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On a Modified Klein Gordon
Equation
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We consider a modified Klein-Gordon equation that arises
at ultra high energies. In a suitable approximation it is
shown that for the linear potential which is of interest in
quark interactions, their confinement for example, we get
solutions that mimic the Harmonic oscillator energy levels,
surprisingly. An equation similar to the beam equation is
obtained in the process.
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Introduction

We start with the Snyder-Sidharth Hamiltonion [1],
We get a fourth order differential equation which is very com-

plicated but interesting- as we will see, such an equation also
features in the theory of beams and robotic arms. The Hamil-
tonian is

E2 = m2 + p2 + αl2p4 (1)
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. In equation (1) E is the relativistic energy, m the rest mass of
the particle,p its momentum, α a dimension-less

constant of the 0(1) and l is a fundamental minimum length
typically a Compton length (including as a special case the
Planck length) [2] and we work with natural units in which
c = 1 = ~. Equation (1) leads to a modified Klein-Gordon
equation,

(αl2∇4 + ¤−m2)ψ = 0 (2)

In Equation (2) the ¤ denotes the D’Alembertian, given by

¤ =
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

In case there is a potential U , this has to be inserted in
the parenthesis of Equation (2). Equation (2) is a formidable
equation, but we will see below that with simplifications, we can
get some interesting results.

Approximate Solutions

As in the usual theory, we consider solutions which can be
separated into the space and time parts [3]. We further consider
for simplicity, the case of one space dimension, because it already
gives interesting conclusions. Thus our starting point is

αl2
d4ψ

dx4
− d2ψ

dx2
− (E2 + m2 + U(x))ψ = 0 (3)

We consider different cases for the potential U(x).
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Case (1).
U(x) = 0 Then we can work out that the solution of Equation
(3) is given by

ψ(x) = e
x

√√√√ 1
l2α

−

√
4(E2+m2)αl2+1

l2α√
2 c1 + e

−
x

√√√√ 1
l2α

−

√
4(E2+m2)αl2+1

l2α√
2 c2

+ e
x

√√
4(E2+m2)αl2+1

2l2α
+ 1

2l2α c3 + e
−x

√√
4(E2+m2)αl2+1

2l2α
+ 1

2l2α c4

Depending on the signs of E2 + m2, these could represent
bound (or antibound) or scattered solutions.
Case (2).
U(x) = x. (or a multiple of x.) In this case we can get mean-
ingful results by considering a two-step approximation. First we
observe that as the term αl2 in Equations (1),(2) or (3) is very
small compared to the other coefficients, this being of the order
of the square of the Compton length, the fourth derivative term
can be neglected in the first instance. So the Equation (3) now
reduces to a second order equation

ψ′′(x) +
(
E2 + m2 + x

)
ψ(x) = 0 (4)

We can easily show that the solutions of Equation (4) are given
in terms of the Airy Functions.
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ψ0(x) = AiryAi
(

3
√−1 (E2 + m2 + x)

)
d1

+ AiryBi
(

3
√−1 (E2 + m2 + x)

)
d2

(5)

In Equation (5) we consider only the decreasing exponential for
meaningful solutions. From the well-known asymptotic approx-
imation [4], of the AiryAi function the decreasing exponent part
of this solution can be shown to be

1

2
√

π
e

iπ
12 (−1)(E2 + m2 + x)−1/4e

2
3
i(E2+m2+x)3/2

which is approximately equal to

(E2 + m2 + x)−1/4e
2
3
(E2+m2+x)3/2

Now inserting the solution of Equation (5) in the fourth deriva-
tive of Equation (3),that is differentiating the solution obtained
in Equation (5) four times we get

g(x) =
e−

2x3/2

3

(
32

(
8x6 − 16x9/2 + x3 + 10x3/2

)
+ 585

)

256x17/4
(6)

which can be treated as an inhomogeneity term to be added
to Equation (4). While this gives a better approximation at the
next level, it is still too complicated for computational purposes.
To simplify matters further, we observe that for large x, the term
x2ψ0 in Equation (6) dominates. Inserting this into Equation (4)
we get,

ψ′′1(x) +
(
E2 + m2 − cx2 + x

)
ψ1(x) = 0, (7)

where c is a constant. The solution of Equation (7) can be shown
to be
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ψ1(x) = e
x−cx2

2
√

c c′1 H
[

4cE2+4cm2−4c3/2+1
8c3/2 , 4

√
cx− 1

2c3/4

]
+

e
x−cx2

2
√

c c′2 F1

[
−4cE2+4cm2−4c3/2+1

16c3/2 , 1
2
,
(

4
√

cx− 1
2c3/4

)2
]

(8)
where H stands for the Hermite polynomial and F1 the Hyperge-
ometric function of the first kind. In Equation (8) we consider,
for meaningful solutions the part that consists of the Hermite
polynomial and the decreasing exponent. The energy levels fol-
low by applying the condition that these solutions should also
vanish at the origin.

It will be immediately seen that this solution resembles the
usual Harmonic oscillator solutions. Indeed this should not be
surprising, because for large x in Equation (7) the term x2 dom-
inates.
It is interesting to note that if in Equation (3), we substitute in

the term d2ψ
dx2 , the approximate solution ψ0 or ψ1, then we get

the equation,
d4ψ

dx4
− ψ = h(x). (9)

Interestingly, Equation (9) occurs in the theory of beams [5].
The Airy function itself has been considered by the author else-
where [6].

Conclusion

What we have shown here is that for the modified Klein-Gordon
equation (2), which follows from the Snyder-Sidharth Hamilto-
nian,
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meaningful solutions exist for the free particle as also for a par-
ticle in a potential linearly varying as the distance. In the latter
case, surprisingly the equation approximately mimics the case
of the Harmonic oscillator in which the potential varies as the
square of the distance. All this is important in the context of
quark confinement. We also get in the process an equation mim-
icking the behavior of a beam.
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