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It is generally assumed that quantum field theory (QFT) is 
gauge invariant. However it is well known that non-gauge 
invariant terms appear in various calculations. This problem 
was recently examined in [9] for a “simple” field theory and it 
was shown that for this case QFT in the Schrödinger picture is 
not, in fact, gauge invariant. In order to shed further light on 
this problem we will examine the Heisenberg and Schrödinger 
formulations of QFT. It is generally assumed that these two 
“pictures” are equivalent; however we will show that this is 
not necessarily the case. We shall consider a “simple” field 
theory consisting of a quantized fermion field in the presence 
of a classical electromagnetic field. We will show that, 
although the two pictures are formally equivalent, the 
Heisenberg picture is gauge invariant but that the Schrödinger 
picture is not. This suggests that the proper way to formulate 
QFT is to use the Heisenberg picture. 
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1. Introduction 
Quantum field theory is assumed to be gauge invariant [1][2]. A 
change in the gauge is a change in the electromagnetic potential that 
does not produce a change in the electromagnetic field. The 
electromagnetic field is given by, 

 0 ;
⎛ ⎞∂

= − +∇ = ∇×⎜ ⎟∂⎝ ⎠

AE A B A
t

 (1.1) 

where E  is the electric field, B  is the magnetic field, and ( )0 ,A A  is 

the electromagnetic potential. A change in the potential that does not 
produce a change the electromagnetic field is given by, 

 0 0 0, χχ ∂′ ′→ = −∇ → = +
∂

A A A A A A
t

 (1.2) 

where ( ),χ x t  is an arbitrary real valued function. 
In order for quantum field theory to be gauge invariant a change in 

the gauge cannot produce a change in any physical observable such as 
the current and charge expectation values. However, it is well known 
that when certain quantities are calculated using standard perturbation 
theory the results are not gauge invariant. For example, the first order 
change in the vacuum current, due to an applied electromagnetic field, 
can be shown to be given by, 

 ( ) ( ) ( ) 4μ μν
νπ ′ ′ ′= −∫vacJ x x x A x d x  (1.3) 

where μνπ  is called the polarization tensor and summation over 
repeated indices is assumed. The above relationship is normally 
written in terms of Fourier transformed quantities as, 
 ( ) ( ) ( )μ μν

νπ=vacJ k k A k  (1.4) 
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where k is the 4-momentum of the electromagnetic field. In this case, 
using relativistic notation, a gauge transformation takes the following 
form, 
 ( ) ( ) ( ) ( )ν ν ν ν χ′→ = +A k A k A k ik k  (1.5) 

The change in the vacuum current, ( )μδ g vacJ k , due to a gauge 
transformation can be obtained by using (1.5) in (1.4) to yield, 
 ( ) ( ) ( )μ μνδ π χ=g vac vJ k ik k k  (1.6) 

Now the vacuum current is an observable quantity therefore, if 
quantum theory is gauge invariant, the vacuum current must not be 
affected by a gauge transformation. Therefore ( )μδ g vacJ k  must be 
zero. For this to be true we must have that, 
 ( ) 0μνπ =vk k  (1.7) 

However, a review of the literature will easily show that when the 
polarization tensor is calculated it is found that the above relationship 
does not hold. 

Consider, for example, a calculation of the polarization tensor by 
W. Heitler (see page 322 of [3]). Heitler’s solution for the Fourier 
transform of the polarization tensor is, 
 ( ) ( ) ( )μν μν μνπ π π= +G NGk k k  (1.8) 

The first term on the right hand side is given by, 

( ) ( ) ( ) ( )
( )

2 2 2 22
2

2 2 2
2

2 42
3

μν μ ν μνπ
π

∞ + −⎛ ⎞
= −⎜ ⎟ −⎝ ⎠

∫G
m

z m z mek k k g k dz
z z k

 (1.9) 
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where m is the mass of the electron, e  is the electric charge, and 
1= =c . This term is gauge invariant because 0μν

νπ =Gk . The 
second term on the right of (1.8) is 

( ) ( ) ( ) ( )2 2 2 22
0

2
2

2 42 1
3

μν μ μ
νπ

π

∞ + −⎛ ⎞
= −⎜ ⎟
⎝ ⎠

∫NG
m

z m z mek g g dz
z

 (1.10) 

where there is no summation over the two μ  superscripts that appear 
on the right. Note that μνπ NG  is not gauge invariant because 0μν

νπ ≠NGk . 
Therefore to get a physically valid result it is necessary to “correct” 
equation (1.8) by dropping μνπ NG  from the solution. 

Another example of a calculation of the polarization tensor is 
given by J.J. Sakurai (See pages 273-275 of [4]). Sakurai shows that, 
based on considerations of Lorentz covariance, the polarization tensor 
must have the form, 

 ( ) ( ) ( ) ( ) ( )1 22 2 2
μν νπ δ δ π π= + +uv uv uk D k k k k k  (1.11) 

where D  is a constant. (Note that the use δuv  instead of uvg  reflects 
the notational conventions of [4]). In order for the above expression to 
be gauge invariant D  must be zero. However Sakurai shows that D  
is given by the expression, 

 
( )

( )
( )

2 24
2

4 22 2

2 4

2π ε

+
=

+ −
∫

p md pD ie
p m i

 (1.12) 

Concerning the constant D , Sakurai writes “It is not difficult to 
convince oneself that almost any ‘honest’ calculation gives 0≠D . In 
fact … one can readily shown that D  is a positive, real constant...” 
(see page 275 of [4]). Therefore the result that Sakurai achieves for 
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the polarization tensor is not gauge invariant. In order to make the 
result gauge invariant the quantity D  must be removed. 

Another example of a calculation of the polarization tensor is 
given by K. Nishijima (see section 6-4 of Ref. [5]). He shows that the 
expression that he obtains for the polarization tensor is not gauge 
invariant as calculated. In order to obtain a gauge invariant expression 
the non-gauge invariant part of the expression must be removed. (See 
discussion after Eq. 6-79 of Ref. [5]). 

