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It is generally assumed that quantum field theory (QFT) is
gauge invariant. However it is well known that non-gauge
invariant terms appear in various calculations. This problem
was recently examined in [9] for a“simple” field theory and it
was shown that for this case QFT in the Schrddinger pictureis
not, in fact, gauge invariant. In order to shed further light on
this problem we will examine the Heisenberg and Schrodinger
formulations of QFT. It is generally assumed that these two
“pictures’ are equivalent; however we will show that this is
not necessarily the case. We shall consider a “simple” field
theory consisting of a quantized fermion field in the presence
of a classica electromagnetic field. We will show that,
although the two pictures are formally equivalent, the
Heisenberg picture is gauge invariant but that the Schrédinger
picture is not. This suggests that the proper way to formulate
QFT isto use the Heisenberg picture.
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1. Introduction

Quantum field theory is assumed to be gauge invariant [1][2]. A
change in the gauge is a change in the e ectromagnetic potential that
does not produce a change in the eectromagnetic field. The
electromagnetic field is given by,

E:—(%A+VA)]; B=VxA (1.1)

where E isthe dectric field, B is the magnetic field, and ( A, A) is

the electromagnetic potentia. A change in the potential that does not
produce a change the electromagnetic field is given by,

A- A=A-Vy, Ab—>A;=Ab+%" (12)

where y(X,t) isan arbitrary real valued function.

In order for quantum field theory to be gauge invariant a changein
the gauge cannot produce achange in any physical observable such as
the current and charge expectation values. However, it is well known
that when certain quantities are cal culated usng standard perturbation
theory the results are not gauge invariant. For example, the first order
change in the vacuum current, due to an applied e ectromagnetic field,
can be shown to be given by,

J\ZC(X)IJ'EW(X—X')A,(X')d4X' (1.3

where 7" is called the polarization tensor and summation over
repeated indices is assumed. The above rdationship is normaly
written in terms of Fourier transformed quantities as,

32, (k) =7 (K) A (K) (14)
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where k is the 4-momentum of the electromagnetic field. In this case,
using relativistic notation, a gauge transformation takes the following
form,

A (k)= A (k)= A (k) +ik 7 (k) (15)

The change in the vacuum current, 6,J;, (k), due to a gauge
transformation can be obtained by using (1.5) in (1.4) to yidd,

5,3 (k) =ik, (k) 2 (K) (16)

Now the vacuum current is an observable quantity therefore, if
guantum theory is gauge invariant, the vacuum current must not be

affected by a gauge transformation. Therefore &,J/;. (k) must be
zero. For thisto be true we must have that,

k7" (k)=0 (17)

However, a review of the literature will easily show that when the
polarization tensor is caculated it is found that the above relationship
does not hold.

Congder, for example, a calculation of the polarization tensor by
W. Heitler (see page 322 of [3]). Heitler's solution for the Fourier
transform of the polarization tensor is,

7" (k)= 78" (K)+7ie (K) (1.8)
Thefirst term on the right hand sideis given by,

2 = 2+ 2m? 2 _Am?
ngV(k)=(§;;j(k#kV—ngz)jdz(z +22(12£T<2) ) (1.9)

2m
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where m is the mass of the eectron, e isthe eectric charge, and
h=c=1. This term is gauge invariant because k 75" =0. The
second term on theright of (1.8) is
2 = (Z2+2m?) (2 - 4’
e (K) = (é%} g/ (1-9) Jm dz( )Zz( )
where there is no summation over the two x superscripts that appear
on theright. Note that 7z isnot gauge invariant because K, zf # 0.
Therefore to get a physicdly vaid result it is necessary to “correct”
equation (1.8) by dropping 7. from the solution.
Another example of a cdculation of the polarization tensor is
given by J.J. Sakural (See pages 273-275 of [4]). Sakura shows that,

based on considerations of Lorentz covariance, the polarization tensor
must have the form,

7, (K) =D&, + K5, 7% (k*)+k k,7? (k) (1.12)

where D is aconstant. (Note that the use o, instead of g, reflects

the notational conventions of [4]). In order for the above expression to
be gauge invariant D must be zero. However Sakurai shows that D
is given by the expression,

4 2p° +4m?
D:iezj d p4 (2p )
(27) (p2+m2—ig)
Concerning the congtantD, Sakura writes “It is not difficult to
convince oneself that dmost any ‘honest’ calculation gives D = 0. In

fact ... one can readily shown that D is a postive, red constant...”
(see page 275 of [4]). Therefore the result that Sekura achieves for

(1.10)

(112)

2
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the polarization tensor is not gauge invariant. In order to make the
result gauge invariant the quantity D must be removed.

Another example of a cdculation of the polarization tensor is
given by K. Nishijima (see section 6-4 of Ref. [5]). He shows that the
expression that he obtains for the polarization tensor is not gauge
invariant as calculated. In order to obtain a gauge invariant expression
the non-gauge invariant part of the expresson must be removed. (See
discussion after Eq. 6-79 of Ref. [5]).

