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Introduction  
Ever since the invention of “quaternions [1-7]” in 1843 by Sir 
William Hamilton to model the three dimensional motion of rigid 
bodies, these magic numbers have fascinated mathematicians and 
physicists worldwide with application growing by the day. 
Quaternions have provided a successful and elegant means for the 
representation of three dimensional rotations, Lorentz transformations 
of special relativity, robotics, computer vision, problems of electrical 
engineering and so on. Quaternionic Quantum Mechanics has aso 
shown potential of possible unification with General Relativity. In 
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fact, there is belief in some schools of thought that the conventional 
quantum mechanics in complex spacetime is an asymptotic version of 
the Quaternionic Quantum Mechanics. 

In this paper, an attempt is made to apply these “quaternions” in 
quantum entanglement theory. 

The Geometry of Two Qubit States & Quantum 
Entanglement 
The state space of a two level quantum system is conventionally taken 
as the tensor product Hilbert space Η ≡ ⊗  [8-11] which in the 
projective ray representation is isomorphic to the complex projective 
space 3P . The conventional Hopf map 3 2:π →S S  [12-15] can 
easily be generalized to 7 4:π →S S . This motivates us to examine 
the geometry of a two qubit quantum state using the formalism of the 
Hopf map. However, when addressing multiple qubit states, one 
needs to carefully consider the issue of quantum entanglement. The 
“quaternions” again come in handy in studying the two qubit state. 

We can write a generic pure state of a two qubit system in the 
computational basis as 
 00 01 10 11α β χ δϒ = + + +  (1) 

where 

 ij i j≡ ⊗ , H , HA Bi j∈ ∈ , , , ,α β χ δ ∈ , 
2 2 2 2 1α β χ δ+ + + = , Re Imiα α α= + , 

Re Imiβ β β= + , Re Imiχ χ χ= + , Re Imiδ δ δ= + .  
This normalization condition translates to a sphere S7embedded in 

R8. Now, if the two qubit state is a composition of two separable one 
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qubit states, then it should be possible to write the composite state as 
the tensor product of the two single qubit states. Writing 

 1 20 1
A A A

a aφ = +  (2a) 

 1 20 1
B B B

b bφ = +  (2b) 
we have, for separable states 
 1 1 1 2 2 1 2 200 01 10 11φ φϒ = ⊗ = + + +

A B
a b a b a b a b  (3) 

whence, from eqs. (1) & (3), the separability condition can be inferred 
as 
 0αδ βχ− =  (4) 

To introduce the Hopf fibration 7 4:π →S S through the 
quaternions, we write the probability amplitudes , , ,α β χ δ ∈  in the 
form of two quaternions using the symplectic decomposition as 

1 Re Im Re Imα α β β= + + +q i j k  and 2 Re Im Re Imχ χ δ δ= + + +q i j k . 

Obviously, the normalization condition implies that 2 2
1 2 1+ =q q . 

Parametrizing the sphere 4S as 
5

2

1
1ξ

=

=∑ l
l

, we obtain the Hopf map 

7 4:π →S S  by the mapping 

 1 0ξ =Q , 2 1ξ = Q , 3 2ξ = Q , 4 3ξ = Q  & ( )2
5 1ξ = − Q  (5) 

where 

 ( ) ( )
________

1 2 0 1 2 3 1 2, 2π = = + + + =q q Q Q Q Q Q q qi j k  (6) 

Explicit computation using the values of the quaternions 1q  and 

2q  yield 
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 ( ) ( )1 Re Re Re Re Im Im Im Im2 2Reξ α χ β δ α χ β χ αχ βδ= + + + = +  (7) 

 ( ) ( )2 Re Im Im Re Re Im Im Re2 2Imξ α χ α χ β δ β δ αχ βδ= − + − = +  (8) 

 ( ) ( )3 Re Re Im Im Re Re Im Im2 2Reξ α δ α δ β χ β χ αδ βχ= − − + = −  (9) 

 ( ) ( )4 Re Im Im Re Re Im Im Re2 2 Imξ α δ α δ β χ β χ αδ βχ= + − − = −  (10) 

 2 2
5 1 2 1 21 2ξ = − = −q q q q  (11) 