A similar situation exists when other sources in the literature are 
examined. For example consider the discussion in Section 14.2 of 
Greiner et al [2]. Greiner et al write the solution for the polarization 
tensor (see equation 14.43 of [2]) as, 

 ( ) ( ) ( ) ( )2 2 2μν μν μ ν μνπ π π= − + spk g k k k k g k  (1.13) 

where the quantities ( )2π k  and ( )2π sp k  are given in [2]. Referring 
to (1.7) it can be easily shown that the first term on the right is gauge 
invariant. However the second term is not gauge invariant unless 

( )2π sp k  equals zero. Greiner et al show that this is not the case. 
Concerning this term Greiner et al write (page 398 of [2]) “… this 
latter term violates the gauge invariance of the theory. This is a very 
sever contradiction to the experimentally confirmed gauge 
independence of QED. [This problem indicates] that perturbative 
QED is not a complete theory. As one counter example or 
inconsistency suffices to prove a theory wrong, we should, in 
principle, spend the rest of this book searching for an improved 
theory. However, there is little active work on this today because: (1) 
there is a common belief that some artifact of the exact mathematics 
is the source of the problem; (2) this problem may disappear when the 
properly generalized theory, including in its framework all charged 
Dirac particles, is achieved.” In order to achieve a gauge invariant 
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result Greiner et al drop the quantity ( )2π sp k  from the expression for 
the polarization tensor. 

 For another example consider the expression for the 
polarization tensor as derived by Greiner and Reinhardt (See Section 
5.2 of [6]). The polarization tensor is given in Eq. 5.7 of [6] as, 

( )
( ) ( )

2 4 1 1
4
λσ

λ σ

π
γ γ

π ε ε
⎡ ⎤

= − ⎢ ⎥/− + − − +/ /⎣ ⎦
∫

i k
e d pTr

p m i p k m i
 (1.14) 

They show that this quantity is not gauge invariant. In order to 
obtain a gauge invariant expression they use Pauli-Villars 
regularization [7]. They modify the above expression by adding the 
quantity, 

( ) ( )
( ) ( )( )

2 4
22 2 2

1

λ σγ γ

ε ε=

⎡ ⎤/+ − +/ /⎢ ⎥−
⎢ ⎥− + − − +⎢ ⎥⎣ ⎦

∑∫
N

i i
i

i i i

p M p k M
e d p C Tr

p M i p k M i
 (1.15) 

According to the Pauli-Villars procedure the auxiliary masses iM  
and constants iC  are adjusted so that the non-gauge invariant terms 
are cancelled. This procedure removes the offending terms, however 
there is no physical process that justifies this step. That is, the 
auxiliary masses are not presumed to correspond to actual physical 
particles. They are simply a mathematical device that is used to get a 
physically correct result. Therefore, we see that the original 
calculation is not gauge invariant and must be corrected by the 
application of an additional step which was not part of the original 
formulation of the theory. 

For another example refer to equation 7.79 of Peskin and 
Schroeder [8]. Here they show that the expression that they obtain for 
the polarization tensor is not gauge invariant. In order to obtain a 
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gauge invariant expression they introduce an additional step called 
dimensional regularization. This “corrects” the problem by removing 
the unwanted terms from the expression but, as was the case with 
Pauli-Villars regularization, it is at the expense of introducing a 
procedure that was not a part of the original formulation of the theory. 

Therefore, we see from this review of the literature, that when the 
polarization tensor is calculated the result is not gauge invariant. The 
non-gauge invariant part of the result must be removed in order to 
achieve a physically acceptable result. This removal can be done by 
“hand” or by the use of an additional mathematical step called 
regularization. The obvious question to ask, then, is why does this 
problem occur? If the theory is gauge invariant why does a 
calculation of the polarization tensor produce non-gauge invariant 
terms? 

This question was examined in some detail in Refs. [9] and [10]. 
In these papers the problem of gauge invariance was examined for a 
“simple” field theory in the Schrödinger picture consisting of a 
quantized fermion field in the presence of an unquantized classical 
electromagnetic field. In [9] four elements that are normally 
considered to be part of quantum field theory were examined. These 
were that (1) the Schrödinger equation governs the dynamics of the 
theory with the Hamiltonian specified by Eq. (2.2) of [9]; (2) the 
theory is gauge invariant; (3) there is local charge conservation, i.e., 
the continuity equation is true; (4) there is lower bound to the free 
field energy. It was shown that these elements of QFT are not 
mathematically consistent. Specifically item (2) is incompatible with 
item (4), that is, if QFT is gauge invariant then there cannot be a 
lower bound to the free field energy. However it can be readily shown 
that the vacuum state is a lower bound to the free field energy. 
Therefore, as discussed in [9], QFT in the Schrödinger picture is not 
gauge invariant at the formal level. This, then, explains why non-
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gauge invariant terms appear in the polarization tensor. Since the 
theory is not gauge invariant in the first place it would be expected 
that the results of calculation are also not gauge invariant. A similar 
conclusion was obtained in [10]. 

The conclusion of this research was that there is a mathematical 
inconsistency in QFT regarding the way the vacuum state is defined. 
That is, the vacuum state is defined in a way that is not compatible 
with the requirements of gauge invariance. It is the purpose of this 
paper to continue this discussion and see how this inconsistency 
affects other aspect of the theory. In particular we will examine the 
relationship between the Schrödinger and Heisenberg pictures. We 
will examine the “simple” field theory discussed in [9] and [10] in the 
Schrödinger picture and compare this to the Heisenberg picture. 
These two “pictures” are generally assumed to be equivalent; 
however we will show that this is not the case for the field theory 
under consideration. It will be demonstrated that, even though the two 
pictures can be shown to be formally equivalent, they yield different 
results when actual problems are worked out. It will be shown that 
Heisenberg picture is gauge invariant but that the Schrödinger picture 
is not. This suggests that if QFT was formulated along the lines of the 
Heisenberg picture instead of the Schrödinger picture the problems of 
gauge invariance would be resolved.  

The possibility that the Heisenberg and Schrödinger pictures are 
not equivalent was advocated by P.A.M Dirac in a paper with the 
interesting title “Quantum Electrodynamics without Dead Wood” 
[11] (see also [12]). The “dead wood” in this case is the vacuum to 
vacuum transitions that are part of perturbation theory in the 
Schrödinger picture. Dirac analyses a “toy model” field theory and 
creates a situation for which solutions exist in the Heisenberg picture 
but solutions do not exist in the Schrödinger picture. He uses this 
result to support his argument that the two pictures are not equivalent 
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and that the Heisenberg picture is the correct approach. In the present 
paper we will reach a similar conclusion although the approach to the 
problem taken here is considerably different then that of Dirac. 