A similar Situation exists when other sources in the literature are
examined. For example consider the discussion in Section 14.2 of
Greiner et d [2]. Greiner et a write the solution for the polarization
tensor (see equation 14.43 of [2]) as,

7 (K)=(g"K* —k“k") (k) + g 7 (K?) (1.13)

where the quantities (k) and 7, (k®) are given in [2]. Referring

to (1.7) it can be easily shown that the first term on the right is gauge
invariant. However the second term is not gauge invariant unless

7, (K?) equas zero. Greiner et a show that this is not the case.

Concerning this term Greiner et a write (page 398 of [2]) “... this
latter term violates the gauge invariance of the theory. Thisis a very
sever contradiction to the experimentaly confirmed gauge
independence of QED. [This problem indicates] that perturbative
QED is not a complete theory. As one counter example or
inconsistency suffices to prove a theory wrong, we should, in
principle, spend the rest of this book searching for an improved
theory. However, there is little active work on this today because: (1)
there is a common belief that some artifact of the exact mathematics
is the source of the problem; (2) this problem may disappear when the
properly generadized theory, including in its framework al charged
Dirac particles, is achieved.” In order to achieve a gauge invariant
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result Greiner et a drop the quantity 7z, (k*) from the expression for

the pol arization tensor.

For another example consider the expresson for the
polarization tensor as derived by Greiner and Reinhardt (See Section
5.2 of [6]). The polarization tensor isgiven in Eq. 5.7 of [6] as,

i”/w(k)__z 4 1 1
4 ejd pT{n(p—m+ig)y“(p—k—m+ig)} (119

They show that this quantity is not gauge invariant. In order to
obtain a gauge invariant expresson they use Pauli-Villars
regularization [7]. They modify the above expression by adding the
quantity,

2 4 N 7&(p+Mi)7a(p_k+Mi)
—&[d*pyCT 115
ej p; o (pz—Mi2+ig)((p—k)Z—Mi2+ig) (-1

According to the Pauli-Villars procedure the auxiliary masses M,
and congtants C. are adjusted so that the non-gauge invariant terms

are cancdled. This procedure removes the offending terms, however
there is no physica process that judtifies this step. That is, the
auxiliary masses are not presumed to correspond to actua physica
particles. They are simply a mathematical device that is used to get a
physically correct result. Therefore, we see that the origind
caculation is not gauge invariant and must be corrected by the
application of an additiona step which was not part of the original
formulation of the theory.

For another example refer to equation 7.79 of Peskin and
Schroeder [8]. Here they show that the expression that they obtain for
the polarization tensor is not gauge invariant. In order to obtain a
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gauge invariant expression they introduce an additiona step caled
dimensiona regularization. This “corrects’ the problem by removing
the unwanted terms from the expresson but, as was the case with
Pauli-Villars regularization, it is a the expense of introducing a
procedure that was not a part of the origina formulation of the theory.

Therefore, we see from this review of the literature, that when the
polarization tensor is caculated the result is not gauge invariant. The
non-gauge invariant part of the result must be removed in order to
achieve a physicaly acceptable result. This removal can be done by
“hand” or by the use of an additiona mathematical step caled
regularization. The obvious question to ask, then, is why does this
problem occur? If the theory is gauge invariant why does a
caculation of the polarization tensor produce non-gauge invariant
terms?

This question was examined in some detail in Refs. [9] and [10].
In these papers the problem of gauge invariance was examined for a
“ample’ fidd theory in the Schrédinger picture consisting of a
quantized fermion field in the presence of an unquantized classical
electromagnetic fied. In [9] four éements that are normaly
considered to be part of quantum field theory were examined. These
were that (1) the Schrodinger equation governs the dynamics of the
theory with the Hamiltonian specified by Eq. (2.2) of [9]; (2) the
theory is gauge invariant; (3) there is local charge conservation, i.e,
the continuity equation is true; (4) there is lower bound to the free
field energy. It was shown that these elements of QFT are not
mathematically consistent. Specificaly item (2) is incompatible with
item (4), that is, if QFT is gauge invariant then there cannot be a
lower bound to the free field energy. However it can be readily shown
that the vacuum date is a lower bound to the free fidd energy.
Therefore, as discussed in [9], QFT in the Schrodinger picture is not
gauge invariant a the forma leve. This, then, explains why non-
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gauge invariant terms agppear in the polarization tensor. Since the
theory is not gauge invariant in the first place it would be expected
that the results of caculation are aso not gauge invariant. A similar
conclusion was obtained in [10].

The conclusion of this research was that there is a mathematical
inconsistency in QFT regarding the way the vacuum state is defined.
That is, the vacuum state is defined in a way that is not compatible
with the requirements of gauge invariance. It is the purpose of this
paper to continue this discusson and see how this inconsistency
affects other aspect of the theory. In particular we will examine the
relationship between the Schrodinger and Heisenberg pictures. We
will examinethe “smple” field theory discussed in [9] and [10] in the
Schrédinger picture and compare this to the Heisenberg picture.
These two “pictures’ are generally assumed to be equivaent;
however we will show that this is not the case for the field theory
under consideration. It will be demonstrated that, even though the two
pictures can be shown to be formally equivaent, they yield different
results when actua problems are worked out. It will be shown that
Heisenberg picture is gauge invariant but that the Schrédinger picture
isnot. This suggeststhat if QFT was formulated aong the lines of the
Heisenberg picture instead of the Schrodinger picture the problems of
gauge invariance would be resolved.

