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The standard ΛCDM model of cosmology is usually un-
derstood to arise from demanding that the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric satisfy the
General Relativity dynamics for spacetime metrics. The
supernovae red-shift data give the FLRW parameter val-
ues, ΩΛ = 0.73 and Ωm = 0.27 for the dark energy
and dark matter+matter content of the universe. When
extended to galactic rotations and cosmology Newtonian
dynamics is found to be wanting, and the fix-up involves
introducing dark matter and dark energy. A different the-
ory of gravity leads to a different account of galactic ro-
tations and cosmology, and does not require dark matter
nor dark energy to fit the supernova data. It is shown
that fitting the ΛCDM model to this new model, and so
independently of the actual supernova data, requires the
ΛCDM model parameters to be those given above. Hence
we conclude that dark energy and dark matter are no more
than artifacts to fix-up limitations of Newtonian gravity.
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1 Introduction

The current ΛCDM standard model of cosmology is based upon
General Relativity (GR) as applied to the spatially-flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW-GR) spacetime metric to-
gether with the Weyl postulate for the energy-momentum den-
sity tensor, leading to the Friedmann equations for the 3-space
scale factor [1, 2, 3, 4]1. Fitting this model to the magnitude-
redshift data from supernovae and gamma-ray-burst (GRB) data
requires the introduction of dark energy and dark matter, and
a concomitant future exponential acceleration of the universe
[5]. The dark energy has been most simply interpreted as a cos-
mological constant Λ. Fitting the data gives ΩΛ = 0.73 and
Ωm = 0.27, with baryonic matter forming only some Ωb = 0.05
of Ωm, so that the ‘dark matter’ component has ΩDM = 0.22.
Hence according to the FLRW-GR model the universe expan-
sion is determined mainly by dark energy and cold dark matter,
leading to the ΛCDM label. A peculiar aspect of the ΛCDM
model is that the universe can only expand if the energy density
is non-zero, i.e. space itself cannot expand without that energy
density being present. This has been a feature of the FLRW-
GR dynamics from the beginning of cosmology, and as shown
herein is a direct consequence of extending Newtonian gravity
to cosmology, and so well beyond its established regime. It is
probably not well known that the ΛCDM model is a simple and
direct consequence of Newtonian gravity, as shown later. Here
we derive a new cosmology which leads to, apart from other nu-

1We use FLRW-GR as a full acronym for the model, as in section 14 the
FLRW metric arises in a non-GR context.
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merous tests, an expanding flat 3-space which does not require
the presence of energy for that expansion. This expansion gives
a parameter-free fit to the supernovae/GRB data, without in-
voking dark energy or dark matter. Nevertheless, if we best-fit
the FLRW-GR ΛCDM model to the new cosmology dynamics
over the redshift range z ∈ {0, 14}, by varying ΩΛ, we obtain
ΩΛ = 0.73, Ωm = 1 − ΩΛ = 0.27. In other words, if the new
cosmological model is valid, then we can predict that fitting the
ΛCDM model to the data will give the parameter values exactly
as reported. However the new cosmology does not predict an
accelerating universe; that is merely a spurious consequence of
the FLRW-GR model having the wrong functional form for its
Hubble function. These results change completely our under-
standing of the evolution of the universe, and of its contents.
Basically there is just a very small amount of conventional mat-
ter, as indeed deduced from CMB temperature fluctuation data,
and a dominant expanding dynamical 3-space.

2 The ΛCDM Model from Newtonian

Gravity

The simplest and most direct derivation of a theoretical model is
also usually the most instructive and most revealing, for abstract
formalism is very effective at hiding fundamental issues. Here
we derive the ΛCDM model directly and simply from Newtonian
gravity2. Newtonian gravity was based on Kepler’s observations

2This derivation has a long history, but appears to have sunk without
trace in the context of the dark energy and dark matter debate.
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of the motion of planets within the solar system, with the at-
tractive force between two point-like masses being given by the
famous inverse square law[12]

F = G
m1m2

r2
. (1)

Let us consider galaxies interacting only via this force law, and
so pressure-less. To model the Hubble expansion we take this
collection of galaxies to have large-scale mass-density homogene-
ity and expanding in the Hubble manner, i.e. with a radial
speed v(r, t) proportional to the distance r from any particular
observer. Only this Hubble law is consistent with a centre-less
expansion. Then the well-known energy equation for any par-
ticular galaxy of mass m distance r from the observer is

1

2
mv(r, t)2 −GmM(r, t)

r
= E, (2)

where M(r, t) is the total mass enclosed in the sphere of radius
r at time t. This simply express the galactic energy E as the
sum of a kinetic energy and a gravitational potential energy.
We shall include in M(r, t) the mass equivalent of any other
energies present, such as EM radiation, neutrino energies, and
the putative dark matter and dark energies. M(r, t) is trivially
given by

M(r, t) =
4

3
πr3Gρ(t), (3)

where ρ(t) is the effective matter density at time t. For the
critical case of E = 0, (2) gives

v(r, t) = H(t)r where H(t) =

√
8

3
πGρ(t). (4)
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which gives the well-known relationship between the Hubble ex-
pansion ‘constant’ H(t) and the effective matter density ρ(t).
One of the fundamental problems in cosmology has been that
the current-epoch observed value of ρ(t) is only 5% of that pre-
dicted from (4) using the observed value of H(t), as discussed
later. In any case the above model claims that the expansion of
the universe, as given by v(r, t), is determined solely by the New-
tonian gravitational force between the effective matter content
of the universe. To put this in the form of the current ΛCDM
model we first introduce the scale factor a(t) = r(t)/r(t0) for
some fixed t0, then (4) becomes

ȧ(t)2 =
8

3
πGρ(t)a(t)2 (5)

which is the Friedmann equation in the case of a flat-space uni-
verse. To determine the time evolution of a(t) we need to only
specify the time-evolution of ρ(t). The validity of (5) is taken
for granted in the analysis of the supernovae magnitude-redshift
data. In order to fit that data it was found [7, 8] that an ac-
ceptable fit could only be obtained if ρ(t) was taken to have the
form

