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The heat engine, or related mechanisms, appears as an 
essential component in most models for self-organizing 
phenomena. Following the autopoietic-allopoietic 
classification used in Prigogine’s dissipative structures 
paradigm to discriminate heat engines in terms of the final use 
of the work by they produced, we introduce here an 
autopoietic coupling of heat engines as a possible model for 
the energy inter-conversions sustaining the dissipative 
structure known as Bénard convection. A thermodynamic 
analysis shows that it can access efficiencies larger than those 
allowed by the second law. 
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Introduction 
An important role is played by heat engines in some of the paradigms 
for self-organization. In Smith’s paradigm for life and evolution, 
directed to “…understand at an aggregate level what the biosphere is 
doing as it constructs and maintains itself, and what limits may exist 
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to how well and how far it can do this…” [1], the chemical Carnot 
cycle – the chemical counterpart to the thermal Carnot cycle [2] – 
becomes a key element in the description of metabolic processes that 
transfer energy and entropy [3]. The construction of Muller and 
Schulze-Makuch uses, on its part, sorption heat engines – simple 
negative entropy generators driven by thermal cycling and working 
on alternating adsorption and desorption – to model, among other 
systems, “the self organization of matter that resulted in the origin of 
life” [4]. For Chaisson, on the other hand, “the origin of Nature’s 
many varied structures is closely synonymous with the origin of free 
energy” [5]. In Chaisson’s construction the universe is modeled not as 
a “mechanical device running with Newtonian precision, but as a 
global engine capable of potentially doing work as local emergent 
systems interact with their environments – especially those systems 
able to take advantage of increasing flows of free energy resulting 
from cosmic expansion and its naturally growing gradients” [6]. In his 
quest for the law governing the biosphere’s unfolding, Kauffman 
introduces, on his part, the notion of autonomous agent as “a self-
reproducing system able to perform at least one thermodynamic work 
cycle” [7]. 

The Dissipative Structures paradigm pioneered by Prigogine and 
collaborators [8] can also be understood from the heat engine 
perspective. A dissipative structure has been defined as a far from 
equilibrium system that “efficiently dissipates the heat generated to 
sustain it, and has the capacity of changing to higher levels of 
orderliness” [9]. Efficient heat transfer, as well as the ability to 
perform the work required to bring about and sustain a new and 
higher level of order appear as the essential characteristics of these far 
from equilibrium systems. This perspective has led some author’s to 
establish a parallel between the mechanism sustaining dissipative 
structures and that of energy-transforming engines “the dissipative 
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structure is a kind of energy-transforming engine which uses part of 
the energy inflow to produce a new form of energy which is of higher 
thermodynamic value (what means lower entropy): examples…the 
mechanical energy in Bénard cells, the electrical energy in nerve 
membranes and the concentration gradients (activity gradients) in 
chemical dissipative structures” [10]. Still another perspective to 
dissipative structures is offered by Jantsch through the contrast of the 
notions autopoiesis and allopoiesis. Autopoiesis (self-reproduction, 
self-renewal) refers to systems “not concerned with the production of 
any given output but with its own self renewal in the same process 
structure” [11]. Allopoiesis, on the other hand, “refers to a function 
given from outside, such as the production of a specific output” [12]. 

The previously documented continued use of the heat engine as a 
model for a number of aspects of self-organizing systems, a testament 
to its usefulness and versatility, prompted this author to consider 
adopting such a perspective for the thermodynamic modeling and 
analysis of the self-structuring process known as Bénard convection 
[13]. The fact that in this system the far from equilibrium condition is 
sustained by the temperature difference existing between the heat 
source and the sink, combined with the fact that the higher level of 
order here arising, represented by the cells themselves, is sustained by 
mechanical work, was the deciding argument to associate the inner-
workings of this phenomenon with those of a heat engine. This effort 
lead, in turn, to the exploration of the thermodynamic features of a 
number of Carnot engines couplings. Of these, the one here reported 
shows the unusual behaviour of accessing efficiencies beyond those 
permitted by second law thermodynamics. 
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Two different couplings 
The coupling of interest, to be referred also as the complex coupling, 
appears depicted in Figure 1(b). The simple coupling depicted in 
Figure 1(a) is to be used as reference in the efficiency calculations. 
They were developed, in the order mentioned, following the defining 
lines of autopoitic, and allopoietic systems given above by Jantsch. 
As should be noted from this figure, the following operational 
conditions hold for both of these couplings: 