The possibility that the Helsenberg and Schrodinger pictures are
not equivalent was advocated by P.A.M Dirac in a paper with the
interesting title “Quantum Electrodynamics without Dead Wood”
[11] (see dso [12]). The “dead wood” in this case is the vacuum to
vacuum trangtions that are part of perturbation theory in the
Schrodinger picture. Dirac analyses a “toy modd” field theory and
creates a Stuation for which solutions exist in the Heisenberg picture
but solutions do not exist in the Schrodinger picture. He uses this
result to support his argument that the two pictures are not equivalent
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and that the Heisenberg picture is the correct approach. In the present
paper we will reach a similar conclusion athough the approach to the
problem taken hereis considerably different then that of Dirac.

The paper will proceed as follows. In Section 2 the different
approaches leading to the Heisenberg and Schrodinger pictures will
be discussed. In Section 3 the Heisenberg picture is developed and
easly shown to be gauge invariant. In Section 4 the Schrodinger
picture is described. The vacuum state and Schrodinger picture field
operator are then defined in Section 5. We define the free field energy
as the energy of the system when the electromagnetic potentid is
zero. It is shown that in the Schrodinger picture the free field energy
of any state must be greater than or equa to the free field energy of
the vacuum dtate. In Section 6 we examine gauge invariance in the
Schrodinger picture. In contrast to the Heisenberg picture it is shown
that the Schrodinger picture is not gauge invariant. In section 7 it is
shown that in the Heisenberg picture there is no lower bound to the
free field energy which is contrast to the Schrodinger picture where
there is alower bound. These results are then summarized in Section
8.

2. Heisenberg versus Schroédinger picture.

In quantum field theory a quantum system, at a given point intime, is
specified by the state vector |Q) and field operator v (X). We will
write this as the pair (|2),). Let the state vector |Q) and the field
operator y/(X) be defined at some initia point in time, say t=0.

This may be taken as the initia conditions of the quantum system.
Now there are two ways to handle the time evol ution of the system. In

the Schrodinger picture it is assumed that field operator 1 (X) is
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constant in time and the time dependence of the system goes with the
state vector |Q(t)) . In the Heisenberg picture the time dependenceis

assigned to the field operator y(X,t) and the state vector |Q)

remains congtant in time. It is generally assumed that both pictures
give equivaent results in that the expectation vaues of operators are
the same. However we will show, in the following discussion, that
thisis not true.

Note that at the initia time, t=0, both pictures are identical.

Therefore the time independent Schrédinger field operator 7 (X) is
equal to y(X,0), which is the time dependent Heisenberg field
operator a t=0. Smilarly, the time independent Heisenberg state
vector |Q) equals |Q(0)), which is the time dependent Schrodinger
state vector |Q(t)) a t=0. For example, let the initid state of the
system, at t =0, be represented by the pair (‘Q(O)>y/(>”<0)) .Inthe
Heisenberg picture this initial state evolves into (‘Q(O»l/l()?t)) In
the Schrodinger picture the state evolvesinto (‘ Q(t)).w (%, O)) .

3. Gauge invariance in the Heisenberg picture

Now consder a “smple’ field theory consisting of non-interacting
electrons in the presence of a classicd eectromagnetic field. In this
case the time evolution of the field operator in the Heisenberg picture
isgiven by,

Oy (X1)

= = Hop (%,1) (3.0)

where,
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H,=H,—ed A+eA (3.2)

and,
H,=-i@-V+Am (3.3

In the above expression the el ectromagnetic potential ( A, A) istaken

to beaclassical, unquantized, real valued quantity. Also e and m are
the charge and mass of the dectron, respectively, and ¢ and g are
the usua 4x4 matrices. Note that in the above equations we use
n=c=1.

Also assume that a the initid time t=0 the Heisenberg field
operator obeysthe equa time anti-commutator relationships,

7! (%,0)17,(X,0)+7, (X,0)5! (%,0)=5,,6% (x-X) (34)
Define a Heisenberg operator by the expression,
Oy =" (X,1) O (%) (35)

The quantity O,, operates on the field operator i (%,t) . If |Q(0)) is
a normalized state vector then the expectation vaue of the operator

O,p 1 N the Heisenberg pictureis given by,
0, =(2(0)[0,,|2(0))

(36)
=(2(0)]y! (R )0 (R1)]2(0))