The paper will proceed as follows. In Section 2 the different 
approaches leading to the Heisenberg and Schrödinger pictures will 
be discussed. In Section 3 the Heisenberg picture is developed and 
easily shown to be gauge invariant. In Section 4 the Schrödinger 
picture is described. The vacuum state and Schrödinger picture field 
operator are then defined in Section 5. We define the free field energy 
as the energy of the system when the electromagnetic potential is 
zero. It is shown that in the Schrödinger picture the free field energy 
of any state must be greater than or equal to the free field energy of 
the vacuum state. In Section 6 we examine gauge invariance in the 
Schrödinger picture. In contrast to the Heisenberg picture it is shown 
that the Schrödinger picture is not gauge invariant. In section 7 it is 
shown that in the Heisenberg picture there is no lower bound to the 
free field energy which is contrast to the Schrödinger picture where 
there is a lower bound. These results are then summarized in Section 
8. 

2. Heisenberg versus Schrödinger picture. 
In quantum field theory a quantum system, at a given point in time, is 
specified by the state vector Ω  and field operator ( )ψ̂ x . We will 

write this as the pair ( ),ψΩ . Let the state vector Ω  and the field 

operator ( )ψ̂ x  be defined at some initial point in time, say 0=t . 
This may be taken as the initial conditions of the quantum system. 
Now there are two ways to handle the time evolution of the system. In 
the Schrödinger picture it is assumed that field operator ( )ψ̂ x  is 
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constant in time and the time dependence of the system goes with the 
state vector ( )Ω t . In the Heisenberg picture the time dependence is 

assigned to the field operator ( )ˆ ,ψ x t  and the state vector Ω  
remains constant in time. It is generally assumed that both pictures 
give equivalent results in that the expectation values of operators are 
the same. However we will show, in the following discussion, that 
this is not true. 

Note that at the initial time, 0=t , both pictures are identical. 
Therefore the time independent Schrödinger field operator ( )ψ̂ x  is 

equal to ( )ˆ ,0ψ x , which is the time dependent Heisenberg field 
operator at 0=t . Similarly, the time independent Heisenberg state 
vector Ω  equals ( )0Ω , which is the time dependent Schrödinger 

state vector ( )Ω t  at 0=t . For example, let the initial state of the 

system, at 0=t , be represented by the pair ( ) ( )( )0 , ,0ψΩ x . In the 

Heisenberg picture this initial state evolves into ( ) ( )( )0 , ,ψΩ x t . In 

the Schrödinger picture the state evolves into ( ) ( )( ), ,0ψΩ t x . 

3. Gauge invariance in the Heisenberg picture 

Now consider a “simple” field theory consisting of non-interacting 
electrons in the presence of a classical electromagnetic field. In this 
case the time evolution of the field operator in the Heisenberg picture 
is given by, 

 ( ) ( )
ˆ ,

ˆ ,
ψ

ψ
∂

=
∂ D

x t
i H x t

t
 (3.1) 

where, 
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 0 0α= − ⋅ +DH H e A eA  (3.2) 

and, 

 0 α β= − ⋅∇ +H i m  (3.3) 

In the above expression the electromagnetic potential ( )0 ,A A  is taken 

to be a classical, unquantized, real valued quantity. Also e  and m  are 
the charge and mass of the electron, respectively, and α  and β  are 
the usual 4x4 matrices. Note that in the above equations we use 

1= =c . 
Also assume that at the initial time 0=t  the Heisenberg field 

operator obeys the equal time anti-commutator relationships, 

( ) ( ) ( ) ( ) ( ) ( )3† †ˆ ˆ ˆ ˆ,0 ,0 ,0 ,0α β β α αβψ ψ ψ ψ δ δ′ ′ ′+ = −x x x x x x  (3.4) 

Define a Heisenberg operator by the expression, 

 ( ) ( )†
,

ˆ ˆ ˆ, ,ψ ψ=op H opO x t O x t  (3.5) 

The quantity opO  operates on the field operator ( )ˆ ,ψ x t . If ( )0Ω  is 
a normalized state vector then the expectation value of the operator 

,
ˆ

op HO in the Heisenberg picture is given by, 

 
( ) ( )
( ) ( ) ( ) ( )

, ,

†

ˆ0 0

0 , , 0ψ ψ

= Ω Ω

= Ω Ω

op H op H

op

O O

x t O x t
 (3.6) 

Next we will show that quantum field theory in the Heisenberg 
picture is gauge invariant. For a theory to be gauge invariant the 
expectation value of physical observables must be gauge independent. 
The physical observables that we will consider are the current and 
charge expectation values. The Heisenberg current and charge 
operators are, respectively defined by, 
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( ) ( ) ( )†ˆ ˆ ˆ, , ,ψ αψ=HJ x t e x t x t  and ( ) ( ) ( )†ˆ ˆ ˆ, , ,ρ ψ ψ=H x t e x t x t  (3.7) 

The current and charge expectation values for a normalized state 
vector ( )0Ω  are, defined by, 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,

,

ˆ, 0 , 0

ˆ, 0 , 0ρ ρ

= Ω Ω

= Ω Ω

H e H

H e H

J x t J x t

x t x t
 (3.8) 

It is easy to demonstrate gauge invariance in the Heisenberg 
picture. Assume that at the initial time 0=t  the initial state of the 
system is given by ( ) ( )( )ˆ0 ,ψΩ x . Let the system evolve in time in 

the presence of an electromagnetic potential ( )0 ,A A . According to 

the Heisenberg picture the system evolves into ( ) ( )( )ˆ0 , ,ψΩ x t  

where ( )ˆ ,ψ x t  satisfies, 

 ( ) ( ) ( )0 0

ˆ ,
ˆ ,

ψ
α ψ

∂
= − ⋅ +

∂
x t

i H e A eA x t
t

 (3.9) 

along with the initial condition ( ) ( )ˆ ˆ,0ψ ψ=x x . Now suppose we 
start with the same system at the initial time 0=t  and evolve in time 
in the presence of the gauge transformed potential 

( ) ( )0, 0, ,χ χ= + ∂ ∂ −∇g gA A A t A  where ( ),χ x t  is an arbitrary real 

valued function that satisfies the initial condition, 

 ( ) ( )
0

,
,0 0; 0

χ
χ

=

∂
= =

∂ t

x t
x

t
 (3.10) 
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In this case the initial system evolves into the system 
( ) ( )( )ˆ0 , ,ψΩ g x t  where ( )ˆ ,ψ g x t  satisfies, 

( ) ( ) ( )( ) ( )0 0

ˆ ,
ˆ ,

ψ
α χ χ ψ

∂
= − ⋅ −∇ + + ∂ ∂

∂
g

g

x t
i H e A e A t x t

t
  (3.11) 

along with the initial condition ( ) ( )ˆ ˆ,0ψ ψ=g x x . It can easily be 
shown that, 