1. The temperatures of the outer, or limit heat reservoirs are hT  
and cT , with ch TT 〉  

2. A number ( 2≥n ) of reversible Carnot’s engines and their 
associated heat reservoirs have been fitted between the outer heat 
reservoirs. 

3. These engines have been arranged in a way such that the cold 
reservoir of any of them acts also as the hot reservoir of the engine 
down below. 

4. The temperatures of the reservoirs are ordered in the following 
fashion 
 ch TTTT 〉〉〉 ...21  (1) 

Furthermore, these temperatures have been chosen in such a way that 
all the engines are equally efficient. This condition, introduced with 
the purpose of simplifying the analysis, in no way implies that a 
different set of efficiencies could not lead to similar results. 

 5. An amount of heat hQ  delivered by the source enters both of 
these couplings. 

6. Common to both couplings is also the restriction imposed by the 
second law of thermodynamics which states “No engine can be more 
efficient than a reversible engine operating between the same 
temperature limits” [14]. 
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As should also be noted from the figure, the conditions that set 
these operations apart are the following: 

7. In the simple coupling the work generated by any given engine 
is directed to a mechanical reservoir. Because of this, each engine 
down the line receives a smaller amount of heat, and outputs a smaller 
amount of work than the previous one. 

8. The simple, allopoietic coupling of reversible engines is, as a 
whole, a reversible process. When the work stored in the mechanical 
reservoir is used to feed each of the individual engines – in a sequence 
opposite to that shown in Figure 1(a) – with an amount of work 
identical to that by them previously generated, it is possible to reverse 
the flows of heat that originally took place, returning this way the 
universe of this process to its original condition, without changes in 
other bodies remaining. 

9. In the complex coupling the work generated by any given 
engine ends up, alongside the heat passing through, as heat at the 
temperature of its cold reservoir, and from here fed to the next engine 
down below. This way each engine receives the same amount of heat 
as any other, and as a consequence of the fact that all of them have the 
same efficiency, we have that they all output the same amount of 
work. 

10. Notwithstanding that each and every one of the engines 
constituting the complex coupling is reversible, the fact that the work-
to-heat transformations accompanying their operation are irreversible, 
makes the complex coupling as a whole, irreversible. That this is so 
can be understood by realizing that the reversal of the flows of heat 
shown in Figure 1(b) demands an amount of work that can only come 
from a foreign body. Being this so it follows that the reversal of the 
universe of the complex coupling to its original condition can only be 
achieved at the expense of changes remaining in the said body. 
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With the previous considerations in place, the goals of the analysis 
to be here performed can be stated as follows: Given hT , cT , hQ , and 
the definition of efficiency as total work divided by the heat entering 
the coupling: 

A. Produce an expression for the efficiency of the complex 
coupling in terms of hT  and cT . 

B. Compare it with the maximum efficiency predicted by the 
second law of thermodynamics for any engine working between hT  
and cT . 

The common efficiency 
As previously stated, the efficiency of any engine in any of the 
couplings is equal to that of any other. If this common efficiency is 
represented as η , then 

 ηηηηη ===== n...321  (2) 

In the previous equation 1η , 2η , 3η , nη  respectively represent the 
efficiencies of engines 1, 2, 3, n, of any of the couplings depicted in 
Figure 1. 