Next we will show that quantum field theory in the Heisenberg
picture is gauge invariant. For a theory to be gauge invariant the
expectation vaue of physical observables must be gauge independent.
The physica observables that we will consder are the current and
charge expectation vaues. The Heisenberg current and charge
operators are, respectively defined by,
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J, (X)) =7 (X t)ay (%t) and p, (X,t) =& " (X,t)y(X,t) (3.7)
The current and charge expectation vaues for a normaized state
vector |Q(0)) are, defined by,

3ue(%1)=(2(0)|3, ()| 2(0))
P (%:1)=(Q(0)] Ay (%.1)|2(0))

It is easy to demondrate gauge invariance in the Heisenberg
picture. Assume that at the initid time t =0 the initid date of the

system is given by (‘Q(O)>z/7(>”<)) Let the system evolvein time in

(38)

the presence of an eectromagnetic potentia (A), A). According to
the Heisenberg picture the system evolves into (‘Q(O)>y7(>”<t))
where i/ (X,t) satisfies,

oy (Xt - R

i%z(Ho—e&-A+eﬁ))yx(Y<,t) (39
dong with the initid condition 7 (X,0) =y (X). Now suppose we
start with the same system at the initia time t =0 and evolveintime
in the presence of the gauge transformed potential
(A)’g,Ag)Z(A)+5;(/5t,A—V;5) where (X,t) isan arbitrary resl
valued function that satisfiesthe initia condition,

x(%Y) _g (3.10)

7(%,0)=0 a——
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In this case the initid system evolves into the system

(‘Q(O)>,y}g (Xt)) where 7, (X,t) satisfies,
i al/}g (X’t)
ot
dong with the initid condition 1 (X,0)=y(X). It can easily be

shown that,

7, (X,t) =" 7 (%,t) and ] (%,t) =" (x,1)€*")  (312)
It is evident that we obtain identical results when we substitute

dther y(X,t) or y,(X,t) into (3.7). Then, referring to (3.8), it is

evident that the current and charge expectation vaues in the
Heisenberg picture do not depend on the gauge transformation and
therefore the Heisenberg picture is gauge invariant.

4. The Schrodinger picture

:(HO ‘e&'(A‘VZ)er('% +6x/6t))v7g (%t) (311

In the Schrodinger picture the state vector evolves in time according
the Schrédinger equation,

0|Q(t)) -
X _HIO(t 4.1
- (v) @1)
We can take the Hermitian conjugate of the above equation to obtain,
o(Q(t)| .
—i——==(Q(t)|H 4.2
= =) “2)
where,
H = [17" (%,0) Hpy (%, 0)dx 4.3)

Next define a Schrédinger operator by the expression,
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0,5 =¥ (%,0)0,y (%,0) (4.9)

The expectation value of the Schrodinger operator éop,S for the Sate
vector |Q(t)) in the Schrodinger picture isgiven by,

0,5 (1) =(Q(1)|O, | (1)) (4.5)

It can be shown that the expectation values in both pictures are the
same, that is,

O,s (t) =0, 1 (t) (4.6)

It is on this basis that the Helsenberg and Schrédinger pictures are
consdered to be equivdent representations of quantum theory. A
proof that (4.6) istrueis given in the Appendix.

5. The Vacuum state

An expectation vaue is a number. Therefore in order to evauate
expectation values we need to know how the field operators act on the
state vectors. We will start by assuming that at the initia time t =0
the state vector isin aninitial unperturbed state whichis given by,

75(%) = 2Byt s (%) 0155 (3)
IQJ(X)ZZ( Hos (%) +d, 1bs(7())

p.s

(5.1)

where the Bp,s(Bg,s) are the destruction(creation) operators for an
dectron in the dateg, (%) ad d (d},) ae the

destruction(creation) operators for an positron in the stateg , , ((X) .
They satisfy the anticommutator relation,
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Br”st;g/'s' + Bg"S'Bﬁ,s = 55’55(3) ( p- r)’) (5.2
ap,sa;"g + aT a = 55,55(3) ( r)_ r)r) .

p.sps
The ¢, ,,(X) are basis state solutions of the free field Dirac equation
with energy eigenvalue AE and can be expressed by

Ho¢/1,s,p (7() = }“Ep(ﬁz,s,p (7() (5.3
and where,
E, =+ Pnt, A= +1fora positi.ve energy state (54
—1for anegative energy state

where p is the momentum of the state and s=+1/2 is the spin
index.
The ¢,  ,(X) can be expressed by,

Brsp(X) =1, € (55)

where u,  ; isacongtant 4-spinor which are given in Chapt. 2 of

Ref. [2]. The ¢, . ,(X) form acomplete orthonormal basisin Hilbert
gpace and satisfy

[#16p (010 (X)OX=5,:0,50, 5 (56)

Now that we have specified the field operator at the initial time we
must define the state vectors on which the field operators act. First

define the vacuum state |0) as the state that is destroyed by all
electron and positron destruction operators, i.e.,

63,p|0>:as,p|0>20 (5.7)
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It can be shown that the vacuum State is an eigendtate of the
Schrodinger free field energy operator which is defined by,

|:|o,s = _['/;g (7() Ho‘/;o (X)d)? (5.8)

Using (5.1), (5.6), and (5.3) we can write the Schrédinger picture
freefield energy operator as,

HAo,s - Z = (bsT,bbs,ra - ds,pd;p) (5.9
s.p
Then, using (5.7) and (5.2) we obtain,
Hys[0)=¢(|0))[0) (510)

wherethe eigenvalue «(|0)) isgivenby,

£(|0)) = —zp E, (5.11)

Thisis obvioudy a divergent quantity. However that will not be a
problem because we are actualy concerned with differences in the
energy and not the actua value.

