2

ε

1− 4E2

ε2

γ5


n

, (47)

where the following notation was used(
n

k

)
=

Γ(n+ 1)

Γ(k + 1)Γ(n+ 1− k)

that is the generalized Newton binomial symbol. Employing now the γ5-
matrix properties – i.e. (γ5)

2n
= −1, and (γ5)

2n+1
= −γ5 – one decomposes

the sum present in the last term of (47) onto the two components

∞∑
n=0

(
1/2

n

) 4mc2

ε

1− 4E2

ε2

γ5


n

=

= −
∞∑
n=0

(
1/2

2n

) 4mc2

ε

1− 4E2

ε2


2n

−
∞∑
n=0

(
1/2

2n+ 1

) 4mc2

ε

1− 4E2

ε2


2n+1

γ5. (48)
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Direct application of standard summation procedure allows to establish the
sums presented in the both components in (48) in a compact form

∞∑
n=0

(
1/2

2n

) 4mc2

ε

1− 4E2

ε2


2n

=

√√√√√√1 +

4mc2

ε

1− 4E2

ε2

+

√√√√√√1−

4mc2

ε

1− 4E2

ε2

, (49)

∞∑
n=0

(
1/2

2n+ 1

) 4mc2

ε

1− 4E2

ε2


2n+1

=

√√√√√√1 +

4mc2

ε

1− 4E2

ε2

−

√√√√√√1−

4mc2

ε

1− 4E2

ε2

. (50)

In this manner finally one sees easily that both the mass matrices M± possess
the following formal decomposition

M± = H(M±) + A(M±), (51)

where H(M±) is hermitian part of M±

H(M±) = ± ε

2c2


√

1− 4E2

ε2


√√√√√√1 +

4mc2

ε

1− 4E2

ε2

−

√√√√√√1−

4mc2

ε

1− 4E2

ε2


 , (52)

and A(M±) is antihermitian part of M±

A(M±) = − ε

2c2

1±
√

1− 4E2

ε2


√√√√√√1 +

4mc2

ε

1− 4E2

ε2

+

√√√√√√1−

4mc2

ε

1− 4E2

ε2


 γ5.

(53)
By application of elementary algebraic manipulations one sees that equiv-

alently the mass matrices M± can be decomposed into the basis of the com-

mutating projectors

{
Πi :

1 + γ5

2
,
1− γ5

2

}
,

M± =
∑
i

µ±i Πi = µ±R
1 + γ5

2
+ µ±L

1− γ5

2
, (54)
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where

µ±R = − 1

c2

(
ε

2
±
√
ε2 − 4εmc2 − 4E2

)
, (55)

µ±L =
1

c2

(
ε

2
±
√
ε2 + 4εmc2 − 4E2

)
, (56)

are projected masses related to the Dirac theories with signs ± in the matrix
mass. By application of the obvious relations for the projectors Π†iΠi = 14,

Π1Π2 =
1

2
14, Π†1 = Π2 and Π1 + Π2 = 14 one obtains

M±M
†
± =

(µ±R)2 + (µ±L)2

2
14. (57)

Introducing the right- and left-handed chiral Weyl fields

ψR =
1 + γ5

2
ψ , ψL =

1− γ5

2
ψ, (58)

where the Dirac spinor ψ is a solution of the appropriate Dirac equations
(45), both the theories (45) can be rewritten as the system of two equations(

γµp̂µ + µ+c2
) [ ψ+

R

ψ+
L

]
= 0 ,

(
γµp̂µ + µ−c2

) [ ψ−R
ψ−L

]
= 0, (59)

where the mass matrices µ± are hermitian now

µ± =

[
µ±R 0
0 µ±L

]
=

[
µ±R 0
0 µ±L

]†
, (60)

and ψ±R,L are the chiral fields related to the mass matrices µ± respectively.
Note that the masses (55) and (56) are invariant with respect to choice of the
Dirac matrices γµ representation. By this way they have physical character.
It is interesting that for the mirror reflection in a minimal scale `→ −` (or
equivalently for the change ε → −ε) we have the exchange µ±R ↔ µ±L while
the chiral Weyl fields are the same. In the case of the mirror reflection in
the original mass m → −m one has the exchange µ±R ↔ −µ

±
L . The case

of originally massless states m = 0 is also intriguing from theoretical point
of view. From the formulas (55) and (56) one sees easily that in this case
µR = −µL. In the case of generic Einstein theory ` = 0 one has

µ±R =

{
−∞ for +
∞ for − , µ±L =

{
∞ for +
−∞ for − . (61)
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In general, however, for formal correctness of the projection splitting (54)
both the neutrinos masses (55) and (56) must be real numbers; strictly speak-
ing when the masses are complex numbers the decomposition (54) does not
yield hermitian mass matrices (60), so that the presented construction does
not hold in such a case, and by this reason must be replaced by other one.