Let us now recognize that in terms of the temperatures of the 
reservoirs, equation (2) leads to the following series of equations 
( ) ( ) ( ) =−=−=− 2321211 TTTTTTTTT hh  

 ( ) η=− −− 11 ncn TTT  (3) 

When these equations are respectively solved for 1T , 2T , … , cT , the 
following results are obtained 
 ( )η−= 11 hTT , ( )η−= 112 TT , ( )η−= 123 TT … ( )η−= − 11nc TT  (4) 
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Substitution of the first of these equations in the second, of the second 
in the third, and so on leads, in turn, to the following results 

( )η−= 11 hTT , ( )22 1 η−= hTT , ( )33 1 η−= hTT , ( )nhc TT η−= 1  (5) 

 
Figure 1: In the simple coupling shown in (a) the work produced by every 
engine is directed to a mechanical reservoir. The complex coupling shown in 
(b) includes a ‘feed-forward’ or work recycling step. After having performed 
the function of maintaining the order in the dissipative structure, the work 
output of every engine is fed as heat, alongside that passing through, to the 
next engine down below. The reader should note the parallel existing 
between the defining characteristics of these couplings, in the order 
presented, with those of allopoietic and autopoietic systems. 
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The limit efficiency predicted by the second law of thermodynamics, 
*η , equal to that of a single reversible engine working between hT  

and cT , can now be introduced through the following equation 

 ( ) hch TTT −=*η , 1*0 〈〈η  (6) 

Taking now the last member of the string of equations represented in 
(5), and equating it with the one produced when equation (6) is solved 
for cT , produces the following result 

 ( ) ( )*11 ηη −=− h
n

h TT  (7) 

Solving this last equation for η  leads to 

 n hcn TT−=−−= 1*11 ηη  (8) 

The previous equation, it should be pointed out, subsumes the 
information required to set up these couplings. When the given values 
for hT , cT , as well as a selected value for n are substituted in this 
equation, the common efficiency becomes known. This piece of 
information alongside hT  fixes, through the series of equations shown 
in (5), the temperatures of the reservoirs. Conversely, if it is the 
common efficiency the one that is provided, then the number of 
engines required can also be determined through (8). As before η , 
alongside hT , will determine the temperature of the required 
reservoirs. 

The simple coupling 
Let us now define the efficiency of the simple coupling ( scη ) of 
Figure 1(a) as follows 
 hsc QW *=η  (9) 
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Here W* represents the total work output of the simple coupling. In 
other words 
 nwwwwW ++++= ...* 321  (10) 

 Therefore 
 ( )( )nhsc wwwwQ ++++= ...1 321η  (11) 

A simple energy balance around each of this coupling’s engines leads 
to the following series of equations 
 11 QQw h −= , 212 QQw −= , 323 QQw −= … cnn QQw −= −1 (12) 

Substitution of (12) in (11) produces 
 ( )( )cnnhhsc QQQQQQQQQ −+−+−+−= −− 112211 ...1η  (13) 

After simplification, equation (13) transforms into 
 ( ) hchsc QQQ −=η  (14)  

The cancellation pattern arising in equation (13) allows us to 
realize that the combined operation of all these engines collapses, i.e. 
reduces to that of a single engine which in taking in an amount of heat 

hQ  from the heat reservoir of temperature hT , and discarding an 
amount of heat cQ  to the cold reservoir of temperature cT , 
transforms into work the difference ch QQ − . In terms of the amounts 
of heat involved, the efficiency of the operation of this reversible 
engine is given by equation (14). But as equation (8) clearly shows, 
any single reversible engine ( 1=n ) working between the outer heat 
reservoirs do so with an efficiency equal to ( ) hch TTT − . Therefore 

 ( ) ( ) hchhchsc TTTQQQ −=−== *ηη  (15) 
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The previous result allows us to conclude that the particular 
organization existing among the engines constituting the simple 
coupling works within the bounds of the second law. 