( ) ( ) ( ),ˆ ˆ, ,χψ ψ−= ie x t
g x t e x t  and ( ) ( ) ( ),† †ˆ ˆ, , χψ ψ= ie x t

g x t x t e  (3.12) 

It is evident that we obtain identical results when we substitute 
either ( )ˆ ,ψ x t  or ( )ˆ ,ψ g x t  into (3.7). Then, referring to (3.8), it is 
evident that the current and charge expectation values in the 
Heisenberg picture do not depend on the gauge transformation and 
therefore the Heisenberg picture is gauge invariant. 
4. The Schrödinger picture 

In the Schrödinger picture the state vector evolves in time according 
the Schrödinger equation, 

 
( ) ( )ˆ∂ Ω

= Ω
∂

t
i H t

t
 (4.1) 

We can take the Hermitian conjugate of the above equation to obtain, 

 
( ) ( ) ˆ∂ Ω

− = Ω
∂

t
i t H

t
 (4.2) 

where, 

 ( ) ( )†ˆ ˆ ˆ,0 ,0ψ ψ= ∫ DH x H x dx  (4.3) 

Next define a Schrödinger operator by the expression, 
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 ( ) ( )†
,

ˆ ,0 ,0ψ ψ=op S opO x O x  (4.4) 

The expectation value of the Schrödinger operator ,
ˆ

op SO  for the state 

vector ( )Ω t  in the Schrödinger picture is given by, 

 ( ) ( ) ( ), ,
ˆ= Ω Ωop S op SO t t O t  (4.5) 

It can be shown that the expectation values in both pictures are the 
same, that is, 
 ( ) ( ), ,=op S op HO t O t  (4.6) 

It is on this basis that the Heisenberg and Schrödinger pictures are 
considered to be equivalent representations of quantum theory. A 
proof that (4.6) is true is given in the Appendix. 
5. The Vacuum state 

An expectation value is a number. Therefore in order to evaluate 
expectation values we need to know how the field operators act on the 
state vectors. We will start by assuming that at the initial time 0=t  
the state vector is in an initial unperturbed state which is given by, 

 
( ) ( ) ( )( )
( ) ( ) ( )( )

†
0 , 1, , , 1, ,

,

† † † †
0 , 1, , , 1, ,

,

ˆ ˆˆ

ˆ ˆˆ

ψ φ φ

ψ φ φ

−

−

= +

= +

∑

∑

p s p s p s p s
p s

p s p s p s p s
p s

x b x d x

x b x d x
  (5.1) 

where the ,
ˆ

p sb ( †
,

ˆ
p sb ) are the destruction(creation) operators for an 

electron in the state ( )1, ,φ p s x  and ,
ˆ

p sd ( †
,

ˆ
p sd ) are the 

destruction(creation) operators for an positron in the state ( )1, ,φ− p s x . 
They satisfy the anticommutator relation, 
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( ) ( )
( ) ( )

3† †
, , , ,

3† †
, , , ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
δ δ

δ δ

′ ′ ′ ′ ′

′ ′ ′ ′ ′

′+ = −

′+ = −

p s p s p s p s s s

p s p s p s p s s s

b b b b p p

d d d d p p
 (5.2) 

The ( ), ,λφ p s x  are basis state solutions of the free field Dirac equation 
with energy eigenvalue λ pE and can be expressed by 

 ( ) ( )0 , , , ,λ λφ λ φ=s p p s pH x E x  (5.3) 

and where, 

 2 2 1 for a positive energy state
,    

1 for a negative energy state
λ

+
= + + =

−pE p m  (5.4) 

where p  is the momentum of the state and 1 2= ±s  is the spin 
index. 

The ( ), ,λφ s p x  can be expressed by, 

 ( ), , , ,λ λφ ⋅= ip x
s p s px u e  (5.5) 

where , ,λ s pu  is a constant 4-spinor which are given in Chapt. 2 of 

Ref. [2]. The ( ), ,λφ s p x  form a complete orthonormal basis in Hilbert 
space and satisfy 

 ( ) ( )†
, , , , , , ,λ λ λ λφ φ δ δ δ′ ′ ′ ′ ′ ′=∫ s p s p s s p px x dx  (5.6) 

Now that we have specified the field operator at the initial time we 
must define the state vectors on which the field operators act. First 
define the vacuum state 0  as the state that is destroyed by all 
electron and positron destruction operators, i.e., 

 , ,
ˆ ˆ0 0 0= =s p s pb d  (5.7) 
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It can be shown that the vacuum state is an eigenstate of the 
Schrödinger free field energy operator which is defined by, 

 ( ) ( )†
0, 0 0 0

ˆ ˆ ˆψ ψ= ∫SH x H x dx  (5.8) 

Using (5.1), (5.6), and (5.3) we can write the Schrödinger picture 
free field energy operator as, 

 ( )† †
0, , , , ,

,

ˆ = −∑S p s p s p s p s p
s p

H E b b d d  (5.9) 

Then, using (5.7) and (5.2) we obtain, 

 ( )0,
ˆ 0 0 0ε=SH   (5.10) 

where the eigenvalue ( )0ε  is given by, 

 ( )
,

0ε = −∑ p
s p

E  (5.11) 

This is obviously a divergent quantity. However that will not be a 
problem because we are actually concerned with differences in the 
energy and not the actual value. 

Additional eigenstates n  are formed by acting on the vacuum 

state 0  with the various combinations of the creation operators †
,s pb  

and †
,s pd . The effect of doing this is to create states with positive 

energy with respect to the vacuum state. The set of eigenstates n  

(which includes the vacuum state 0 ) form an orthonormal basis that 
satisfies the following relationships, 

 ( ) ( ) ( )0,
ˆ where 0  for 0ε ε ε= > ≠SH n n n n n  (5.12) 

and 
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 δ= mnn m  (5.13) 

Any arbitrary normalized state Ω  can be expanded in terms of 
these basis states, 
 Ω =∑ n

n

c n  (5.14) 

where the normalization condition is expressed by, 

 2 1=∑ n
n

c  (5.15) 

The free field energy expectation value of this state is, 

 ( )2
0,

ˆ εΩ Ω =∑S n
n

H c n  (5.16) 

Use (5.12) and (5.15) to obtain the relationship, 

 ( )0, 0,
ˆ ˆ0 0 0  for all εΩ Ω ≥ = ΩS SH H  (5.17) 

This can be also written as, 

 0, 0,
ˆ ˆ0 0 0 for all Ω Ω − ≥ ΩS SH H  (5.18) 

The key result of this section is that in the Schrödinger picture 
there is a lower bound to the free field energy of an arbitrary 
normalized state vector Ω . 

