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This paper builds upon an earlier paper [1] that re-derived the 
formulas for the physical Fitzgerald-Lorentz contraction and 
the Lorentz mass increase based on speed relative to the 
Fresnel dragged reference frame and on the isotropic speed of 
light in that reference frame.  The acceptance of a real 
physical contraction and mass increase means that the density 
of a body, and therefore its refractive index and Fresnel drag, 
will also increase.  It is shown that based upon this reasoning, 
the speed achievable for a sizeable mass (i.e. as opposed to an 
isolated sub-atomic particle) and a desired mass increase is 
further beyond the speed of light than specified in the earlier 
paper. 
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Introduction 
In an earlier paper “Lorentz Contraction relative to Fresnel dragged 
reference frame explains Solid-State Michelson-Morley Experiment 
Null Result” [1],  the formulas for the physical Fitzgerald-Lorentz 
contraction and the Lorentz mass increase were re-derived based on 
speed relative to the Fresnel dragged reference frame and on the 
isotropic speed of light, c/n, in that reference frame.  This derivation 
led to the following length contraction and mass increase formulas; 
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Where LR is the length of a body when stationary in the local space 
reference frame where the speed of light, c, is isotropic, LM is the 
length of the body in the direction of motion when moving at speed v 
relative to that reference frame, and n is the refractive index of the 
body. 
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Where MR is the mass of the body when “stationary” and MM is its 
mass at speed v relative to the stationary frame. 

It was argued that the inner fields of matter influence its inner 
space and exert control over not only electromagnetic radiation within 
that matter but also over the electromagnetic force fields within the 
matter. 

An assumption in the earlier paper is that the length contraction 
and mass increase formulas shown above can be expressed by a 
single refractive index, n, independent of the speed relative to a 
reference frame where the speed of light is isotropic for our region of 
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space.  The acceptance of a real physical contraction and mass 
increase, however, means that the density of a body will increase as 
its speed increases.  It has been shown in Optics for Technology 
Students [2] that as the density of a transparent material increases its 
index of refraction also increases.  This means that its Fresnel drag 
increases, and from equations (1) and (2) we see that for a larger 
presently unknown value of n, the length contraction and mass 
increase will be less than that specified in the earlier paper for a value 
of n determined prior to attaining high speeds.  If the mass increase is 
less for a given speed, v, then we can achieve a higher speed for a 
specified desirable mass increase than that predicted in the earlier 
paper.  The analysis which follows determines the unknown moving 
value of n and the speed achievable for a specified mass increase.  
The density increase is somewhat similar to that which occurs during 
the development of a shock wave in air. 

Determination of Refractive Index for High 
Speeds 
In the earlier paper, the value for n in equations (1) and (2) was taken 
to be the value that is currently measured (e.g. n=1.5 for silica) 
without regard for the value of v.  Since these equations hold for any 
value of n they also hold for its unknown moving value which we 
shall call nM.  Let the rest volume, VR, at v=0 for a given rectangular 
mass with side lengths LR1, LR2, and LR3, be given by; 
 1 2 3=R R R RV L L L  (3) 

where LR1 is parallel to the velocity v.  Then the moving volume, VM 
is given by; 
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Evidently this volume change would hold true for any shape since 
infinitesimal volumes may be used above and then summed together 
to represent any odd shaped volume.  The moving mass, MM is given 
by; 

   
2

2 21
=

−

R
M

M

MM
v

c n

 (5) 

The moving density, ρM, is then given by; 
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But the top of equation (6) is the rest density, ρR, so our density 
relationship is; 
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As mentioned in the introduction, it has been shown by Robert O. 
Naess in “Optics for Technology Students” [2] that as the density of 
glass increases its index of refraction also increases.  Appendix A of 
this text book plots points for refractive index vs. specific gravity for 
200 types of optical glass at a wavelength of 587.6 nm.  Although the 
points are somewhat scattered most of them fall within a well defined 
narrow band which can be approximated by a straight line.  The 
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straight line is given in terms of the density of glass, ρG, and the 
density of water, ρW, by; 

  ( )0.1168 1.21141ρ
ρ

= +G
W

n  (8) 

For our purpose we shall write this in the following general form and 
drop the glass subscript “G”, but it must be remembered that for 
actual calculations made later with these values, we are working with 
approximations that are specifically for glass in the data range 
available (i.e. n=1.5 through n=1.9). 
 1 2ρ= +n k k  (9) 

Where k1 and k2 are constants for the slope and y intercept 
respectively which we will tentatively consider to represent any 
substance.  Using our straight line equation, we can express the 
refractive index in terms of the density for the rest and moving cases. 
 1 2ρ= +R Rn k k  (10) 

 1 2ρ= +M Mn k k  (11) 

Substituting equation (7) into equation (11) we have; 
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From equation (10) we have; 

  2

1

ρ −
= R

R
n k

k
 (13) 