The complex coupling 
Let us start our analysis of the complex coupling by recognizing that 
its efficiency ( ccη ) can be written as follows 

 hcc QW=η  (16) 

In the previous equation hQ  represents the amount of heat entering 
the coupling. W represents, on its part, the coupling’s total work 
output, and as such is given by the following expression 
 nwW =  (17) 
The fact that the work output of a heat engine is determined by the 
product of its efficiency times the incoming heat, allows us to write 
equation (17) in the following form 
 hQnW η=  (18) 

The combination of equations (16) and (18) leads to 

 ηη ncc =  (19) 

The substitution of equation (8) in the previous result permits writing 
the following equation for the efficiency of the complex coupling 
 ( ) ( )n hcncc TTnn −=−−= 1*11 ηη  (20) 

Equation (20) embodies, it should be recognized, the first of the stated 
goals of this analysis. It is worth noticing that for the case of a single 
engine ( 1=n ) this equation, as expected, reduces to *ηη =cc . 
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Beyond the thermodynamic limit 
A comparison between scη  and ccη  will be now performed through 
equations (9) and (16), as follows 
 ( ) ( )nsccc wwwwwwwwWW ++++++++== ......* 321ηη (21) 

For the different work terms appearing in equation (21) the following 
apply 

 hQw η= , hQw η=1 , 12 Qw η= , 23 Qw η= ,…, 1−= nn Qw η  (22) 

We know that the work produced by every engine of the simple 
coupling is directed to a mechanical reservoir. As a consequence of 
this each engine down the line receives a smaller amount of heat than 
the previous engine. This fact can be represented as follows 
 1321 ... −〉〉〉〉〉 nh QQQQQ  (23) 

Combination of (22) and (23) leads, in turn, to the following set of 
relations between the constant amount of work w produced by the 
engines of the complex coupling, and the different amounts of work 
produced by the engines of the simple coupling 
 1ww = , 2ww〉 , 3ww〉 ,…, nww〉  (24) 

From (24) we realize that with the exception of the work output of the 
very first engine, for all the others the work output of a given engine 
in the complex coupling surpasses that of its corresponding engine in 
the simple coupling. This consideration allows the writing of the 
following inequality 
 nwwwwnw ++++≥ ...32  (25) 

Note that if the coupling were to reduce to a single engine, equation 
(25) would produce the trivial result of ww = . Once a coupling is in 
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place with two or more engines, the inequality shown in (25) would 
hold. In this situation it will be true that  
 *WW 〉 , 2≥∀n  (26) 

Substitution of this result in equation (21) allows us to conclude that 

 sccc ηη 〉 , 2≥∀n  (27) 

And on reason of (15), that 

 ( ) hchcc TTT −〉η , 2≥∀n  (28) 

As expressed by equation (28), as long as 2≥n , the engine of 
engines represented in Figure 1(b) will exhibit efficiencies beyond 
that allowed by the second law of thermodynamics. The origin of this 
situation cannot certainly be traced to the individual efficiencies of the 
engines constituting the complex coupling – each and every one of 
them is a simple reversible engine – but to the way they happen to be 
coupled to one another i.e. to their organization. The coupling under 
consideration expresses this way what has been taken to be an 
essential characteristic of self-organizing phenomena: that the whole 
is more than the sum of its parts. 

It seems necessary to point out that the work produced by the 
complex coupling is used first to form and then maintain the self-
organizing structure, and because of this no possibility exists – as a 
superficial and naive reading of this coupling might suggest – of it 
being used for purposes related to perpetual motion machines or the 
production of unlimited ‘ordered energy’. The moment an attempt to 
harness this work is carried on, the same moment the structure – the 
cells in Bénard’s convection – and its associated energy transforming 
mechanism, disappears. The reason is simple; directing the work 
output of the engines for outside use will reduce or transform the 
complex coupling into a simple coupling, with the concomitant 
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destruction of the organization upon which its particular behaviour 
rests. It should be kept in mind that when taken by itself, any engine 
of the complex coupling will output no more work than that allowed 
by the second law of thermodynamics, quantified by the product of its 
efficiency and the amount of incoming heat. These caveats are here 
presented in order to emphasize that this coupling has no possible 
existence outside the confines of a self-organizing structure.  

In what follows we will take a closer look at the thermodynamics 
of this complex coupling. This will be done by investigating the 
behaviour of its efficiency in a number of situations. 