ρ(t) = Λ +
ρm
a(t)3

(6)

corresponding to an effective matter-density Λ that remains con-
stant as the universe expands, and which is variously known as
‘dark energy’ or the ‘cosmological constant’, and a component
which diminished like 1/a3, as would happen for normal mat-
ter. However the best-fit value for the constant ρm exceeds the
known actual matter density by a factor of 5 or more, and so the
remainder was interpreted as ‘dark matter’. Then ρm = ρDM+ρb
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is broken down into two components, ρDM and ρb, being the sup-
posed dark matter density and the normal observed (baryonic )
matter density, respectively. An EM radiation term, which di-
minishes as 1/a4, could be included, but only plays a role in the
very early epoch. We thus obtain the ΛCDM model dynamics:

ȧ(t)2 =
8πG

3

(
Λ +

ρm
a3

)
a(t) (7)

Using this Newtonian cosmological model the best-fit values for
Λ and ρm may be determined from the supernovae data. The
parameters ΩΛ etc are defined by the fractions

ΩΛ = Λ/(Λ + ρDM + ρb), (8)

and so on. Because the ΛCDM model in (7) is based upon New-
tonian gravity the expansion rate of the universe in this model
is determined by its energy content, as expressed by Λ, ρDM and
ρm, and in earlier epochs ρr - the radiation density parame-
ter. This means that a universe without energy content cannot
expand. The reason for this is that in Newtonian gravity expan-
sion is defined by the separation of matter - there is no notion
of space itself expanding. Indeed in Newtonian gravity space
has no observational or dynamical properties - it is a totally
unchanging and inert entity.

We now briefly review a theory for a dynamical space that
has its own dynamical time evolution, which only in part is de-
termined by the presence of matter. Generalising the Schrödinger
equation to encompass this dynamical space we obtain a quan-
tum theory explanation for the phenomenon of gravity. The
fundamental dynamical equation for this 3-space (see next sec-
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tion) leads to the time evolution equation for the universe:

ä(t) = −4πG

3

ρm
a3
a(t) (9)

in the case of normal matter, but with extra terms shown in (58).
This equation gives an expanding universe even the absence of
matter/energy, in which case the expansion is uniform in time.
So this expansion breaks the long-standing connection between
the matter density and the Hubble constant, as in (4), and which
has been so problematic. As discussed later the supernovae data
actually shows that the universe expansion is very close to being
uniform in time, contrary to misleading claims of an accelerat-
ing universe. The key problem of the ΛCDM model is that it
does not have the observed uniformly expanding universe solu-
tion, unless, and approximately, the values of ΩΛ and Ωm are
judiciously chosen to have the best-fit3 values of ΩΛ = 0.73 and
Ωm = 0.27. As Ωb = 0.05, we obtain ΩDM = 0.22 in fitting the
original supernovae data - see fig 10.

Hence the whole ‘dark energy - dark matter’ imbroglio is
simply a consequence of extending Newtonian gravity far beyond
its realm of confirmation, and missing new physics that is absent
in early modelling of gravity. We briefly review this new physics,
and in later sections show how this physics gives a parameter-
free account of cosmology without requiring dark energy and
dark matter. ‘Dark matter’ of course has a longer history than
its invocation in analysing the supernovae data. Nevertheless
we also show that the dynamical space gives rise to new effects
that counter these older arguments for ‘dark matter’.

3In doing the least-squares best-fit the distance modulus is used as a
measure, in keeping with its use in [7, 8] .
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3 Dynamical Space

We review here the minimal model for a dynamical 3-space. As
well as the various confirmed gravitational predictions, there
is also an extensive set of direct detection experiments, dis-
cussed in [9], with the most recent being from the analysis
of NASA/JPL doppler shift data from spacecraft earth-flybys
[10]. An information-theoretic approach to modelling reality
leads to an emergent structured quantum-foam ‘space’ which is
3-dimensional and dynamic, but where the 3-dimensionality is
only approximate, in that if we ignore non-trivial topological
aspects of the quantum foam, then it may be coarse-grain em-
bedded in a 3-dimensional geometrical manifold. Here the space
is a real existent discrete but fractal network of relationships or
connectivities, but the embedding space is purely a mathemat-
ical way of characterising the 3-dimensionality of the network.
This is illustrated by the skeletal representation of the quantum
foam in figure 1b - this is not necessarily local in that significant
linkages can manifest between distant regions.

Embedding the network in the embedding space is very arbi-
trary; we could equally well rotate the embedding or use an em-
bedding that has the network translated or translating. These
general requirements then dictate the minimal dynamics for the
actual network, at a phenomenological level. To see this we
assume at a coarse grained level that the dynamical patterns
within the network may be described by a velocity field v(r, t),
where r is the location of a small region in the network accord-
ing to some arbitrary embedding. The 3-space velocity field has
been observed in at least 10 experiments [6]. For simplicity we
assume here that the global topology of the network is not signif-
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Figure 1: This is an iconic representation of how process physics [6]
generates a homotopic network describable as a quantum foam. Its skeletal
structure has its inherent approximate 3-dimensional connectivity displayed
by an embedding in a mathematical space, such as an E3 or an S3, as shown
in Fig.2.
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Figure 2: Embedding the quantum foam into an embedding space, which
is not real - it is purely a mathematical artifact. Nevertheless this embed-
dability helps determine the minimal dynamics for the network, as in (10).
The dynamical space is not an ether model, as the embedding space does
not exist.

icant for the local dynamics, and so we embed in an E3, although
a generalisation to an embedding in S3 is straightforward and
might be relevant to cosmology. The minimal dynamics is then
obtained by writing down the sum of the only three lowest-order
zero-rank tensors, of dimension 1/T 2, that are invariant under
translation and rotation, giving

∇.
(
∂v

∂t
+ (v.∇)v

)
+
α

8
(trD)2 +

β

8
tr(D2) = −4πGρ (10)

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(11)

where ρ(r, t) is an effective matter density that may correspond
to various energy densities. The embedding space coordinates
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provide a coordinate system or frame of reference that is conve-
nient to describing the velocity field, but which is not real.