Additional eigenstates |n) are formed by acting on the vacuum
state |0) with the various combinations of the creation operators b,
and d; »- The effect of doing this is to create states with positive
energy with respect to the vacuum state. The set of eigenstates |n)

(which includes the vacuum state | 0) ) form an orthonormal basis that
satisfies the following relationships,

Hos|M) =&(|n))[n) where &(|n)) > £(|0)) for [n)=|0) (5.12)

and
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(njm) =5, (5.13)

mn

Any arbitrary normalized state|Q) can be expanded in terms of
these basis states,

|Q)=>"c,|n) (5.14)
where the normalization condition is expressed by,
e =1 (5.15)

The free field energy expectation value of thisstateis,
(]Fios]2) = Xle,f o(|m) (516

n

Use (5.12) and (5.15) to obtain the relationship,
(Q[H,s|Q)>(0[H,s|0) =£(]0)) foral ) (5.17)
This can be aso written as,
(Q[H,s|Q)—(0]Hy 6|0y > 0 for all Q) (518

The key result of this section is that in the Schrodinger picture
there is a lower bound to the free field energy of an arbitrary

normalized state vector |Q).

6. Gauge invariance in the Schrédinger picture.

In Section 3 it was shown that the Heisenberg picture was gauge
invariant. Here we shal consider the problem of gauge invariance in
the Schrodinger picture. It will be shown that the Schrédinger picture
is not gauge invariant. This will be done by assuming that the theory
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is gauge invariant and then finding a contradiction. The following
discussion issimilar to that given in Ref. [10].
First define the Schrodinger current and charge operators by,

Js (%) =@, (X)ay, (%) and ps(X) = &5 (X)i75(X)  (6.1)

Using this along with (5.8), (4.3), and (3.2) we can write the
Schrodi nger Hamiltonian operator as,

Hos jJ AR, 1) dx+ [ pg (R)A (X t)dk  (62)

Now &t theinitid time t =0 let the quantum state be given by the

pair (|Q),w, (X)) where v, (X) is defined in (5.1) and |Q,) with

be specified shortly. Let the state evolve forward in time in the
presence of an electromagnetic potentia given by,

(Aﬁl’ , A“)) =0 (6.3)
In the Schrodinger picture the system evolves into
(|2 (1)) 1o (X)) where |, (1)) satisfies,
o, (t A
i ‘ 81,[( )> _ Ho,s‘
with the boundary condition |, (0)) =€, ) . The solution to this
equationis,

Q, (1)) (6.4)

(1) =™ |2(0)) (65)
The current and charge expectation values are,
Jieo(X:1) :<Ql(t)‘jS(7()‘Ql(t)> (6.6)

and,
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pl’e()_(,t)=<Ql(t)‘ﬁs(f()‘ﬂl(t)> (6.7)

Assume that we have chosen the initial state vector |Q,) such that

a sometime t, >0 the quantity dp, (.t )/ét, isnonzero. We can

ensurethis by specifying | Q) by,

1
|QO>=ﬁ(br§m +b;2’32)|0> (6.8)

Usethisin (6.5) to obtain,
(1) = 5 (B).08™" b, ™[0 69

Next use the above along with (5.1), and (6.7) to obtain,
0P (X’t) _ EQ
ot 2t
where c.c. means take the complex conjugate of the preceding
term. This quantity is, in general, non-zero. We can also show that,

apl,e (X't)
ot

This is just the continuity equation which states that loca charge is
conserved.

Next start with the sameinitial system (|Q, ), (X)) a t=0 and

let the date evolve forward in time in the presence of the
el ectromagnetic potentia given by

(A2, A) = (%_ﬂtt,_ﬁ Zj (6.12)

(uf,Muz,F,Z’Szei(f’z‘f’l)'ie_i(Epz_Eﬁ’l)t - c.c.) (6.10)

+V-J . (Xt)=0 (6.12)
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where y(X,t) is an arhitrary red valued function that satisfies the

following initid condition (3.10) at t=0.
In this case the quantum systems evolves into the pair

(]2 (1)).wo (%)) where |Q,(t)) stisfies the initid condition
|2,(0))=|Q,) and obeys the Schrodinger equation (4.1) where,

using (6.12) in (6.2), we write the Schrodinger picture Hamiltonian

operator as,
A (1) = Hog + [ 3 (%) V2 (Rt R+ [ 3 (%) a"(i"t)
Hos|Q, (1)) . Using (6.13) we

dx  (6.13)