Further considerations on the efficiency of the 
complex coupling 
Let us analyze the behavior of ccη  as given by equation (20), at the 
limit values of *η , this is, as 0*→η  and as 1*→η . For the former 
situation we will have that 

 ( ) 0011lim
0*

=−−=
→

n
cc nη

η
 (29) 

The previous result, valid for 1≥n , is the reflection of the fact that no 
engine operation is possible in the absence of a temperature gradient. 
The efficiency of the complex coupling, alongside the efficiency of its 
constituent engines, will collapse to zero when ch TT = . 
A simple inspection of equation (15) shows that under this condition 
the same result applies for the efficiency of the simple coupling. 
For the latter of the situations noted above we will have that 

 ( ) nn n
cc =−−=

→
111lim

1*
η

η
 (30) 



 Apeiron, Vol. 17, No. 2, April 2010 163 

© 2010 C. Roy Keys Inc. — http://redshift.vif.com 

The previous result, subsuming the physically unrealizable condition 
of 0=cT , sheds light on the fact that the difference between the 
efficiencies of these couplings becomes larger at larger temperature 
gradients. 
The behaviour of ccη  between these limits will be ascertained by 
taking its partial derivative with respect to *η , at constant n. By 
doing this we get 

 ( ) ( ) ( )n
cc

11*11* −−=∂∂ ηηη  (31) 

With regard to the right hand side of equation (31), it should be noted 
that on reason of 1*0 〈〈η , it follows that 1*10 〈−〈 η ; and that on 
reason of 〈∞≤ n2 , it follows that ( ) 1110 〈−〈 n . Being this so, then 

 ( ) ( ) 1*10 11 〈−〈 − nη  (32) 
Consequently 

 ( ) ( ) 1*11 11 〉− − nη  (33) 
Therefore 
 ( ) 1* 〉∂∂ ncc ηη , 2≥n  (34) 

The fact that the partial derivative came out positive indicates that 
ccη  is an increasing function of *η . This means that as *η  

increases, so does ccη . For any given n, and starting with a value of 
0* =η , ccη  will increase its value alongside that of *η , until at the 

limit 1* =η  it will acquire the value ncc =η  shown by equation (30). 
The previous considerations had to do with the effect that changes in 

*η  produce in ccη . In what follows we will inquire at the effect that 
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n has on ccη , at a given value of *η . Let us then consider the 
following limit 
 ( ) ( )*1ln*11limlim ηηη −−=−−=

∞→∞→
n

n
cc

n
n  (35) 

The previous result tells us that for 0* =η  no number of engines will 
be capable of producing a coupling’s efficiency different from zero. 
For 1* =η on the other hand, and in accordance with equation (30), an 
infinite efficiency will accompany the operation of an infinite number 
of engines. 

The omnipresence of the law of increasing 
entropy 
Notwithstanding the different vantage points embraced by the 
different approaches to the study of self-organizing phenomena, their 
different analytical tools, or the different degrees of success they 
might have achieved in describing nature’s behaviour, a common 
thread runs through all of them: compliance with the dictates of the 
second law of thermodynamics. For Smith “The limits on the 
biosphere’s ability to reject disorder will then derive from limits on 
energy flow and limits on the efficiency with which energy flow can 
reject entropy. Whereas different biological processes may 
approximate their limits to different degrees, the limits themselves 
derive ultimately from the second law of thermodynamics” [1] 
Mahulikar and Herwig state, on their part, that “creation of order is 
always in conjunction with disorder (to satisfy the second law)” [15]. 
For Prigogine “a system could organize (decrease its entropy), as long 
as the net change in the universe was positive” [16]. For Chaisson 
“All structures, whether galaxies, stars, planets, or life forms, are 
demonstrably open, non-equilibrated systems, with flows of energy in 
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and out…and it is this energy, the so called ‘free energy’, that goes to 
work and help build structure…whether it’s electricity powering a 
laser, sunlight shinning on a plant, or food consumed by humans, 
energy flows do play a key role on the creation, ordering, 
maintenance, and fate of complex systems – all in quantitative accord 
with thermodynamics’ celebrated second law. None of nature’s 
ordered structures not even life, is a violation (nor even a 
circumvention) of this law. For both, ordered systems as well as their 
surrounding environments, we find good agreement with modern, 
non-equilibrium thermodynamics. No new science is needed” [17]. 