The Hopf map 7 4:π →S S is equivalent to the mapping of 
7S onto a fibre bundle with the base space being the unit sphere 
4S and the fibres being spheres 3S (this is evidenced by the invariance 

of this map under the transformation ( ) ( )1 2 1 2, ,λ λq q q q ,whereλ  

is a unit quaternion i.e. 1λ =  for ( )1 2,π λ λq q

________
_____

1 22 λ λ⎛ ⎞= ⎜ ⎟
⎝ ⎠
q q  

________
__ __

1 22 λ λ⎛ ⎞= ⎜ ⎟
⎝ ⎠
q q ( )

________
___

1 2 1 22 ,π⎛ ⎞= =⎜ ⎟
⎝ ⎠
q q q q ).  

A perusal of the above expressions reveals an intriguing feature of 
the Hopf map. If the two qubit states are separable i.e. 0αδ βχ− = , 
then 
 3 4 0ξ ξ= =  (12) 

and the base space reduces to 2S which is the Bloch sphere. This 
Bloch sphere (the base space) constitutes the state space of one of the 
qubits of the two qubit separable system. The obvious question to be 
posed, then is – What about the state space of the other qubit of this 
separable system? To investigate this issue further, we invert the Hopf 
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map to obtain the set of points in 7S  that project to the quaternion Q  
in 4S  by the Hopf map 7 4:π →S S . The inverse mapping gives  

 ( ) ( ){ }1 1, 2 : , 1π − −= ∈ =Q w Qw w w  (13) 

where w  is a unit quaternion that spans the 3S  fibre. Now, in the 
unentangled joint state characterized by 0αδ βχ− = , we find, as 
mentioned above, that 3 4 0ξ ξ= =  whence 2 3 0= =Q Q  so that such 
states are mapped to the set of pure complex numbers by 

7 4:π →S S . Further, writing = +w u vj  with , ∈u v  and 
2 2 1+ =u v , we obtain ( )1π − Q  in four complex component form as  

 

( ) ( ) ( ) 2 21
0 1 0 1

1 1, , , : , , , 1
2 2

π ξ ξ ξ ξ− ⎧ ⎫⎛ ⎞= + + ∈ + =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

Q u v i u i v u v u v

 (14) 
Writing 0 1 2 θξ ξ+ ≡ ii e  and making use of the freedom of ray 

representation, we can write the unentangled state corresponding to 
this ( )1π − Q  as the tensor product  

 ( ) ( )2 2
unentangled 1 1 2 2

0 1 0 1θ θ−Ψ = + ⊗ +i ie e u v  (15) 

thereby recovering the standard definition in this framework. It is 
pertinent to mention here that the coefficients of the second qubit state 

,u v  do not depend on the coordinates of the base space (that 
corresponds to the first qubit) and so if we introduce a second Hopf 
map that fibres out the fibrings of the first Hopf map i.e. if by means 
of another Hopf map 3 2' :π →S S  we further, fibrate the fibres of the 
first map into a base space (the two sphere 2S ) and fibres (being the 
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one dimensional sphere), then the corresponding coordinates of the 
second map would not depend on the coordinates of the base space of 
the map 7 4:π →S S  in the case of an unentangled system.  

To obtain explicit expressions for the second Hopf map, we make 
use of the canonical representation of the quaternion units by the well 

known Pauli matrices 1

0 1
1 0

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 2

0
0

σ
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

i
i

, 3

1 0
0 1

σ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 as 

1σ≡ −i i , 2σ≡ −j i , 3σ≡ −i i . In terms of these matrices, acting as the 
basis, the second Hopf mapping is defined by  

 ( ) ( ) ( )'π= = Tw u v u vx σ  (16)

yielding  

 ( )( )2 2, ,= + − −vu uv i vu uv u vx  (17) 

Let us take an element of the unitary group ( )1U , say, 

3

0
0
η

φ τ ϑσ
η

⎛ ⎞
= = +⎜ ⎟
⎝ ⎠

I . We, then, have ( ) ( )†'π φ φ φ=w w wσ  

†φ φ= =x x  confirming, thereby that ( ) ( )' 'π π φ=w w  for ( )1φ ∈U  
and hence, establishing the projective nature of this Hopf map taking 
all elements of 3S  connected through a unitary transformation to a 
single image. The image set is confirmed to be 2S since 2 1=x as can 
be easily verified. Thus, this Hopf map creates a principal bundle 
structure for 3S  with the base manifold being 2S  and the fibres being 
circles 1S  (members of the unitary group ( )1U ). 