We see that there are only four possible terms, and so we
need at most three possible constants to describe the dynamics
of space: G,α and β. G turns out to be Newton’s gravita-
tional constant, and describes the rate of non-conservative flow
of space into matter. To determine the values of α and β we
must, at this stage, turn to experimental and observational data.
However most data involving the dynamics of space is obtained
by detecting the so-called gravitational acceleration of matter,
although increasingly light bending is giving new information.
Now the acceleration a of the dynamical patterns in space is
given by the Euler or convective expression

a(r, t) = lim
∆t→0

v(r + v(r, t)∆t, t+ ∆t)− v(r, t)

∆t
=
∂v

∂t
+ (v.∇)v

(12)
and this appears in one of the terms in (10). As shown in [11] and
discussed later in Sect. 8 the acceleration g of quantum matter is
identical to this acceleration, apart from vorticity and relativistic
effects, and so the gravitational acceleration of matter is also
given by (12).

Outside of a spherically symmetric distribution of matter, of
total mass M , we find that one solution of (10) is the velocity
in-flow field given by

v(r) = −r̂

√
2GM(1 + α

2
+ ..)

r
(13)

but only when β = −α, for only then is the acceleration of
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matter, from (12), induced by this in-flow of the form

g(r) = −r̂
GM(1 + α

2
+ ..)

r2
(14)

which is Newton’s Inverse Square Law of 1687 [12], but with an
effective mass M(1 + α

2
+ ..) that is different from the actual

mass M . So the success of Newton’s law in the solar system,
based on Kepler’s analysis, informs us that β = −α in (10). But
we also see modifications coming from the α-dependent terms.

In general because (10) is a scalar equation it is only appli-
cable for vorticity-free flows ∇ × v = 0, for then we can write
v = ∇u, and then (10) can always be solved to determine the
time evolution of u(r, t) given an initial form at some time t0.
The α-dependent term in (10) (with now β = −α) and the mat-
ter acceleration effect, now also given by (12), permits (10) to
be written in the form

∇.g = −4πGρ− 4πGρDM , (15)

where
ρDM(r, t) ≡ α

32πG
((trD)2 − tr(D2)), (16)

which is an effective matter density, not necessarily non-negative,
that would be required to mimic the α-dependent spatial self-
interaction dynamics. The Newtonian coupling constant G is
included in the definition of ρDM only so that its role as an ef-
fective matter density can be illustrated - the α dynamics does
not involves G. Then (15) is the differential form for Newton’s
law of gravity but with an additional non-matter effective mat-
ter density. So we label this as ρDM even though no matter
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is involved [13, 14], as this effect has been shown to explain
the so-called ‘dark matter’ effect in spiral galaxies, bore hole g
anomalies, and the systematics of galactic black hole masses.

The spatial dynamics is non-local. Historically this was first
noticed by Newton who called it action-at-a-distance. To see
this we can write (10) as an integro-differential equation

∂v

∂t
= −∇

(
v2

2

)
+G

∫
d3r′

ρDM(r′, t) + ρ(r′, t)

|r− r′|3
(r− r′) (17)

This shows a high degree of non-locality and non-linearity, and
in particular that the behaviour of both ρDM and ρ manifest
at a distance irrespective of the dynamics of the intervening
space. This non-local behaviour is analogous to that in quantum
systems and may offer a resolution to the horizon problem. As
well the dynamics involving ρDM manifests at a a distance to a
scale independent of G, because of the 1/G coefficient in ρDM ,
as noted above, and so ‘gravitational wave’ effects caused by
distant activity are predicted to be much large than predicted
by GR.

4 Bore Hole Anomaly: Fine Struc-

ture Constant

A recent discovery [13, 14] has been that experimental data from
the bore hole g anomaly has revealed that α is the fine structure
constant, to within experimental errors: α = e2/~c ≈ 1/137.04.
This observed anomaly is that g(r) does not decrease as rapidly
as predicted by Newtonian gravity or GR as we descend down
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Figure 3: The data shows the gravity residuals for the Green-
land Ice Shelf [15] Airy measurements of the g(r) profile, defined as
∆g(r) = gNewton − gobserved, and measured in mGal (1mGal = 10−3

cm/s2) and plotted against depth in km. The borehole effect is that
Newtonian gravity and the new theory differ only beneath the sur-
face, provided that the measured above-surface gravity gradient is
used in both theories. This then gives the horizontal line above the
surface. Using (20) we obtain α−1 = 137.9± 5 from fitting the slope
of the data, as shown. The non-linearity in the data arises from mod-
elling corrections for the gravity effects of the irregular sub ice-shelf
rock topography. The ice density is 920 kg/m3.
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Figure 4: Gravity residuals ∆g(r) from two of the Nevada bore
hole experiments [16] that give a best fit of α−1 = 136.8± 3 on using
(20). Some layering of the rock is evident. The rock density is 2000
kg/m3 in the linear regions.
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a bore hole. Consider the case where we have a spherically
symmetric matter distribution, at rest on average with respect
to distant space, and that the in-flow is time-independent and
radially symmetric. Then (10) can now be written in the form,
with v′ = dv(r)/dr,

vv′′ + 2
vv′

r
+ (v′)2 = −4πGρ(r)− 4πGρDM(v(r)), (18)

where now

ρDM(r) =
α

8πG

(
v2

2r2
+
vv′

r

)
. (19)

The dynamics in (18) and (19) gives the anomaly to be

∆g = 2παGρd+O(α2) (20)

where d is the depth and ρ is the density, being that of glacial
ice in the case of the Greenland Ice Shelf experiments [15], or
that of rock in the Nevada test site experiment [16]. Clearly
(20) permits the value of α to be determined from the data,
giving α = 1/(137.9 ± 5) from the Greenland data, and α =
1/(136.8±3) from the Nevada data; see Figs. 3 and 4. Note that
the density ρ in (20) is very different for these two experiments,
showing that the extracted value α ≈ 1/137 is robust.