D

Next consider the quantity (€, (t)

can obtain the expression,
(€, (1)[Hos |, (1))
ﬁ(t)—jjs(x).v;((x,t)dx (6.14)
< ;( (X,t ) ‘QZ(t»

fps

Take the time derivative of the above equation and use,

t)=[35(%): al (x.1) dX+_[ps QEEASI IR
ot
toobtan,
ajZe()?’t) Y
~ LA S v/ t)d
2(Q, (1)[Hos |2 (1) = VRO (6.16)
ot 0,.(X X |
+J'8p2’e(x,t)8;((X,t)dX
ot ot
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where J,.(Xt) and p,.(X,t) ae the current and charge

expectation values, respectively, for the system (‘Qz(t ) v (% )) and
aregiven by,

jz,e()?'t):<Qz(t)‘js(y()‘gz (t)>

a0 (%) =(Q, (1)| 55 (X) [, (1))

Now we will invoke the principle of gauge invariance. Note that
the potentials (A()l),,&(l)) and (A()Z),A(Z)) are related by a gauge

transformation. If the theory is gauge invariant then the current and
charge expectation values must be gauge invariant. Therefore,

J,e(X,1) =T, (%,t) and p,. (X,t) = p,. (%) (6.18)
Usethisin (6.16) to obtain,

(6.17)

A IM-V;((X,t)dY(

a<Qz (t) Hos‘Qz (t)> __ ot (6.19)
81: +jap1,e(x’t) aZ(X't) d)_{
ot ot

Next integrate the above equation by parts and rearrange terms to
obtain,

0Pre (X, T (%4 iy
Hos | (1) _ Jr(x (p ), V-Jl,e(x,t)]dx

ot o

o2, (1)

(6.20)
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Integrate this equation with respect to time from t=0 to t =t

and use (6.11) and theinitial conditions (3.10) and |, (0)) =|Q,) to
obtain,
(2 (6)[Hos |2, (1)) ~ (0| Hos )
Opre(%t0) (6.21)

:—IT z(%.t, )dx

Rearrange terms and subtract (0|H,|0) from both sides to
obtain,

) aﬁl’e(i,tf)l | 62

where,
A& =(Q|Hos|Q0)—(0|Hy 6] 0) (6.23)

Now in the above equation the quantities A¢ and f)l’e(i(,t) ae
independent of y(X,t). Therefore we can vary y(X,t) in an
arbitrary manner without affecting these other quantities. We will use
this fact, dong with the fact that 85, (%,t, )/ét, is non-zero (see
Eqg. (6.10), to show that there is no lower bound to the quantity
<Qz(t)‘ﬁo,S‘Qz(t)>_<O|ﬁo,s|o>-

For example let y(%t, )= f(aﬁlye(i,tf)/atf) where f isan
arbitrary constant. Usethisin (6.21) to obtain,
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<Qz (t)‘ |:|0,:s‘Qz (t)>—<0| HAo s|0>

6.24
_Aé—fj(—ple()(t)]di (629

f
Now it should be evidet tha a f—>o then
(<Qz(t)‘ Hos|Q, (1)) (0] I—A|O’S|O>) — —o0 . However this contradicts

(5.18) which dates that this quantity cannot be less than zero.
Therefore there is an inconsstency between the requirement of gauge
invariant and the relationship specified in (5.18). If (5.18) is true then
the Schrodinger picture is not gauge invariant. Thisis consistent with
the results of Ref. [9] where we proved the same result using a
different approach. As discussed in [9] this inconstancy leads to the
existence of non-gauge invariant terms when the polarization tensor is
calculated.

7. Free field energy in the Heisenberg picture.

As we have shown the Schrddinger picture cannot be gauge invariant
due to the fact that in the Schrodinger picture there is alower bound
to the free field energy as specified by (5.17) and (5.18). In this
section we will consder the free fidd energy in the Heisenberg
picture. Due to the fact that we have shown formadly that the
expectation values are the same in both picture we would expect that
there is a lower bound to the free fild energy in the Heisenberg
picture. However we will show that, in contrast to the Schrodinger
picture, there is no lower bound to the free field energy in the
Heisenberg picture.

The Schrodinger free field energy operator was given in Eq. (5.8).
The Heisenberg free field energy operator is given by,
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Ho (1) =jy7*(7<,t) Hoy (X,t)dx (7.2)

Now &t theinitid time t = 0 let the quantum state be given by the
pair (|Q,).w,(X)) where ,(X) has been defined by (5.1) and

|Q,) is given by (6.8). Let the system evolve forward in time with
the electromagnetic potential given by (6.12) and (3.10).