The second fibration creates another Bloch sphere that can be 
considered as the state space of the second qubit in the two qubit 
separable composite system. It needs be emphasized here that such a 
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construction is not permissible in an entangled system because of the 
non vanishing of the coordinates 3 4,ξ ξ . 

To obtain further insights into the geometry of the two state 
separable system, let us introduce 0α = z , 1

1
ϕβ = iz e , 2

2
ϕχ = iz e & 

3
3

ϕδ = iz e  with ,ϕ ∈i iz , 0≥iz  whence the normalization 
condition translates to 2 2 2 2

0 1 2 3 1+ + + =z z z z . The separability 
condition 0αδ βχ− =  in the new coordinates becomes equivalent to 
the pair of real equations 0 3 1 2 0− =z z z z  & 1 2 3 0ϕ ϕ ϕ+ − = . The first 

of these equations implies that ( )0 2

1 3

say= =
z z k
z z

. It follows from this 

that corresponding to a fixed state of one of the qubits, the states of 
the other qubit trace out a straight line in the space spanned by the 
basis vectors corresponding to the new set of coordinates. In such a 
space, therefore, the separable two qubit states would manifest 
themselves as two families of straight lines. Interestingly, each of 
these families of straight lines corresponds to a one parameter family 
of Hopf circles in the above Hopf fibration framework. The above is 
an illustration of an embedding of the space of separable states 

1 1×P P  in the complex projective space of the composite two 
qubit system 3P (Segre embedding).   

Having established the compatibility of the Hopf fibration 
representation with the conventional theory for unentangled states, let 
us, now, address the issue of measurability of entanglement in this 
formalism. In the context, “Wootters’ Concurrence” and the related 
“Entanglement of Formation” constitute well accepted measures of 
entanglement, particularly so, for pure states.  

To introduce briefly, the concept of “Wootters Concurrence” [16-
18] insofar as it relates to pure states, we consider a normalized state 
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vector of a pure state of two qubits represented as  
 

,

ψ =∑ ij
i j

C i j  (18) 

with
2

,
1=∑ ij

i j
C . We can write its Schmidt decomposition in the form  

 ψ μ= ⊗∑ i i i
i

e f  (19) 

where the basis sets{ }ie , { }if  are obtained from the bases { }i , 

{ }j  by unitary transformations and hence, retain their 
orthonormality. It can be easily shown, using the singular value 
decomposition of the coefficient matrix ( )ijC  that the μi ’s are 

eigenvalues of †CC  and they satisfy 1 2 1μ μ+ =  as can be seen from 
the characteristic equation for †CC . The von Neumann entropy is, 
then, ( ) lnμ μ μ= −∑i i i

i

S . Further, ( ) ( )2
1 2 1 1det 1μ μ μ μ= = −C  

whence ( )( )2
1

1 1 1 4 det
2

μ = − − C . 

Let us, now, represent the state ψ  in the so called “magic basis” 

[16-18]{ }, , ,+ − + −Φ Φ Ψ Ψi i where +Φ , −Φ , +Ψ  & −Ψ  

constitute the “Bell basis” for the space 2 2⊗ of a pair of qubits. 
We write  

 1 2 3 4ψ + − + −= Φ + Φ + Ψ + Ψa a i a i a  
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( ) ( ) ( ) ( )1 2 3 4 3 4 1 2
1 00 01 10 11
2

= ⎡ + + + + − + − ⎤⎣ ⎦a ia ia a ia a a ia

 (20) 
so that  

 1 2 3 4

3 4 1 2

1
2

+ +⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

a ia ia a
C

ia a a ia
 and 21det

2
= ∑ k

k

C a  (21) 