5 Minimal and Non-Minimal Black

Holes: Fine Structure Constant

Eqn.(18) with ρ = 0 has exact analytic ‘black hole’ solutions,
given by (22) without the 1/r term. There are two classes of
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Figure 5: The data shows Log10[MBH ] for the black hole masses
MBH for a variety of spherical matter systems, from Milky Way glob-
ular clusters to spherical galaxies, with masses M , plotted against
Log10[M ], in solar masses M0. The straight line is the prediction
from (21) with α = 1/137. See [18] for references to the data.

black hole solutions - they are distinguished by how they relate
to the surrounding matter. The class of minimal black holes is
completely induced by the surrounding distribution of matter.
For a spherically symmetric distribution of matter we find by
iterating (18) and then from (19) that the total effective black
hole mass is

MBH = MDM = 4π

∫ ∞
0

r2ρDM(r)dr =
α

2
M +O(α2) (21)
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This solution is applicable to the black holes at the centre of
spherical star systems, where we identify MDM as MBH . For
these black holes the acceleration g outside of the matter de-
creases as 1/r2. So far black holes in 19 spherical star systems
have been detected and together their masses are plotted in fig-
ure 5 and compared with (21), giving again α = 1/137 [17, 18].
These solutions are called ‘black holes’ because they posses an
event horizon that forbids the escape of EM radiation and mat-
ter, but that they are very different from the putative ‘black
holes’ of GR. Clearly GR cannot predict the mass relation in
(21) as the GR dynamics does not involve α. The second class
of black hole solutions is called non-minimal. These come into
existence before subsequently attracting matter. These black
holes may be primordial in that they formed directly as a con-
sequence of the big bang before stars and galaxies, and indeed
may have played a critical role in the precocious formation of
galaxies. These black holes are responsible for both the rapid
in-fall of matter to form rotating spiral galaxies, and also for
non-Keplerian rotation characteristics of these galaxies, as dis-
cussed next. It is significant that the bore hole, black hole and
(next) the spiral galaxy rotation effects are all caused by the
non-local dynamics from the α-dynamics - and so are indicative
of the non-local quantum effects of the quantum cosmology.

6 Spiral Galaxy Rotation Anomaly:

Fine Structure Constant

The black hole solutions of (18) give a direct explanation for
the spiral galaxy rotation anomaly. For a non-spherical system
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Figure 6: Data shows the non-Keplerian rotation-speed curve vO for
the spiral galaxy NGC 3198 in km/s plotted against radius in kpc/h.
Lower curve is the rotation curve from the Newtonian theory for
an exponential disk, which decreases asymptotically like 1/

√
r. The

upper curve shows the asymptotic form from (24), with the decrease
∼ 1/r determined by the small value of α. This asymptotic form is
caused by the primordial black holes at the centres of spiral galaxies,
and which play a critical role in their formation. The spiral structure
is caused by the rapid in-fall towards these primordial black holes.
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numerical solutions of (10) are required, but sufficiently far from
the centre we find an exact non-perturbative two-parameter class
of analytic solutions

v(r) = K

1

r
+

1

Rs

(
Rs

r

)α
2


1/2

(22)

where K and Rs are arbitrary constants in the ρ = 0 region,
but whose values are determined by matching to the solution in
the matter region. Here Rs characterises the length scale of the
non-perturbative part of this expression, and K depends on α,
G and details of the matter distribution. From (14) and (22) we
obtain a replacement for the Newtonian ‘inverse square law’ ,

g(r) =
K2

2

 1

r2
+

α

2rRs

(
Rs

r

)α
2

 , (23)

in the asymptotic limit. The non-Newtonian part of this accel-
eration is caused by presence of a primordial ‘black hole’ at the
centre of the galaxy, about which the galaxy formed: in gen-
eral the ‘black holes’ from (18) have an acceleration g ∼ 1/r,
and very unlike the form g ∼ 1/r2 for the putative black holes
of GR. The centripetal acceleration relation for circular orbits
vO(r) =

√
rg(r) gives a ‘universal rotation-speed curve’

vO(r) =
K

2

1

r
+

α

2Rs

(
Rs

r

)α
2


1/2

(24)
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The α dependent part this rotation-velocity curve falls off ex-
tremely slowly with r, as is indeed observed for spiral galaxies.
This is essentially the very successful phenomenological Univer-
sal Rotation Curve for spiral galaxies [19], but with, essentially,
α → 0 asymptotically and the 1/r Keplerian term replaced by
that appropriate to the in-flow into a disk of stars. An example
is shown in figure 6. It was the inability of the Newtonian and
Einsteinian gravity theories to explain these observations that
led to the notion of ‘dark matter’. Note that in the absence of
the α-dynamics, the rotation-speed curve reduces to the Keple-
rian form. Nevertheless it is not clear if the form in (24) could be
used to determine the value of α from the extensive data set of
spiral galaxy rotation curves because of observational errors and
intrinsic non-systematic variations in individual galaxies, unlike
the data from bore holes and black holes which give independent
but consistent determinations for the value of α. We see that
the 3-space dynamics (10) gives a unified account of both the
‘dark matter’ problem and the properties of ‘black holes’.

7 Generalised Maxwell Equations:

Gravitational Lensing

We must generalise the Maxwell equations so that the elec-
tric and magnetic fields are excitations within the dynamical
3-space, and not of the embedding space. The minimal form in

c©2009 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 16, No. 3, July 2009 344

the absence of charges and currents is

∇× E = −µ
(
∂H

∂t
+ v.∇H

)
, ∇.E = 0,

∇×H = ε

(
∂E

∂t
+ v.∇E

)
, ∇.H = 0 (25)

which was first suggested by Hertz in 1890 [20], but with v then
being only a constant vector field. As easily determined the
speed of EM radiation is now c = 1/

√
µε with respect to the

3-space. To see this we find plane wave solutions for (25):

E(r, t) = E0e
i(k.r−ωt) H(r, t) = H0e

i(k.r−ωt) (26)

with
ω(k,v) = c|~k|+ v.k where c = 1/

√
µε (27)

Then the EM group velocity is

vEM = ~∇kω(k,v) = ck̂ + v (28)

So the velocity of EM radiation vEM has magnitude c only with
respect to the space, and in general not with respect to the
observer if the observer is moving through space.