A breakdown on the power of description of the 
second law 
Let us now contrast from a number of perspectives, the operations of 
the simple and complex reversible couplings. 
1. According to Planck “Every physical or chemical process in nature 
takes place in such a way as to increase the sum of the entropies of all 
the bodies taking any part in the process. In the limit, i.e. for 
reversible processes, the sum of the entropies remains unchanged. 
This is the most general statement of the second law of 
thermodynamics” [18] 
Let us now write, with the aid of figure 1, the following equation for 
the entropy change of the simple coupling 

 
c

c

h

h
sc T

Q
T
QS +−=Δ  (36) 

From the combination of equations (9) and (14) we get 

 ch QQW −=*  (37) 
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Where, as previously defined, W* stands for the total work output of 
this coupling. When cQ  is isolated from equation (37), substituted in 
equation (36), and the result simplified making use of equation (15), 
we get 

 
cc

hsc
sc T

W
T

QS *
−=Δ

η  (38) 

Recognition of the fact that 

 hscQW η=*  (39) 

Leads to 

 0=Δ scS  (40) 

This result, in line with the conclusion represented by equation (15), 
shows that the simple reversible coupling is a well behaved process, 
complying with the dictates of the second law expressed in Planck’s 
quote offered above. 
Let us now, also with the help of Figure 1, write the following 
expression for the entropy change of the complex coupling 

 
c

h

h

h
cc T

Q
T
QS +−=Δ  (41) 

The simple rearrangement of this equation shown below makes it 
clear that the complex coupling, an irreversible process when 
considered as a whole, proceeds with an increase in the entropy of its 
universe, complying also with that established in the previous quote 

 0〉⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=Δ

ch

ch
hcc TT

TTQS  (42) 
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2. Another statement of the second law has been previously offered 
via a quote from Bevan-Ott and Boerio-Goates “No engine can be 
more efficient than a reversible engine operating between the same 
temperature limits, and all reversible engines operating between the 
same temperature limits have the same efficiency” [14]. 
The result shown by equation (28) stating the fact that the irreversible 
engine of engines we have called the complex coupling is actually 
more efficient than the reversible engine of engines we have called 
the simple coupling – both operating between the same reservoirs – 
contradicts this statement. 
3. Consider the side by side operation of a simple reversible engine – 
such as the simple reversible coupling – and its irreversible 
counterpart, both operating between the same two heat reservoirs of 
temperatures hT  and cT , with ch TT 〉 , and receiving the same amount 
of heat hQ  from the hot reservoir. As known, the frictional 
dissipative processes taking place in the irreversible process produce 
as consequence a diminished work output for this process and 
consequently, the rejection to the cold reservoir of a larger amount of 
heat than its reversible counterpart. In what follows the irreversible 
operation will be identified with the sub index ‘irr’. The previous 
considerations can also be expressed as follows 
 irrWW 〉*  (43) 

 ch QWQ += *  (44) 

 irrcirrh QWQ ,+=  (45) 

Furthermore, combination of equations (44) and (45) leads to 
 cirrcirr QQWW −=− ,*  (46) 

From which it follows that 
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 cirrirrc QWWQ +−= *,  (47) 

The entropy change for the universe of the irreversible operation will 
now be written as follows 

 
c

irrc

h

h
irr T

Q
T
QS ,+−=Δ  (48) 

Substitution of equation (47) in (48) produces 

 
c

irr

c

c

h

h
irr T

WW
T
Q

T
QS −

++−=Δ
*  (49) 

Combination of equations (40) and (49) leads finally, to the following 
result 

 
c

lost

c

irr
irr T

W
T

WWS =
−

=Δ
*  (50) 