The quantity  

 ( )( )( )21 22 1 2 1κ ρ μ
⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

∑ j
j

Tr  

 2
1 22 2 detμ μ ψ ψ= = = =∑ k

k
C a  (22) 

is called “Wootter’s concurrence” in the literature [16-18], where, 
*ψ σ σ ψ= ⊗y y  is the spin flipped state. κ  ranges from 0 to 1 and 

is monotonically related to the entanglement. It can, therefore, be 
considered a measure of entanglement. It follows from eq. (22) that 
any real linear combination of the “magic basis” would result in a 
fully entangled state with unit concurrence. Conversely, any 
completely entangled state can be written as a linear combination in 
the “magic basis” with real components, upto an overall phase factor. 
In fact, these properties are not unique to a state description in the 
“magic basis” and hold in any other basis that is obtained from the 
“magic basis” by an orthogonal transformation since orthogonal 
transformations do not disturb the norm of a state i.e. 2 2'=∑ ∑k k

k k

a a  

so that concurrence is not affected by any transformation ( )4∈O SO  
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[18].  
For the generic two qubit state with coefficients , , ,α β χ δ  in the 

usual computational basis, the characteristic equation for †CC  takes 
the form  
 ( ) ( )2 0μ μ αδ βχ αδ βχ− + − − =  (23) 

whence the Concurrence is  

 ( ) 2 2
3 42κ αδ βχ ξ ξ= − = +  (24)  

It follows that states with the same Concurrence get mapped into 
concentric circles of equal radius in the two dimensional projective 
subspace of the base space that is spanned by the quaternion units 
,j k . The separable states get mapped to the centre of the circle 

whereas the states with maximal entanglement constitute the 
boundary of the unit circle. All states constitute the unit disc in this 
subspace. Similarly in the three dimensional projective subspace of 
the base space spanned by ( )1 2 5, ,ξ ξ ξ , the set of states will manifest 
as a ball of unit radius. States of equal concurrence appear as 
concentric spherical shells of radius 21 κ− , separable states get 
mapped into the boundary shell of unit radius while maximally 
entangled states form the centre of the ball.  

The above expression for the concurrence can be vindicated in 
another manner. The density matrix corresponding to our two qubit 
system is  

 ( ) ( ), , , , , ,ρ α β χ δ α β χ δ= Ψ Ψ = ⊗
T

AB AB AB
 (25) 

Taking a partial trace over the variables of the second qubit, we 
obtain the reduced density matrix for the first qubit as  
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2 2

5 1 2
2 2

1 2 5

11
12

α β αχ βδ ξ ξ ξ
ρ

ξ ξ ξαχ βδ χ δ

⎛ ⎞+ + + −⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ + −+ + ⎝ ⎠⎝ ⎠

A
AB

i
i

 (26)  

so that ( )2 2
3 4

1det
4

ρ ξ ξ= +A
AB  and Concurrence  

 2 2
3 42κ ρ ξ ξ= = +A

AB  (27)  

It is easily seen by taking a partial trace over the Hilbert space of 
the first qubit that Concurrence calculated with the reduced density 
matrix of the second qubit is the same.  

Conclusion 
It is shown that the “quaternions” provide an attractive and efficient 
machinery to study the geometry of the two qubit systems. One is led 
to the conclusion, through the Hopf map 3 2:π →S S , that the one 
qubit system has a geometrical representation as the Bloch sphere 2S  
which the base space of a principal bundle with fibres consisting of 
the one dimensional sphere 1S . In the case of the two qubit composite 
system, a similar over fibration 7 4:π →S S  implies that the system 
has the geometry of a fibre bundle with the base space being the four 
dimensional sphere 4S  fibres consisting of 3S . As a fallout of the 
Hopf map analysis, we also find that unentangled two qubit systems 
admit a geometry as a direct product of two Bloch spheres as is 
intuitively to be expected. However, the Bloch sphere corresponding 
to one of the qubits in an unentangled system must be extracted from 
the 3S fibres of the 7 4:π →S S  by invoking a second Hopf fibration 
of these 3S fibres as 3 2:π →S S . We also obtain a measure of 
Wootters’ Concurrence in terms of the coordinates of the base space 
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of the two qubit fibration.  
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