In the Heisenberg picture the state evolves into (|Q,),v (X,t))
where 1/}(7(,t) satisfies Eg. (3.1) and the initiad condition
¥ (X,0) =y, (X). Using (6.12) in (3.1) we obtain,

i%:(’t)z(Hﬁe&ﬁﬁei—’t‘j&(xt) (7.2)
The solution to the above equation is,
v (X,t) =€y, (X1) (7.3
where,
wo (X t) ="y (X) (7.4)

In the Heisenberg picture the expectation vaue of the free field
energy operator is (Q,|Ho,, (1)) . To evauate this use (7.3) in
(7.1) to obtain,

Hon (1) = [175 (R.1) €7 Hoe ™o (X, t)dX (75)
Next use the following result,
Hoe o (X,t) = €% (—ed -V + H, )17y (X, ) (7.6)
in(7.5) to obtain,
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A

Hop (1) = [175 (R.1)(—e@ -V z + Ho )i (X, t)dx (7.7)
Thisyields,

N

Fow (8)= [0 (%) o (R )R~ [ Iy (%) Yk (7.8
where,

3y (xt) =078 (%,1) @, (%,t) (7.9
Use(7.4) to obtain,
t) = [ () Hoo ()% [ I, (%,1)- ¥ X
) IA'// (%) V/A(X)X J 3o(%.1)-V 2% 710
=Hoyy (0)— [ Jo (%,)- Vel

Sandwich the above between (Q, | and |Q,) to obtain,

<Q0| l:IO,H (t)|Qo> :<Qo| HAO,H (O)|Qo>_jjo,e(y(’t)'ﬁld7( (7.12)
where,
Joe (X1) = {Qo|wd (X, 1) @7y (%,1)| Q) (7.12)

Next assume reasonable boundary conditions and integrate by
parts to obtain,

(Qo[Hop (1)]€2)
= (4| Hop (0)] Qo) + [ 2 (X ) V- Iy o (X, )X
Using (7.12), (6.8), and (5.1) we can show that,

(7.13)

E, -E

ﬁ'jo,e(xt)=§V'(U1T,p1,sl5luz,pz,sié(pz wrgEnEal oe)  (7.4)
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Note that thisis, in genera, non-zero. Now recdl that at the initid
time t = 0 the Schrodinger and Helsenberg operators are equa so that

Hon (0)= Hys. Usethis and subtract (0|H, ¢|0) from both sides of
the above equation to obtain,

(9| Hop (1)) —(0|Hy s |O) =A§+J';((>”(,t)§-joye()*(,t)d>”( (7.15)
where A¢ was defined in (6.23). Now based on (7.15) what can we
sy about {(Q|H,, (1)|Q)—(0[H,s|0)? The quantities
V-Jy.(%t) and A& areindependent of y(X,t). Therefore we can
vary y(X.t) without affecting these other quantities. For example,
suppose we let y(X,t)=-fV-J,,(Xt) where f isa congant. In
this case,

(9|l (1) 20) (0] Hos|0) = A= £ [|V-J (k) 0% (7.26)

As f 5o we have ((QO|I—A|O,H (t)|QO>—<0||:|O’S|O>)—)—oo.
Therefore there is no lower bound to the free fiedd energy
(Q|Ho (1)]|€) inthe Heisenberg picture.

If the expectation vaues in the Helsenberg picture are equd to
those of the Schrodinger picture then we should be able to replace

(9| Hop (1)) in (5.18) with (Q(t)|H, s [©(1)) to obtain,
([ Hop (£)]920) = (0] Hos|0)

_(0()]Aulot) (00
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where |Q(t)) is the solution to the Schrédinger equation subject to
theinitial condition |Q(0)) =|€,) . Now according to (5.18) the right
hand side of (7.17) must dways be non-negative. However we have
aready shown that with proper selection of x(%,t) and |Q,) the

quantity on the left hand side can be negative. Therefore we have a
contradiction and the two pictures cannot be equivalent.

8. Summary of results.

A key result of this paper is that it shows that the Heisenberg and
Schrodinger pictures are not equivaent. This is consistent with the
work of Dirac [11][12] and runs counter to the widely held perception
that two pictures are equivdent. In addition, we have tried to
understand why non-gauge invariant terms appear in various
caculations in QFT since the theory is supposed to be gauge
invariant. The approach taken was to consider what is required for a
“ample’ field theory to be gauge invariance. It has been shown that
in the Schrodinger picture the formal theory cannot be gauge invariant
due to the fact that the vacuum State is alower bound to the free field
energy. Therefore calculations done using the Schrodinger picture as
a darting point will yield non-gauge invariant results as is indeed the
case. However if the theory is formulated in the Heisenberg picture it
is easly shown to be gauge invariant at the forma level. This
suggests that the problems of gauge invariance could be resolved by
working in the Heisenberg picture instead of the Schrodinger picture.
Another important result is that there must be some kind of
mathematical inconsistency in the theory. It was shown in the
Appendix that the two pictures are formaly equivalent. However on
further examination we have shown that there is alower bound to the
free field energy in the Schrodinger picture but that there is no lower
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bound to the free field energy in the Heisenberg picture. We have dso
shown that the Heisenberg picture is gauge invariant while the
Schrodinger picture is not. What accounts for differences between the
two pictures which we have formally proved to be equiva ent?