The time-dependent and inhomogeneous velocity field causes
the refraction of EM radiation. This can be computed by using
the Fermat least-time approximation. Then the EM ray paths
r(t) are determined by minimising the elapsed travel time:

τ =

∫ sf

si

ds|dr
ds
|

|cv̂R(s) + v(r(s), t(s)|
with vR =

(
dr

dt
− v(r(t), t)

)
(29)
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by varying both r(s) and t(s), finally giving r(t). Here s is a
path parameter, and vR is a 3-space tangent vector for the path.

In particular the in-flow in (13) causes a refraction effect of
light passing close to the sun, with the angle of deflection given
by

δ = 2
v2

c2
=

4GM(1 + α
2

+ ..)

c2d
(30)

where v is the in-flow speed at distance d and d is the impact
parameter, here the radius of the sun. Hence the observed de-
flection of 8.4×10−6 radians is actually a measure of the in-flow
speed at the sun’s surface, and that gives v = 615km/s, in agree-
ment with the numerical value computed for v at the surface of
the sun from (13).

These generalised Maxwell equations also predict gravita-
tional lensing produced by the large in-flows, in (22), that are
the new ‘black holes’ in galaxies. Until now these anomalously
large lensings have been also attributed, using GR, to the pres-
ence of ‘dark matter’. One example is reported in [21] and an-
other in [22] which is re-analaysed without requiring dark matter
in [23].

8 Generalised Schrödinger Equation:

Emergent Gravity and Equivalence

Principle

A generalisation of the Schrödinger equation is also required [11]:

i~
∂ψ(r, t)

∂t
= H(t)ψ(r, t), (31)
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where the free-fall hamiltonian is uniquely

H(t) = −i~
(

v.∇+
1

2
∇.v

)
− ~2

2m
∇2 (32)

This follows from the wave function being attached to the dy-
namical 3-space, and not to the embedding space, and that H(t)
be hermitian. We can compute the acceleration of a localised
wave packet using the Ehrenfest method [11], and we obtain

g ≡ d2

dt2
(ψ(t), rψ(t)) =

∂v

∂t
+ (v.∇)v + (∇×v)×vR + ... (33)

where vR = v0− v is the velocity of the wave packet relative to
the local space, as v0 is the velocity relative to the embedding
space. The vorticity term causes rotation of the wave packet.
For this to occur (10) must be generalised to the case of non-zero
vorticity [6]. This vorticity effect explains the Lense-Thirring ef-
fect, and such vorticity is being detected by the Gravity Probe
B satellite gyroscope experiment [26]. We see, as promised, that
this quantum-matter acceleration is equal to that of the 3-space
itself, as in (12). This is the first derivation of the phenomenon
of gravity from a deeper theory: gravity is a quantum effect -
namely the refraction of quantum waves by the internal differen-
tial motion of the substructure patterns to 3-space itself. Note
that the equivalence principle has now been explained, as this
‘gravitational’ acceleration is independent of the mass m of the
quantum system.
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9 Generalised Dirac Equation:

Relativistic Effects in 3-Space

An analogous generalisation of the Dirac equation is also neces-
sary giving the coupling of the spinor to the actual dynamical
3-space, and again not to the embedding space as has been the
case up until now:

i~
∂ψ

∂t
= −i~

(
c~α.∇+ v.∇+

1

2
∇.v

)
ψ + βmc2ψ (34)

where ~α and β are the usual Dirac matrices. Repeating the
analysis in (33) for the 3-space-induced acceleration we obtain

g =
∂v

∂t
+(v.∇)v+(∇×v)×vR−

vR

1− v2
R

c2

1

2

d

dt

(
v2
R

c2

)
+ ... (35)

which generalises (33) by having a term which limits the speed
of the wave packet relative to 3-space, |vR|, to be < c. This
equation specifies the trajectory of a spinor wave packet in the
dynamical 3-space. The last term causes elliptical orbits to pre-
cess - for circular orbits |vR| is independent of time.
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10 Deriving the Spacetime Geodesic

Formalism: Local Poincaré Sym-

metry

We find that (35) may be also obtained by extremising the time-
dilated elapsed time

τ [r0] =

∫
dt

(
1− v2

R

c2

)1/2

(36)

with respect to the wave-packet trajectory r0(t) [6]. This hap-
pens because of the Fermat least-time effect for waves: only
along the minimal time trajectory do the quantum waves re-
main in phase under small variations of the path. This again
emphasises that gravity is a quantum matter wave effect. We
now introduce an effective spacetime mathematical construct
according to the metric

ds2 = dt2 − (dr− v(r, t)dt)2/c2 = gµνdx
µdxν (37)

which is of the Panlevé-Gullstrand class of metrics [24, 25]. Then
we have a Local Poinacré Symmetry, namely the transformations
that leave ds2 locally invariant under a change of coordinates.
As well wave effects from (10) cause ‘ripples’ in this induced
spacetime, giving a different account of gravitational waves. The
elapsed time in (36) may then be written as

τ =

∫
dt

√
gµν

dxµ

dt

dxν

dt
. (38)

The minimisation of (38) leads to the geodesics of the spacetime,
which are thus equivalent to the trajectories from (36), namely
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(35). We may introduce the standard differential geometry cur-
vature tensor for the induced spacetime

Rρ
µσν = Γρµν,σ − Γρµσ,ν + ΓρασΓαµν − ΓρανΓ

α
µσ, (39)

where Γαµσ is the affine connection for the metric in (37)

Γαµσ =
1

2
gαν
(
∂gνµ
∂xσ

+
∂gνσ
∂xµ

− ∂gµσ
∂xν

)
. (40)

with gµν the matrix inverse of gµν . In this formalism the trajecto-
ries of quantum-matter wave-packet test objects are determined
by

d2xλ

dτ 2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0, (41)

as this is equivalent to (35). In the standard treatment of GR
the geodesic for classical matter in (41) is a definition, and has
no explanation. Here we see that it is finally derived, but as
a quantum matter effect. Hence by coupling the Dirac spinor
dynamics to the dynamical 3-space we derive the geodesic for-
malism of General Relativity as a quantum effect, but without
reference to the Hilbert-Einstein equations for the induced met-
ric. Indeed in general the metric of this induced spacetime will
not satisfy these equations as the dynamical space involves the
α-dependent dynamics, and α is missing from GR. We can also
define the Ricci curvature scalar