In the conventional Weyl theory approach neutrinos are massless. In this
manner it is evident that employing the Snyder noncommutative geometry
generates a new obvious nontriviality – the kinetic mass generation mecha-
nism that leads to the theory of massive neutrinos. It must be emphasized
that in all the cited contributions Sidharth very laconically mentions about
a possibility of neutrino masses ”due to mass term”, where by the mass term
this author understands the γ5-term in the modified Dirac equation (32). In
fact it is not mass term in the common sense of the Standard Model being
currently the theory of elementary particles and fundamental interactions,
and is very misleading in further analysis and development. Strictly speak-
ing Sidharth’s statements are incorrect manifeslty, because we just have been
generated the massive neutrinos due to the nontrivial two-step mechanism -
the first was the order reduction of the modified Dirac equation (32), and the
second one was the decomposition of the received mass matrices (46) into the
projectors basis and introducing the chiral Weyl fields in the usual way (58).
Understanding this unique procedure as result ”due to mass term” is at least
inaccurate, and really can be interpreted by many inequivalent ways. It must
be emphasized that the proposal for the mass generation mechanism is man-
ifestly absent in this author’ contributions and the line of thinking presented
there is completely different then our analysis, omits many interesting phys-
ical and mathematical details, and in general does not look like constructive
(Cf. e.g. Ref. [16]). However, in the result of the procedure proposed above,
i.e. by unique application of the Dirac equation with the γ5-term (22) and
direct preservation within this equation the Einstein–Minkowski relativity
(33), we have generated the system of equations (59) which describes two
left- ψ±L and two right- ψ±R chiral massive Weyl fields, i.e. we have estab-
lished massive neutrinos, related to both the cases - any originally massive
m 6= 0 as well as for any originally massless m = 0 states. By this reason in
the proposed approach the notion neutrino takes an essentially new physical
meaning; it is a chiral field due to any massive and massless an originally
quantum particle, and in itself is also a quantum particle. Moreover, we
have obtained the two massive Weyl theories (59), so that totally with a one
quantum state there are associated 4 massive neutrinos.
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The chiral condensate

First of all let us notice that if one wants to construct the Lorentz invariant
Lagrangian L of the gauge field theory characterized by the Euler–Lagrange
equations of motion (59) for both massive Weyl theories one should put

L± = ψ̄±Rγ
µp̂µψ

±
R + ψ̄±Lγ

µp̂µψ
±
L + µ±Rc

2ψ̄±Rψ
±
R + µ±Lc

2ψ̄±Lψ
±
L , (62)

where ψ̄±R,L =
(
ψ±R,L

)†
γ0 are the Dirac adjoint of ψ±R,L, and takes into con-

siderations rather the sum of both partial gauge field theories (62)

L = L+ + L−, (63)

as the Lagrangian of the appropriate full gauge field theory of massive neutri-
nos. One can see straightforwardly that the both partial gauge field theories
(62) exhibit few well-known gauge symmetries. Namely, the (local) chiral
symmetry SU(2)±R ⊗ SU(2)±L{

ψ±R → exp
{
iθ±R
}
ψ±R

ψ±L → ψ±L
or

{
ψ±R → ψ±R

ψ±L → exp
{
iθ±L
}
ψ±L

, (64)

the vector symmetry U(1)±V{
ψ±R → exp {iθ±}ψ±R
ψ±L → exp {iθ±}ψ±L

, (65)

and the axial symmetry U(1)±A{
ψ±R → exp {−iθ±}ψ±R
ψ±L → exp {iθ±}ψ±L

. (66)

In this manner the total symmetry group is the composed SU(3)TOTC

SU(3)TOTC = SU(3)+
C ⊕ SU(3)−C , (67)

where SU(3)±C are the global (chiral) 3-flavor gauge symmetries related to
each of the gauge theories (62), i.e.

SU(2)+
R ⊗ SU(2)+

L ⊗ U(1)+
V ⊗ U(1)+

A ≡ SU(3)+ ⊗ SU(3)+ = SU(3)+
C , (68)

SU(2)−R ⊗ SU(2)−L ⊗ U(1)−V ⊗ U(1)−A ≡ SU(3)− ⊗ SU(3)− = SU(3)−C , (69)
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describing 2-flavor massive free quarks – the neutrinos in our proposition.
However, by using of the relations for the Weyl fields (58) and applying
algebraic manipulations of the Dirac γ-algebra (as e.g. {γµ, γ5} = 0) one has(

1∓ γ5
)
γ0
(
1± γ5

)
= ±2γ0γ5, (70)(

1∓ γ5
)
γ0γµ

(
1± γ5

)
= 2γ0γ5, (71)

and hence contribution to the right hand side of (62) are

ψ̄±R,Lγ
µpµψ

±
R,L =

1

2
ψ̄±γµpµψ

±, (72)