Now quantum theory is based on mathematics. A mathematica
theory consists of postulates which are mathematical statements that
are assumed to be true without proof. The postulates can then be used
to prove additional mathematica statements caled theorems. Now
what does it imply if the theorems are not consstent with each other?
It impliesthat the underlying postulates are not cons stent.

The inconsstency in quantum field theory is due to the way the
vacuum dtate is defined per the discussion in Section 5. The vacuum
date is defined in such a way that in the Schrodinger picture it is a
sate of minimum free field energy as specified by Egs. (5.17) and
(5.18). However as was shown in Section 6 in order for the
Schrodinger picture to be gauge invariant there must be no lower
bound to the free field energy. Therefore there is a mathematica
inconsistency in the Schrodinger picture between the requirement of
gauge invariance and the requirement that the free field energy has a
lower bound. As we have seen this aso leads to the inequivaence
between the Heisenberg and Schrodinger pictures even though these
two pictures can be formaly shown to be equivalent.

The next logical question to ask is whether it is possible to define
the vacuum state in such a way that there is no lower bound to the
free field energy in the Schrodinger picture? If this could be done
then, perhaps, the problem of gauge invariance in the Schrodinger
picture would be resolved. This question was address in Ref. [10]. As
was shown in [10] it is, indeed, possible to define the vacuum so that
there is no lower bound to the free field energy in the Schrédinger
picture and when this is done QFT in the Schrédinger picture will be
gauge invariant. This again emphass the fact the fallure of gauge
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invariance is due to the way the vacuum sate is defined. When the
vacuum date is defined as in [10] the Schrodinger picture will be
gauge invariant.

In conclusion quantum field theory is mathematically incons stent.
This inconsstency manifests itself when quantities such as the
vacuum current or polarization tensor are calculated. When these
quantities are caculated non-gauge invariant terms agppear in the
result. These terms must be removed to obtain a physicaly correct
solution.

Appendix

We will show that the expectation values in both pictures are
equivalent. First, show that i (X,t) can be given by,

7 (%t)=U(t) v (%,0)U (t) (A)

where U (t) IS an operator that evolvesin time according to,

o0 (t) -
= HU (t) (A2)
where,
H =7 (%,0)H oy (X, 0)ok (A3

and where U (t) satisfiestheinitial condition,
U(0)=1 (A4)

Using the above, we can prove that U (t) is aunitary, that is, it
sdtisfies,
U(t) =u(t)” (A5)
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To prove this use that fact that H is hermitian along with (A.2) to
obtain,

aum)y . .
VO _ (t)'H (A.6)
ot
Using this result dong with (A.3) we obtain,

0

ia(ﬁ(t)TO(t))z—(O(t)TI:|)Lj(t)+0(t)T(l:|lj(t)):O A7)
ThereforeU( ) U( ) isconstant in time. Using this result and (A .4)

weobtain U (t)'U (t)=U (0)'U (0) =1. Therefore (A.5) istrue.
To show tha (A1) is vaid substitute (A1) in (3.1), aong
with(A.5), to obtain,

o(U (t) "y (%,0)U (t - R
i L a(t ) ()):HD(U(t) 7(x0)U (1)) (A9
Thisyields
. "_180 A—l" - -~ A—l" - 80
||:—U EU W(X,O)U +U V/(X,O)E:| (Ag)

= H, (U (%,0)0)
Use (A.2) in the above to obtain,
[-U*HUU 7 (%,0)U +U 7 (%,0)HU |
0

] (A.10)
=H, (U™ (%,0)U)
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Multiply the above equation by U from the left and U™ from the
right and use the fact that U commutes with H, and UU " =1 to
obtain,

[H.57(%,0) | =—Hp (%,0) (A.11)

We can use (3.4) to show that this equation is true. From (3.4) we
obtain,

[ (X, 0)Ho7 (X,0),57 (%,0) | = =6 (X - X)Hpy7 (X,0) (A1)
Usethisaong with (A.3) to obtain,

[ H.57(%,0) | ==[ 6" (X =) Hop7 (X,0)d% = —H 7 (%,0) (A.13)

al_‘l('jherefore (A.11) is true which means that (A.1) and (A.2) are

valid.

Next use (A.2) can be used to show that the solution to the
Schrodinger equation (4.1) isgiven by,

(1)) =U (t)|(0)) (A.14)
Use this result in (45) to show that expectation vaue of
Schrodinger operator O, . for the dtate vector |Q(t)) in the

Schrodinger pictureis gi v;pnsby,
0,,s(1)=((0)|U (1) O, U (1)|2(0)) (A.15)
From (4.4) we obtain,
U (t) 0,40 (1)=U (1) " (%,0)Op (%,0)U (t)  (A.16)
Next use O, U( )U( )TOop :L](t)OOp (t ) aong with (A.1)

to obtain,
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Ops(1)=((0)]" (R1) Oy (R1)[(0)  (ALD
Compare this result with (3.6) to obtain,

OOP’H (t) = C)op,S (t) (A18)

This shows that the Helsenberg and Schrodinger pictures are
equivaent at thelevel of expectation val ues.
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