6. Gauge invariance in the Schrödinger picture. 
In Section 3 it was shown that the Heisenberg picture was gauge 
invariant. Here we shall consider the problem of gauge invariance in 
the Schrödinger picture. It will be shown that the Schrödinger picture 
is not gauge invariant. This will be done by assuming that the theory 
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is gauge invariant and then finding a contradiction. The following 
discussion is similar to that given in Ref. [10]. 

First define the Schrödinger current and charge operators by, 

 ( ) ( ) ( )†
0 0

ˆ ˆ ˆψ αψ=SJ x e x x  and ( ) ( ) ( )†
0 0ˆ ˆ ˆρ ψ ψ=S x e x x  (6.1) 

Using this along with (5.8), (4.3), and (3.2) we can write the 
Schrödinger Hamiltonian operator as, 

 ( ) ( ) ( ) ( ) ( )0, 0
ˆˆ ˆ ˆ, ,ρ= − ⋅ +∫ ∫S S SH t H J x A x t dx x A x t dx  (6.2) 

Now at the initial time 0=t  let the quantum state be given by the 
pair ( )( )0 0,ψΩ x  where ( )0ψ x  is defined in (5.1) and 0Ω  with 
be specified shortly. Let the state evolve forward in time in the 
presence of an electromagnetic potential given by, 

 ( ) ( )( )1 1
0 , 0=A A  (6.3) 

In the Schrödinger picture the system evolves into 
( ) ( )( )1 0,ψΩ t x  where ( )1Ω t  satisfies, 

 
( ) ( )1

0, 1
ˆ∂ Ω

= Ω
∂ S

t
i H t

t
 (6.4) 

with the boundary condition ( )1 00Ω = Ω . The solution to this 
equation is, 

 ( ) ( )0,
ˆ

1 0−Ω = ΩSiH tt e  (6.5) 

The current and charge expectation values are, 

 ( ) ( ) ( ) ( )1, 1 1
ˆ, = Ω Ωe SJ x t t J x t  (6.6) 

and, 
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 ( ) ( ) ( ) ( )1, 1 1ˆ,ρ ρ= Ω Ωe Sx t t x t  (6.7) 

Assume that we have chosen the initial state vector 0Ω  such that 

at some time 0>ft  the quantity ( )1, ,ρ∂ ∂e f fx t t  is nonzero. We can 

ensure this by specifying 0Ω  by, 

 ( )1 1 2 2

† †
0 , ,

1 0
2

Ω = +p s p sb b  (6.8) 

Use this in (6.5) to obtain, 

 ( ) ( )1 2

1 1 2 2

† †
, ,

1 0
2

− −Ω = +p piE t iE t
p s p st b e b e  (6.9) 

Next use the above along with (5.1), and (6.7) to obtain, 
( ) ( ) ( )( )2 12 1

1 1 2 2

1, †
1, , 2, ,

,
. .

2
ρ − −− ⋅∂ ∂

= +
∂ ∂

p pi E E ti p p xe
p s p s

x t e u u e e c c
t t

 (6.10) 

where . .c c  means take the complex conjugate of the preceding 
term. This quantity is, in general, non-zero. We can also show that, 

 
( ) ( )1,

1,

,
, 0

ρ∂
+∇⋅ =

∂
e

e

x t
J x t

t
 (6.11) 

This is just the continuity equation which states that local charge is 
conserved. 

Next start with the same initial system ( )( )0 0,ψΩ x  at 0=t  and 
let the state evolve forward in time in the presence of the 
electromagnetic potential given by 

 ( ) ( )( )2 2
0 , ,χ χ∂⎛ ⎞= −∇⎜ ⎟∂⎝ ⎠

A A
t

 (6.12) 



 Apeiron, Vol. 16, No. 3, July 2009 395 

© 2009 C. Roy Keys Inc. — http://redshift.vif.com 

where ( ),χ x t  is an arbitrary real valued function that satisfies the 
following initial condition (3.10) at t=0. 

In this case the quantum systems evolves into the pair 
( ) ( )( )2 0,ψΩ t x  where ( )2Ω t  satisfies the initial condition 

( )2 00Ω = Ω  and obeys the Schrödinger equation (4.1) where, 
using (6.12) in (6.2), we write the Schrödinger picture Hamiltonian 
operator as, 

( ) ( ) ( ) ( ) ( )
0,

,ˆˆ ˆ ˆ,
χ

χ ρ
∂

= + ⋅∇ +
∂∫ ∫S S S

x t
H t H J x x t dx x dx

t
 (6.13) 

Next consider the quantity ( ) ( )2 0, 2
ˆΩ ΩSt H t . Using (6.13) we 

can obtain the expression, 

 

( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

2 0, 2

2 2

ˆ

ˆ ˆ ,

,
ˆ

χ

χ
ρ

Ω Ω

⎛ ⎞− ⋅∇
⎜ ⎟

= Ω Ω⎜ ⎟∂
−⎜ ⎟

∂⎝ ⎠

∫

∫

S

S

S

t H t

H t J x x t dx
t tx t

x dx
t

 (6.14) 

Take the time derivative of the above equation and use, 

( ) ( ) ( ) ( ) ( )2

2

, ,ˆˆ ˆχ χ
ρ

∂ ∂∂
= ⋅∇ +

∂ ∂ ∂∫ ∫S S

x t x t
H t J x dx x dx

t t t
 (6.15) 

to obtain, 

( ) ( )
( ) ( )

( ) ( )

2,

2 0, 2

2,

,
,ˆ

ˆ , ,

χ

ρ χ

⎛ ⎞∂
⋅∇⎜ ⎟∂ Ω Ω ∂⎜ ⎟= −

⎜ ⎟∂ ∂ ∂
+⎜ ⎟

∂ ∂⎝ ⎠

∫

∫

e

S

e

J x t
x t dxt H t t

t x t x t
dx

t t

 (6.16) 
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where ( )2, ,eJ x t  and ( )2, ,ρ e x t  are the current and charge 

expectation values, respectively, for the system ( ) ( )( )2 0,ψΩ t x  and 

are given by, 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2, 2 2

2, 2 2

ˆ,

ˆ,ρ ρ

= Ω Ω

= Ω Ω

e S

e S

J x t t J x t

x t t x t
 (6.17) 

Now we will invoke the principle of gauge invariance. Note that 
the potentials ( ) ( )( )1 1

0 ,A A  and ( ) ( )( )2 2
0 ,A A  are related by a gauge 

transformation. If the theory is gauge invariant then the current and 
charge expectation values must be gauge invariant. Therefore, 