In the previous equation lostW  has been used in place of the 
difference between the reversible and irreversible outputs irrWW −* , 
to emphasize that this difference represents the work lost due to the 
dissipative processes taking place in the irreversible operation. As 
equation (46) shows, this lost work appears as heat in the cold 
reservoir. 
Equation (50) is an expression of the fact that entropy, as Weber and 
Meissner have recognized [19], is a measuring rod or gauge of the 
work lost in irreversible processes. 
Let us now bring here the fact, expressed by equation (26), that the 
complex coupling produces a larger amount of work than the simple 
coupling. The effect of the complex coupling is thus diametrically 
opposed to that expected from an irreversible process working 
between the same reservoirs. In the logic of the connection shown in 
equation (50) associating an entropy increase to any process were 
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work is lost, it would be only natural to think of associating a 
negentropic effect to those – like the complex coupling – were work 
is gained or produced beyond the limits of the second law. In other 
words, if the opposition of effects between a simple irreversible 
coupling and the complex irreversible coupling could be expressed 
algebraically, it would have to be through some relationship of the 
form 
 gainedlost WW −=  (51) 

The corresponding substitution of equation (51) in (50) produces the 
previously mentioned result. 
Notwithstanding the fact that the complex coupling has been 
constructed within the boundaries of the second law, it appears to be 
beyond its domain. Two out of three different approaches to its 
entropy change – all within the accepted wisdom of this law – 
produce different, even contradictory results. According to equation 
(42) the complex coupling is entropic, and according to the 
combination of equations (50) and (51), negentropic. According to 
equation (42) and Planck’s statement, the complex coupling is within 
the domain of the second law, but according to equation (28) and the 
statement of Bevan Ott and Boerio-Goates, it is not. 
4. In statistical mechanics, Boltzmann principle is given by 
 PkS ln=  (52) 
Where S is the entropy, k the Boltzmann constant, and P the total 
number of complexions compatible with the macroscopic state of the 
system [20] Through it, it is possible to obtain Boltzmann’s basic 
formula for the probability, iP , of the occupation of a given energy 
level, iE  

 kTE
i ieP −=  (53) 
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In which T is the temperature, and iE  the energy of the chosen level 
[21]. According to Prigogine this last equation, referred by him as 
Boltzmann’s order principle, “…constitutes the basic principle that 
governs the structure of equilibrium states… It is of paramount 
importance as it is capable of describing an enormous variety of 
structures including, for example, some as complex and delicately 
beautiful as snow crystals” [22]. When confronted with self 
organizing phenomena however, the situation radically changes as the 
equation in question ”would assign almost zero probability to the 
occurrence of Bénard convection. Whenever new coherent states 
occur far from equilibrium, the application of probability theory, as 
implied in the counting of number of complexions, breaks down” 
[23]. An interesting discussion on thermodynamics and its laws can 
be found in [24]. 

Final comment 
The previous considerations are a clear indication that unconditional 
faith on the second law might not be warranted, and that as other have 
foreseen – among them Caillois “Clausius and Darwin cannot both be 
right” [25]; Farmer “I’d like to believe (life) is described by some 
counterpart of the second law of thermodynamics – some law that 
would describe the tendency of matter to organize itself, and that 
would predict the general properties of organization we’d expect to 
see in the universe”[26]; Kauffman “Could there possibly be a fourth 
law of thermodynamics for open thermodynamic systems, some law 
that governs biospheres anywhere in the cosmos or the cosmos 
itself?” [27]; Teilhard de Chardin “In order to completely encompass 
the evolutionary economy of the universe (life included), a third 
principle must be added, the principle of the reflection of energy, to 
those already in place about the conservation, and degradation of 
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energy” [28]; and from other quarters Cápek and Sheehan [29], and 
Engels [30] – the times are calling for a larger formulation of the 
second law capable of dealing with those processes, like the complex 
coupling previously discussed, where order prevails over disorder. 
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