R = gµνRµν (42)

where Rµν = Rα
µαν . In general the induced spacetime in (37) has

a non-zero Ricci scalar - it is a curved spacetime. We shall com-
pute the Ricci scalar for the expanding 3-space solution below.
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We can also derive the Schwarzschild metric without refer-
ence to GR. To do this we merely have to identify the induced
spacetime metric corresponding to the in-flow in (13) outside of
a spherical matter system, such as the earth. Then (37) becomes

ds2 = dt2− 1

c2
(dr+

√
2GM(1 + α

2
+ ..)

r
dt)2−r

2

c2
(dθ2+sin2(θ)dφ2)

(43)
Making the change of variables t→ t′ and r→ r′ = r with

t′ = t− 2

c

√
2GM(1+α

2
+ . . . )r

c2
+

4 GM(1+α
2
+ . . . )

c3
tanh−1

√
2GM(1+α

2
+ . . . )

c2r
(44)

this becomes (and now dropping the prime notation)

ds2 =

(
1−

2GM(1 + α
2

+ ..)

c2r

)
dt2 − 1

c2
r2(dθ2 + sin2(θ)dφ2)

− dr2

c2

(
1−

2GM(1 + α
2

+ ..)

c2r

) . (45)

which is one form of the the Schwarzschild metric but with the
α-dynamics induced effective mass shift. Of course this is only
valid outside of the spherical matter distribution, as that is the
proviso also on (13). Hence in the case of the Schwarzschild
metric the dynamics missing from both the Newtonian theory
of gravity and General Relativity is merely hidden in a mass re-
definition, and so didn’t affect the various standard tests of GR,
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or even of Newtonian gravity. A non-spherical symmetry ver-
sion of the Schwarzchild metric is used in modelling the Global
Positioning System (GPS).

11 Supernova and Gamma-Ray-Burst

Data

In the next section we show that the 3-space dynamics in (10)
has an expanding space solution. The supernovae and gamma-
ray bursts provide standard candles that enable observation of
the expansion of the universe. To test yet further that dy-
namics we compare the predicted expansion against the observ-
ables, namely the magnitude-redshift data from supernovae and
gamma-ray bursts. The supernova data set used herein and
shown in Figs. 7 and 8 is available at [27]. Quoting from [27]
we note that Davis et al. [28] combined several data sets by
taking the ESSENCE data set from Table 9 of Wood–Vassey et
al. (2007) [29], using only the supernova that passed the light-
curve-fit quality criteria. They took the HST data from Table 6
of Riess et al. (2007) [30], using only the supernovae classified
as gold. To put these data sets on the same Hubble diagram
Davis et al. used 36 local supernovae that are in common be-
tween these two data sets. When discarding supernovae with
z < 0.0233 (due to larger uncertainties in the peculiar veloci-
ties) they found an offset of 0.037 ± 0.021 magnitude between
the data sets, which they then corrected for by subtracting this
constant from the HST data set. The dispersion in this offset
was also accounted for in the uncertainties. The HST data set
had an additional 0.08 magnitude added to the distance modu-
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lus errors to allow for the intrinsic dispersion of the supernova
luminosities. The value used by Wood–Vassey et al. (2007)
[29] was instead 0.10 mag. Davis et al. adjusted for this differ-
ence by putting the Gold supernovae on the same scale as the
ESSENCE supernovae. Finally, they also added the dispersion
of 0.021 magnitude introduced by the simple offset described
above to the errors of the 30 supernovae in the HST data set.
The final supernova data base for the distance modulus µobs(z)
is shown in Figs. 7 and 8. The gamma-ray-burst (GRB) data is
from Schaefer [31].

12 Expanding Universe from Dynam-

ical 3-Space

Let us now explore the expanding 3-space from (10). Critically,
and unlike the FLRW-GR model, the 3-space expands even when
the energy density is zero. Suppose that we have a radially sym-
metric effective density ρ(r, t), modelling EM radiation, matter,
cosmological constant etc, and that we look for a radially sym-
metric time-dependent flow v(r, t) = v(r, t)r̂ from (10) (with

β = −α). Then v(r, t) satisfies the equation, with v′ =
∂v(r, t)

∂r
,

∂

∂t

(
2v

r
+ v′

)
+vv′′+2

vv′

r
+(v′)2+

α

4

(
v2

r2
+

2vv′

r

)
= −4πGρ(r, t)

(46)
Consider first the zero energy case ρ = 0. Then we have a
Hubble solution v(r, t) = H(t)r, a centreless flow, determined
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by

Ḣ +
(

1 +
α

4

)
H2 = 0 (47)

with Ḣ =
dH

dt
. We also introduce in the usual manner the

scale factor a(t) according to H(t) =
1

a

da

dt
. We then obtain the

solution

H(t) =
1

(1 + α
4
)t

= H0
t0
t

; a(t) = a0

(
t

t0

)4/(4+α)

(48)

where H0 = H(t0) and a0 = a(t0). Note that we obtain an
expanding 3-space even where the energy density is zero - this
is in sharp contrast to the FLRW-GR model for the expanding
universe, as shown below.