 ( ) ( )2, 1,, ,=e eJ x t J x t  and ( ) ( )2, 1,, ,ρ ρ=e ex t x t  (6.18) 

Use this in (6.16) to obtain, 

  
( ) ( )

( ) ( )

( ) ( )

1,

2 0, 2

1,

,
,ˆ

ˆ , ,

χ

ρ χ

⎛ ⎞∂
⋅∇⎜ ⎟∂ Ω Ω ∂⎜ ⎟= −

⎜ ⎟∂ ∂ ∂
+⎜ ⎟

∂ ∂⎝ ⎠

∫

∫

e

S

e

J x t
x t dxt H t t

t x t x t
dx

t t

 (6.19) 

Next integrate the above equation by parts and rearrange terms to 
obtain,

( ) ( ) ( ) ( ) ( )

( ) ( )

1,
1,

2 0, 2

1,

ˆ ,
, ,ˆ

ˆ ,
,

                                        

ρ
χ

ρ
χ

⎛ ⎞∂⎛ ⎞
+∇⋅⎜ ⎟⎜ ⎟∂ Ω Ω ∂⎜ ⎟⎝ ⎠= ⎜ ⎟∂ ∂∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

∫

∫

e
e

S

e

x t
x t J x t dxt H t t

t x t
x t dx

t t

 (6.20) 
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Integrate this equation with respect to time from 0=t  to = ft t  

and use (6.11) and the initial conditions (3.10) and ( )2 00Ω = Ω  to 
obtain, 

 
( ) ( )

( ) ( )

2 0, 2 0 0, 0

1,

ˆ ˆ

ˆ ,
,

ρ
χ

Ω Ω − Ω Ω

∂
= −

∂∫

S S

e f
f

f

t H t H

x t
x t dx

t

 (6.21) 

Rearrange terms and subtract 0,
ˆ0 0SH  from both sides to 

obtain, 

 
( ) ( )

( ) ( )

2 0, 2 0,

1,

ˆ ˆ0 0

ˆ ,
,

ρ
ξ χ

Ω Ω −

∂
= Δ −

∂∫

S S

e f
f

f

t H t H

x t
x t dx

t

 (6.22) 

where, 

 0 0, 0 0,
ˆ ˆ0 0ξΔ = Ω Ω −S SH H  (6.23) 

Now in the above equation the quantities ξΔ  and ( )1,ˆ ,ρ e x t  are 

independent of ( ),χ x t . Therefore we can vary ( ),χ x t  in an 
arbitrary manner without affecting these other quantities. We will use 
this fact, along with the fact that ( )1,ˆ ,ρ∂ ∂e f fx t t  is non-zero (see 
Eq. (6.10), to show that there is no lower bound to the quantity 

( ) ( )2 0, 2 0,
ˆ ˆ0 0Ω Ω −S St H t H . 

For example let ( ) ( )( )1,ˆ, ,χ ρ= ∂ ∂f e f fx t f x t t  where f  is an 

arbitrary constant. Use this in (6.21) to obtain, 
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( ) ( )

( )
2 0, 2 0,

2

1,

ˆ ˆ0 0

ˆ ,ρ
ξ

Ω Ω −

⎛ ⎞∂
⎜ ⎟= Δ −
⎜ ⎟∂⎝ ⎠
∫

S S

e f

f

t H t H

x t
f dx

t

  (6.24) 

Now it should be evident that as →∞f  then 

( ) ( )( )2 0, 2 0,
ˆ ˆ0 0Ω Ω − → −∞S St H t H . However this contradicts 

(5.18) which states that this quantity cannot be less than zero. 
Therefore there is an inconsistency between the requirement of gauge 
invariant and the relationship specified in (5.18). If (5.18) is true then 
the Schrödinger picture is not gauge invariant. This is consistent with 
the results of Ref. [9] where we proved the same result using a 
different approach. As discussed in [9] this inconstancy leads to the 
existence of non-gauge invariant terms when the polarization tensor is 
calculated. 

7. Free field energy in the Heisenberg picture. 
As we have shown the Schrödinger picture cannot be gauge invariant 
due to the fact that in the Schrödinger picture there is a lower bound 
to the free field energy as specified by (5.17) and (5.18). In this 
section we will consider the free field energy in the Heisenberg 
picture. Due to the fact that we have shown formally that the 
expectation values are the same in both picture we would expect that 
there is a lower bound to the free field energy in the Heisenberg 
picture. However we will show that, in contrast to the Schrödinger 
picture, there is no lower bound to the free field energy in the 
Heisenberg picture. 

The Schrödinger free field energy operator was given in Eq. (5.8). 
The Heisenberg free field energy operator is given by, 
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 ( ) ( ) ( )†
0, 0

ˆ ˆ ˆ, ,ψ ψ= ∫HH t x t H x t dx  (7.1) 

Now at the initial time 0=t  let the quantum state be given by the 
pair ( )( )0 0,ψΩ x  where ( )0ψ x  has been defined by (5.1) and 

0Ω  is given by (6.8). Let the system evolve forward in time with 
the electromagnetic potential given by (6.12) and (3.10). 

In the Heisenberg picture the state evolves into ( )( )0 ˆ, ,ψΩ x t  

where ( )ˆ ,ψ x t  satisfies Eq. (3.1) and the initial condition 

( ) ( )0ˆ ˆ,0ψ ψ=x x . Using (6.12) in (3.1) we obtain, 

 ( ) ( )0

ˆ , ˆ ,
ψ χα χ ψ
∂ ∂⎛ ⎞= + ⋅∇ +⎜ ⎟∂ ∂⎝ ⎠

x t
i H e e x t

t t
 (7.2) 

The solution to the above equation is, 
 ( ) ( )0ˆ ˆ, ,χψ ψ−= iex t e x t  (7.3) 

where, 
 ( ) ( )0

0 0ˆ ˆ,ψ ψ−= iH tx t e x  (7.4) 

In the Heisenberg picture the expectation value of the free field 
energy operator is ( )0 0, 0

ˆΩ ΩHH t . To evaluate this use (7.3) in 
(7.1) to obtain, 

 ( ) ( ) ( )†
0, 0 0 0

ˆ ˆ , ,χ χψ ψ+ −= ∫ ie ie
HH t x t e H e x t dx  (7.5) 

Next use the following result, 

 ( ) ( ) ( )0 0 0 0ˆ ˆ, ,χ χψ α χ ψ− −= − ⋅∇ +ie ieH e x t e e H x t  (7.6) 

in (7.5) to obtain, 
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 ( ) ( )( ) ( )†
0, 0 0 0