Substituting equation (13) into equation (12) gives; 
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After a bit of algebra, equation (14) can be put in the following form; 
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With specified values for nR, v, and k2, this cubic equation can be 
solved for nM.  Note that for v<<c, ≈M Rn n   as it should.  Note also 
that k1 has been eliminated so the solution is independent of the slope 
of the refractive index vs. density straight line approximation.  
Equation (15) may be solved graphically by setting it equal to y, 
plugging in various values for nM, plotting the curve, and finding the 3 
places where y=0 (i.e. finding the 3 roots).  To determine which of 
these roots is the answer we desire, consider that once a body starts 
moving relative to the vacuum reference frame where the speed of 
light is isotropic for our region of space, its velocity relative to the 
dragged reference frame is always greater than zero so there will 
always be a contraction and mass increase and therefore density 
increase relative to the dragged frame.  This means that there will 
always be an increase in refractive index, so we know that for the real 
solution nM must be greater than nR.  Thus any roots where nM <nR 
can be eliminated.  An EXCEL program was written to plot equation 
(15) for any set of specified input conditions, but before presenting 
results we seek an exact real solution.  The plot will then simply be 
used as a cross check on the result. 
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Moving Refractive Index and Achievable Speed 
as Function of Desired Mass Increase 
Equation (5) can be rewritten as 
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Using equation (16) to substitute for v2/c2 in equation (15) and 
rearranging terms we have; 
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One solution to this equation can be obtained by setting the portion in 
brackets to zero and then solving for nM.  nM is then given for a 
specified desirable mass ratio, MM/MR, by; 
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Equation (16) can be rewritten as; 
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Once nM is found using equation (18) we can then find v using 
equation (19).  Then we can plot equation (15), for many values of nM 
using our value of v, to cross check this root and estimate the other 2 
roots.  Note that for a specified mass ratio of 1.0 equation (18) gives 
nM=nR and equation (19) gives v=0 as they should. 

On page 80 of the earlier paper we said that for n = 1.5, even at v = 
1.4c, the mass ratio, MM/MR, is only 2.79.  But now, if we specify a 
mass ratio of 2.79 and set nR =1.5 in equation (18), we find that nM = 
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3.457823419 (where k2 = 1.21141 as specified earlier).  Using these 
values for nM and mass ratio in equation (19) then gives v = 
3.228083267c.  This shows that because a Lorentz driven density 
increase is now accounted for, we should be able to achieve speeds 
well above v = 1.5c without the mass ratio approaching infinity. 

Now we can check our solution by plugging v = 3.228083267c , 
nR =1.5, and k2 = 1.21141, into equation (15) and then evaluating this 
equation for many different values of nM.  An EXCEL program was 
written to accomplish this and the results are plotted below in Figure 
1.0.  Note that the curve crosses the x axis in 3 places at the 3 roots 
where the value of the equation is zero.  A detailed printout of the 
values (not shown here) shows that one solution falls between nM = -
3.15 and nM = -2.9, another falls between nM = 1.1 and nM = 1.35, and 
the 3rd falls between nM = 3.35 and nM = 3.6.  As mentioned earlier, 
for a real physical solution we must have nM > nR.  Only the 3rd 
solution satisfies this condition and its bounding values, nM = 3.35 
and nM = 3.6, span our earlier exact solution, nM = 3.457823419, as 
they should.  As one final check, all values, including nM = 
3.457823419, were plugged into equation (15).  The result is a value 
extremely close to zero (i.e. 8 places to the right of the decimal point 
are zero), providing great confidence that our mathematical solution is 
correct.  The many decimal places were used simply to assure a 
correct mathematical solution.  We should not lose sight of the fact, 
however, that as mentioned earlier the solution is approximate 
because the data used were approximate and were specifically for 
glass in the data range available (i.e. n=1.5 through n=1.9).  The value 
of k2 may vary for different substances and require adjustment even 
for glass. 
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Figure 1.0 Value of Equation (15) for Various Values of nM 

Conclusion 
The speed achievable for a sizeable mass (i.e. as opposed to an 
isolated sub-atomic particle) and a desired mass increase is further 
beyond the speed of light than specified in an earlier paper [1], due to 
a Lorentz driven density increase and greater Fresnel drag.  With a 
specified mass ratio of 2.79, for example, an isolated sub-atomic 
particle could achieve a speed of about 0.93c, while a sizeable piece 
of glass could achieve a speed of about 1.4c based on reasoning in the 
earlier paper, and a speed of about 3.22c based on reasoning in this 
paper. 

One way to substantiate the reasoning in both this paper and the 
earlier paper is to prove that Einstein’s assumption in his following 
comment on the Fizeau experiment is incorrect; “In accordance with 
the principle of relativity we shall certainly have to take for granted 
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that the propagation of light always takes place with the same velocity 
w with respect to the liquid, whether the latter is in motion with 
reference to other bodies or not”.  A positive result from the group 
light speed experiment, proposed in “Fresnel Drag vs. Einstein 
Velocity – a Case for Further Investigation” [3], would prove that 
Einstein’s assumption is incorrect. 
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