We can write the Hubble function H(t) in terms of a(t) via
the inverse function t(a), i.e. H(t(a)) and finally as H(z), where
the redshift observed now, t0, relative to the wavelengths at time
t, is z = a0/a− 1. Then we obtain

H(z) = H0(1 + z)1+α/4 (49)

To test this expansion we need to predict the relationship be-
tween the cosmological observables, namely the relationship be-
tween the apparent energy-flux magnitudes and redshifts. This
involves taking account of the reduction in photon count caused
by the expanding 3-space, as well as the accompanying reduction
in photon energy. To that end we first determine the distance
travelled by the light from a supernova or GRB event before de-
tection. Using a choice of embedding-space coordinate system
with r = 0 at the location of a supernova/GRB event the speed
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of light relative to this embedding space frame is c + v(r(t), t),
i.e. c wrt the space itself, as noted above, where r(t) is the
embedding-space distance from the source. Then the distance
travelled by the light at time t after emission at time t1 is de-
termined implicitly by

r(t) =

∫ t

t1

dt′(c+ v(r(t′), t′), (50)

which has the solution on using v(r, t) = H(t)r

r(t) = ca(t)

∫ t

t1

dt′

a(t′)
. (51)

This distance gives directly the surface area 4πr(t)2 of the ex-
panding sphere and so the decreasing photon count per unit
of that surface area. However also because of the expansion the
flux of photons is reduced by the factor 1/(1+z), simply because
they are spaced further apart by the expansion. The photon flux
is then given by

FP =
LP

4πr(t)2(1 + z)
(52)

where LP is the source photon-number luminosity. However usu-
ally the energy flux is measured, and the energy of each photon
is reduced by the factor 1/(1 + z) because of the redshift. Then
the energy flux is, in terms of the source energy luminosity LE,

FE =
LE

4πr(t)2(1 + z)2
≡ LE

4πrL(t)2
(53)

which defines the effective energy-flux luminosity distance rL(t).
Expressed in terms of the observable redshift z this gives an
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energy-flux luminosity effective distance

rL(z) = (1 + z)r(z) = c(1 + z)

∫ z

0

dz′

H(z′)
(54)

The dimensionless ‘energy-flux’ luminosity effective distance is
then given by

dL(z) = (1 + z)

∫ z

0

H0dz
′

H(z′)
(55)

and the theory distance modulus is defined by

µ(z) = 5 log10(dL(z)) +m. (56)

Because all the selected supernova have the same absolute mag-
nitude, m is a constant whose value is determined by fitting the
low z data. The GRB magnitudes have been adjusted to match
the supernovae data [31].

Using the Hubble expansion (49) in (55) and (56) we obtain
the middle curves (red) in Figs. 7 and the 8, yielding an excel-
lent agreement with the supernovae and GRB data. Note that
because α/4 is so small it actually has negligible effect on these
plots. But that is only the case for the homogeneous expansion -
we saw above that the α dynamics can result in large effects such
as black holes and large spiral galaxy rotation effects when the
3-space is inhomogeneous. Hence the dynamical 3-space gives
an immediate account of the universe expansion data, and does
not require the introduction of a cosmological constant or ‘dark
energy’, but which will be nevertheless discussed next.
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Figure 7: Hubble diagram showing the combined supernovae data
from Davis et al. [28] using several data sets from Riess et al.
(2007)[30] and Wood-Vassey et al. (2007)[29] (dots without error
bars for clarity - see figure 8 for error bars) and the Gamma-Ray-
Bursts data (with error bars) from Schaefer [31]. Upper curve (green)
is ‘dark energy’ only ΩΛ = 1, lower curve (black) is matter only
Ωm = 1. Two middle curves show best-fit of ‘dark energy’-‘dark-
matter’ (blue) and dynamical 3-space prediction (red), and are es-
sentially indistinguishable. However the theories make very different
predictions for the future. We see that the best-fit ‘dark energy’-
‘dark-matter’ curve essentially converges on the uniformly-expanding
parameter-free dynamical 3-space prediction. See figure 10 for com-
parison out to z = 14.
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Figure 8: Hubble diagram as in figure 7 but plotted logarithmically
to reveal details for z < 2, and without GRB data. Upper curve
(green) is ‘dark energy’ only ΩΛ = 1. Next curve (blue) is best fit
of ‘dark energy’-‘dark-matter’. Lowest curve (black) is matter only
Ωm = 1. 2nd lowest curve (red) is dynamical 3-space prediction.
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13 Expanding Universe - Non-Zero

Energy Density Case

When the energy density is not zero we need to take account of
the dependence of ρ(r, t) on the scale factor of the universe. In
the usual manner we thus write

ρ(r, t) =
ρm
a(t)3

+
ρr
a(t)4

+ Λ (57)

for matter, EM radiation and the cosmological constant or ‘dark
energy’ Λ, respectively, where the matter and radiation is ap-
proximated by a spatially uniform (i.e independent of r) equiv-
alent matter density. We argue here that Λ - the cosmological
constant or dark energy density, like dark matter, is an unneces-
sary concept. We have chosen a definition for the cosmological
constant Λ so that it has the units of matter density. Then (46)
becomes for a(t)

ä

a
+
α

4

ȧ2

a2
= −4πG

3

(ρm
a3

+
ρr
a4

+ Λ
)

(58)

giving

ȧ2 =
8πG

3

(ρm
a

+
ρr
a2

+ Λa2
)
− α

2

∫
ȧ2

a
da+ f (59)

where f is an integration constant. In terms of ȧ2 this has the
solution

ȧ2 =
8πG

3

(
ρm

(1− α
2
)a

+
ρr

(1− α
4
)a2

+
Λa2

(1 + α
4
)
+ba−α/2

)
(60)
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which is easily checked by substitution into (59), and where b is
the integration constant. Finally we obtain from (60)

t(a) = t(a0) +

∫ a

a0

da√
8πG

3

(ρm
a

+
ρr
a2

+ Λa2 + ba−α/2
) (61)

where we have re-scaled the various density parameters for no-
tational convenience. When ρm = ρr = Λ = 0, (61) reproduces
the expansion in (48), and so the density terms in (60) give the
modifications to the dominant purely spatial expansion, which
we have noted above already gives an excellent account of the
data. It is important to note that (60) has the b term - the con-
stant of integration, even when α = 0, whereas the FLRW-GR
dynamics demands, effectively, b = 0. Having b 6= 0 simply as-
serts that the 3-space can expand even when the energy density
is zero - an effect missing from FLRW-GR cosmology.