ˆ ˆ ˆ, ,ψ α χ ψ= − ⋅∇ +∫HH t x t e H x t dx  (7.7) 

This yields, 

 ( ) ( ) ( ) ( )†
0, 0 0 0 0

ˆˆ ˆ ˆ, , ,ψ ψ χ= − ⋅∇∫ ∫HH t x t H x t dx J x t dx  (7.8) 

where, 

 ( ) ( ) ( )†
0 0 0

ˆ ˆ ˆ, , ,ψ αψ=J x t e x t x t  (7.9) 

Use (7.4) to obtain, 

  
( ) ( ) ( ) ( )

( ) ( )

†
0, 0 0 0 0

0, 0

ˆˆ ˆ ˆ ,

ˆˆ            0 ,

ψ ψ χ

χ

= − ⋅∇

= − ⋅∇

∫ ∫
∫

H

H

H t x H x dx J x t dx

H J x t dx
 (7.10) 

Sandwich the above between 0Ω  and 0Ω  to obtain, 

( ) ( ) ( )0 0, 0 0 0, 0 0,
ˆ ˆ 0 , χΩ Ω = Ω Ω − ⋅∇∫H H eH t H J x t dx  (7.11) 

where, 

 ( ) ( ) ( )†
0, 0 0 0 0ˆ ˆ, , ,ψ αψ= Ω ΩeJ x t x t x t  (7.12) 

Next assume reasonable boundary conditions and integrate by 
parts to obtain, 

( )
( ) ( ) ( )

0 0, 0

0 0, 0 0,

ˆ

ˆ 0 , ,χ

Ω Ω

= Ω Ω + ∇⋅∫
H

H e

H t

H x t J x t dx
 (7.13) 

Using (7.12), (6.8), and (5.1) we can show that, 

( ) ( ) ( )( )2 12 1

1 1 2 2

†
0, 1, , 2, ,, . .

2
α − −− ⋅∇ ⋅ = ∇ ⋅ +p pi E E ti p p x

e p s p s
eJ x t u u e e c c  (7.14) 
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Note that this is, in general, non-zero. Now recall that at the initial 
time 0=t  the Schrödinger and Heisenberg operators are equal so that 

( )0, 0,
ˆ ˆ0 =H SH H . Use this and subtract 0,

ˆ0 0SH  from both sides of 
the above equation to obtain, 

 ( ) ( ) ( )0 0, 0 0, 0,
ˆ ˆ0 0 , ,ξ χΩ Ω − = Δ + ∇⋅∫H S eH t H x t J x t dx (7.15) 

where ξΔ  was defined in (6.23). Now based on (7.15) what can we 
say about ( )0 0, 0 0,

ˆ ˆ0 0Ω Ω −H SH t H ? The quantities 

( )0, ,∇⋅ eJ x t  and ξΔ  are independent of ( ),χ x t . Therefore we can 

vary ( ),χ x t  without affecting these other quantities. For example, 

suppose we let ( ) ( )0,, ,χ = − ∇ ⋅ ex t f J x t  where f  is a constant. In 
this case, 

( ) ( )
2

0 0, 0 0, 0,
ˆ ˆ0 0 ,ξΩ Ω − = Δ − ∇⋅∫H S eH t H f J x t dx  (7.16) 

As →∞f  we have ( )( )0 0, 0 0,
ˆ ˆ0 0Ω Ω − → −∞H SH t H . 

Therefore there is no lower bound to the free field energy 
( )0 0, 0

ˆΩ ΩHH t  in the Heisenberg picture. 
If the expectation values in the Heisenberg picture are equal to 

those of the Schrödinger picture then we should be able to replace 
( )0 0, 0

ˆΩ ΩHH t  in (5.18) with ( ) ( )0,
ˆΩ ΩSt H t  to obtain, 

 
( )

( ) ( )
0 0, 0 0,

0, 0,

ˆ ˆ0 0
ˆ ˆ0 0

Ω Ω −

= Ω Ω −

H S

S S

H t H

t H t H
 (7.17) 
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where ( )Ω t  is the solution to the Schrödinger equation subject to 

the initial condition ( ) 00Ω = Ω . Now according to (5.18) the right 
hand side of (7.17) must always be non-negative. However we have 
already shown that with proper selection of ( ),χ x t  and 0Ω  the 
quantity on the left hand side can be negative. Therefore we have a 
contradiction and the two pictures cannot be equivalent. 

8. Summary of results. 
A key result of this paper is that it shows that the Heisenberg and 
Schrödinger pictures are not equivalent. This is consistent with the 
work of Dirac [11][12] and runs counter to the widely held perception 
that two pictures are equivalent. In addition, we have tried to 
understand why non-gauge invariant terms appear in various 
calculations in QFT since the theory is supposed to be gauge 
invariant. The approach taken was to consider what is required for a 
“simple” field theory to be gauge invariance. It has been shown that 
in the Schrödinger picture the formal theory cannot be gauge invariant 
due to the fact that the vacuum state is a lower bound to the free field 
energy. Therefore calculations done using the Schrödinger picture as 
a starting point will yield non-gauge invariant results as is indeed the 
case. However if the theory is formulated in the Heisenberg picture it 
is easily shown to be gauge invariant at the formal level. This 
suggests that the problems of gauge invariance could be resolved by 
working in the Heisenberg picture instead of the Schrödinger picture. 

Another important result is that there must be some kind of 
mathematical inconsistency in the theory. It was shown in the 
Appendix that the two pictures are formally equivalent. However on 
further examination we have shown that there is a lower bound to the 
free field energy in the Schrödinger picture but that there is no lower 
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bound to the free field energy in the Heisenberg picture. We have also 
shown that the Heisenberg picture is gauge invariant while the 
Schrödinger picture is not. What accounts for differences between the 
two pictures which we have formally proved to be equivalent? 

Now quantum theory is based on mathematics. A mathematical 
theory consists of postulates which are mathematical statements that 
are assumed to be true without proof. The postulates can then be used 
to prove additional mathematical statements called theorems. Now 
what does it imply if the theorems are not consistent with each other? 
It implies that the underlying postulates are not consistent. 

The inconsistency in quantum field theory is due to the way the 
vacuum state is defined per the discussion in Section 5. The vacuum 
state is defined in such a way that in the Schrödinger picture it is a 
state of minimum free field energy as specified by Eqs. (5.17) and 
(5.18). However as was shown in Section 6 in order for the 
Schrödinger picture to be gauge invariant there must be no lower 
bound to the free field energy. Therefore there is a mathematical 
inconsistency in the Schrödinger picture between the requirement of 
gauge invariance and the requirement that the free field energy has a 
lower bound. As we have seen this also leads to the inequivalence 
between the Heisenberg and Schrödinger pictures even though these 
two pictures can be formally shown to be equivalent. 