µ±R,Lc
2ψ̄±R,Lψ

±
R,L = ±

µ±R,L
2
c2ψ̄±γ5ψ±, (73)

where ψ̄± = (ψ±)
†
γ0 is the Dirac adjoint of the Dirac fields ψ± related to

the Weyl chiral fields by the transformation (58). Both (72) and (73) are
the Lorentz invariants. In result the global chiral Lagrangian (63) can be
elementary lead to the following form

L = ψ̄+
(
γµp̂µ + µ+

effc
2
)
ψ+ + ψ̄−

(
γµp̂µ + µ−effc

2
)
ψ− = (74)

= Ψ̄
(
γµp̂µ +Meffc

2
)

Ψ, (75)

where µ±eff are the effective mass matrices of the gauge fields ψ±, and Meff

is the mass matrix of the effective composed field Ψ =

[
ψ+

ψ−

]
µ±eff =

µ±R − µ
±
L

2
γ5, (76)

Meff =

[
µ+
eff 0

0 µ−eff

]
. (77)

Both the mass matrices µ±eff are hermitian or antihermitian – it depends on
a choice of representation, so the same property has the mass matrix Meff .
Obviously, the full gauge field theory (74), or equivalently (75), is invariant
with respect to the composed gauge symmetry SU(2)TOTV transformation

SU(2)TOTV = SU(2)+
V ⊕ SU(2)−V , (78)

where SU(2)±V are the SU(2) ⊗ SU(2) transformations used to each of the
gauge fields ψ± {

ψ± → exp {iθ±}ψ±
ψ̄± → ψ̄± exp {−iθ±} . (79)
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This means that for the full gauge field theory the composed global chiral
symmetry SU(3)TOTC is spontaneously broken to its subgroup – the composed
isospin group SU(2)TOTV

SU(3)TOTC −→ SU(2)TOTV . (80)

Physically it should be interpreted as the symptom of an existence of the
chiral condensate of massive neutrinos being a composition of two indepen-
dent chiral condensates, that is the composed effective field theory invariant
under action of the gauge symmetry SU(2)TOTV = (SU(2)+ ⊗ SU(2)+) ⊕
(SU(2)− ⊗ SU(2)−) [17]. However, by the composed global chiral gauge
symmetry SU(3)TOTC , the gauge theory (62) looks like formally as the theory
of free massive quarks which do not interact; such situation is very similar
to Quantum Chromodynamics (QCD) [18], but in the studied case we have
formally a composition of two independent copies of QCD. For each of these
QCDs the space of fields is different then in the usual QCD - there are two
massive chiral fields only – the left- and right-handed Weyl fields, which are
the massive neutrinos by our proposition. The chiral condensate of massive
neutrinos (75) is the result beyond the Standard Model, but essentially it
can be included into the theory as the new contribution.

Discussion

It must be emphasized that the energy-momentum relation (21) obtained
due to the Snyder model of noncommutative geometry (1) differs from the
usual Einstein–Minkowski relation well-known from Special Relativity. In
particular as is self-evident from the Hamiltonian constraint (21), there is an
extra contribution to the Einstein special equivalence principle due to the
additional `2-term. This is the result of algebra deformation only. This is
brought out very clearly in the manifestly nonhermitian Dirac equations (45),
as well as in the blatantly hermitian massive Weyl equations (59) describing
the neutrinos in our proposition. A massless neutrino in the conventional
Weyl theory is now seen to argue as mass, and further, this mass has a two
left components and a two right components, as it is noticeable in (51) and
(54). Once this is recognized, the mass matrix which otherwise appears non-
hermitian, turs out to be actually hermitian, as seen in (60), but if and only
if when the masses (51) and (54) are real. There is no any restrictions, how-
ever, for their sign - the masses can be positive as well as negative. In other
words the underlying Snyder noncommutative geometry (1) is reflected in
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the modified energy-momentum relation (22) naturally gives rise to the mass
of the neutrino. As we have mentioned here it was laconically suggested by
Sidharth as a possible result ”due to mass term” in the Ref. [16], however,
with no any concrete calculations and proposals for a mass generation mech-
anism. The mass generation mechanism proposed above has purely kinetic
nature, and moreover it is formally the result of the first approximation of
more general noncommutative geometry. We have shown also that the mas-
sive neutrino model can be understood from the point of view of gauge field
theory. It leads to interesting construction involving two independent copies
of Quantum Chromodynamics and free quarks, which is also employing ef-
fective isospin group resulting in the chiral condensate of massive neutrinos.
It must be remembered that in the Standard Model the neutrino is massless,
but the Super–Kamiokande experiments in the late nineties showed that the
neutrino does indeed have a mass and this is the leading motivation to an
exploration of models beyond the Standard Model, as for example the model
presented in this paper. In this connection it is also relevant to mention
that currently the Standard Model requires the Higgs Mechanism for the
generation of mass in general, though the Higgs particle has been undetected
for forty five years and it is hoped will be detected by researchers of Fermi
National Accelerator Laboratory or the Large Hadron Collider. We hope for
next development within the proposed here model of massive neutrinos.
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