The next logical question to ask is whether it is possible to define 
the vacuum state in such a way that there is no lower bound to the 
free field energy in the Schrödinger picture? If this could be done 
then, perhaps, the problem of gauge invariance in the Schrödinger 
picture would be resolved. This question was address in Ref. [10]. As 
was shown in [10] it is, indeed, possible to define the vacuum so that 
there is no lower bound to the free field energy in the Schrödinger 
picture and when this is done QFT in the Schrödinger picture will be 
gauge invariant. This again emphasis the fact the failure of gauge 
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invariance is due to the way the vacuum state is defined. When the 
vacuum state is defined as in [10] the Schrödinger picture will be 
gauge invariant. 

In conclusion quantum field theory is mathematically inconsistent. 
This inconsistency manifests itself when quantities such as the 
vacuum current or polarization tensor are calculated. When these 
quantities are calculated non-gauge invariant terms appear in the 
result. These terms must be removed to obtain a physically correct 
solution. 
Appendix  

 We will show that the expectation values in both pictures are 
equivalent. First, show that ( )ˆ ,ψ x t  can be given by, 

 ( ) ( ) ( ) ( )†ˆ ˆˆ ˆ, ,0ψ ψ=x t U t x U t  (A.1) 

where ( )Û t  is an operator that evolves in time according to, 

 ( ) ( )
ˆ

ˆ ˆ∂
=

∂
U t

i HU t
t

 (A.2) 

where, 

 ( ) ( )†ˆ ˆ ˆ,0 ,0ψ ψ= ∫ DH x H x dx  (A.3) 

and where ( )Û t  satisfies the initial condition, 

 ( )ˆ 0 1=U  (A.4) 

Using the above, we can prove that ( )Û t  is a unitary, that is, it 
satisfies, 

 ( ) ( )† 1ˆ ˆ −=U t U t  (A.5) 



 Apeiron, Vol. 16, No. 3, July 2009 405 

© 2009 C. Roy Keys Inc. — http://redshift.vif.com 

To prove this use that fact that Ĥ is hermitian along with (A.2) to 
obtain, 

 ( ) ( )
†

†
ˆ

ˆ ˆ∂
= −

∂
U t

i U t H
t

 (A.6) 

Using this result along with (A.3) we obtain, 

( ) ( )( ) ( )( ) ( ) ( ) ( )( )† † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0∂
= − + =

∂
i U t U t U t H U t U t HU t

t
 (A.7) 

Therefore ( ) ( )†ˆ ˆU t U t  is constant in time. Using this result and (A.4) 

we obtain ( ) ( ) ( ) ( )† †ˆ ˆ ˆ ˆ0 0 1= =U t U t U U . Therefore (A.5) is true. 
To show that (A.1) is valid substitute (A.1) in (3.1), along 

with(A.5), to obtain, 

 
( ) ( ) ( )( )

( ) ( ) ( )( )
1

1
ˆ ˆˆ ,0

ˆ ˆˆ ,0
ψ

ψ
−

−
∂

=
∂ D

U t x U t
i H U t x U t

t
 (A.8) 

This yields 

 
( ) ( )

( )( )

1 1 1

1

ˆ ˆˆ ˆ ˆ ˆˆ ˆ,0 ,0

ˆ ˆˆ ,0

ψ ψ

ψ

− − −

−

⎡ ⎤∂ ∂
− +⎢ ⎥∂ ∂⎣ ⎦

= D

U Ui U U x U U x
t t

H U x U

 (A.9) 

Use (A.2) in the above to obtain, 

 
( ) ( )

( )( )

1 1 1

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ,0 ,0

ˆ ˆˆ ,0

ψ ψ

ψ

− − −

−

⎡ ⎤− +⎣ ⎦

= D

U HUU x U U x HU

H U x U
 (A.10) 
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Multiply the above equation by Û  from the left and 1ˆ −U  from the 
right and use the fact that Û  commutes with DH  and 1ˆ ˆ 1− =UU  to 
obtain, 

 ( ) ( )ˆ ˆ ˆ, ,0 ,0ψ ψ⎡ ⎤ = −⎣ ⎦ DH x H x  (A.11) 

We can use (3.4) to show that this equation is true. From (3.4) we 
obtain, 

( ) ( ) ( ) ( ) ( ) ( )3†ˆ ˆ ˆ ˆ,0 ,0 , ,0 ,0ψ ψ ψ δ ψ′ ′ ′ ′⎡ ⎤ = − −⎣ ⎦D Dx H x x x x H x  (A.12) 

Use this along with (A.3) to obtain, 

( ) ( ) ( ) ( ) ( )3ˆ ˆ ˆ ˆ, ,0 ,0 ,0ψ δ ψ ψ⎡ ⎤ ′ ′ ′= − − = −⎣ ⎦ ∫ D DH x x x H x dx H x  (A.13) 

Therefore (A.11) is true which means that (A.1) and (A.2) are 
valid. 

 Next use (A.2) can be used to show that the solution to the 
Schrödinger equation (4.1) is given by, 

 ( ) ( ) ( )ˆ 0Ω = Ωt U t  (A.14) 

Use this result in (4.5) to show that expectation value of 
Schrödinger operator ,

ˆ
op SO  for the state vector ( )Ω t  in the 

Schrödinger picture is given by, 

 ( ) ( ) ( ) ( ) ( )†
, ,

ˆˆ ˆ0 0= Ω Ωop S op SO t U t O U t  (A.15) 

From (4.4) we obtain, 

 ( ) ( ) ( ) ( ) ( ) ( )† † †
,

ˆˆ ˆ ˆ ˆ,0 ,0ψ ψ=op S opU t O U t U t x O x U t  (A.16) 

Next use ( ) ( ) ( ) ( )† †ˆ ˆ ˆ ˆ= =op op opO U t U t O U t O U t  along with (A.1) 
to obtain, 
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 ( ) ( ) ( ) ( ) ( )†
, 0 , , 0ψ ψ= Ω Ωop S opO t x t O x t  (A.17) 

Compare this result with (3.6) to obtain, 
 ( ) ( ), ,=op H op SO t O t  (A.18) 

This shows that the Heisenberg and Schrödinger pictures are 
equivalent at the level of expectation values. 
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