From (60) we then obtain

H(z)2 = H0
2(Ωm(1+z)3+Ωr(1+z)4+ΩΛ+Ωs(1+z)2+α/2) (62)

where

H0 =

(
8πG

3
(ρm + ρr + Λ + b)

)1/2

(63)

Ωm = ρm/(ρm + ρr + Λ + b), ... (64)

and so
Ωm + Ωr + ΩΛ + Ωs = 1. (65)

Next we discuss the strange feature of the FLRW-GR dynam-
ics which requires a non-zero energy density for the universe to
expand.
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Figure 9: Plot of the scale factor a(t) vs t, with t = 0 being
‘now’ with a(0) = 1, for the four cases discussed in the text, and
corresponding to the plots in Figs. 7 and 8: (i) the upper curve
(green) is the ‘dark energy’ only case, resulting in an exponential
acceleration at all times, (ii) the bottom curve (black) is the matter
only prediction, (iii) the 2nd highest curve (to the right of t = 0)
is the fitted ‘dark energy’ plus ‘dark-matter ’case (blue) showing a
past deceleration and future exponential acceleration effect. The
straight line plot (red) is the dynamical 3-space prediction. We see
that the best-fit ‘dark energy’ - ‘dark matter’ curve closely follows
the dynamical 3-space result. All plots have the same slope at t = 0,
i.e. the same value of H0.
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14 Deriving the Friedmann-Lemâıtre-

Robertson -Walker Metric

The induced effective spacetime metric in (37) is, for the Hubble
expansion,

ds2 = gµνdx
µdxν = dt2 − (dr−H(t)rdt)2/c2 (66)

The occurrence of c has nothing to do with the dynamics of the
3-space - it is related to the geodesics of relativistic quantum
matter, as noted above. Nevertheless changing to spatial coor-
dinate variables r′ with r = a(t)r′, and with t′ = t, we obtain

ds2 = gµνdx
µdxν = dt′2 − a(t′)2dr′2/c2 (67)

which is the usual Friedmann-Lemâıtre-Robertson-Walker (FLRW)
metric in the case of a flat spatial section. However this involves
a deceptive choice of spacetime coordinates. Consider the po-
sition of a galaxy located at r(t). Then over the time interval
dt this galaxy moves a distance dr = v(r, t)dt = H(t)r(t)dt. In
terms of the FLRW distance however the galaxy moves through
distance dr′ = d(r(t)/a(t)) = (dr(t)−H(t)r(t))/a(t) = 0. Hence
the FLRW distances involve a dynamically determined re-scaling
of the spatial distance measure so that the universe does not
expand in terms of these coordinates. We now show why the
FLRW cosmology model needs to invoke ‘dark energy’ and ‘dark
matter’ to fit the observational data.The Hilbert-Einstein (HE)
equations for a spacetime metric are

Gµν ≡ Rµν −
1

2
Rgµν = 8πGΛgµν + 8πGTµν (68)
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where Gµν is supposed to describe the dynamics of the spacetime
manifold in the presence of an energy-momentum described by
the tensor Tµν . Surprisingly, in the absence of Λ and Tµν the HE
equation, now Gµν = 0, does not have an expanding universe
solution for the metric in (67).

The stress-energy tensor is, according to the Weyl postulate,

Tµν = (ρ+ p)uµuν + pgµν (69)

Then with uµ = (1, 0, 0, 0) we obtain for the flat spacetime in
(67) the well-known Friedmann equations

ȧ2

a2
=

8πGΛ

3
+

8

3
πGρ (70)

ä

a
+

ȧ2

2a2
= 4πGΛ− 4πGp (71)

These two equations constitute the dynamical equations for the
current standard model of cosmology (ΛCDM). Even in the case
of zero-pressure ‘dust’, with p = 0, these two equations are not
equivalent to (58) (with α = 0 in this section). If ρ = 0,Λ = 0
and p = 0 then these equations give the non-expanding universe
ȧ = 0, which is not the general solution to (58) which has ȧ=
constant, and it is this solution which gives a parameter-free fit
to the supernova/GRB redshift data. If only p = 0 then these
two equations give, first from (70), and then from (70) and (71).

ȧ2

2
− 4πGΛa2

3
− 4πGρm

3a
= 0 (72)

d

dt

(
ȧ2

2
− 4πGΛa2

3
− 4πGρm

3a

)
= 0 (73)
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Whence (72) requires that the integration constant from (73)
must be zero - this is equivalent to demanding b = 0 in (60), and
in the FLRW-GR model we obtain the well known relationship

H0 =

(
8πG

3
(ρm + ρr + Λ)

)1/2

=

(
8πGρ

3

)1/2

(74)

This strict link between H0 and the energy density ρ has lead to
the so-called ‘missing mass’ problem: too little hadronic matter
had been detected to agree with the observed value of H0. The
dynamical 3-space does not have this connection between H0

and ρ.
Hence according to the FLRW-GR dynamics the universe

can only expand if at least one of Λ or ρm is non-zero. This
amounts to not modelling space itself as a dynamical system -
only the relative motion of energy/matter has any ontological
meaning: this has been the main theme of spacetime modeling
from the beginning. In dealing with this failure of the FLRW-
GR dynamics we now show that a judicious choice of ΩΛ and
Ωm can mock up the 3-space expansion, but only by introducing
an extraneous and spurious acceleration.

15 Predicting the ΛCDM Parameters

ΩΛ and ΩDM

It is argued herein that ‘dark energy’ and ‘dark matter’ arise
in the FLRW-GR cosmology because in that model space can-
not expand unless there is an energy density present in the
space, if that space is flat and the energy density is pressure-
less. Then essentially fitting the Friedmann model µ(z) to the

c©2009 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 16, No. 3, July 2009 364

Figure 10: Comparison of GR-FLRW distance modulus µ(z) with
ΩΛ = 0.73,Ωm = 1 − ΩΛ = 0.27, (blue plot), with distance modu-
lus from dynamical 3-space (red plot). The small difference, which
could not be distinguished by the observational data, over this red-
shift range demonstrates that the GR-FLRW model simulates the
parameter-free uniformly-expanding dynamical 3-space prediction.
Hence the ‘standard model’ values ΩΛ = 0.73, Ωm = 0.27 are pre-
dictable without reference to the actual supernovae/GRB magnitude-
redshift data - there is no need to invoke ‘dark energy’ nor ‘dark
matter’. The GR-FLRW model does not permit an expanding space
unless there is energy residing in the space.
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dynamical 3-space cosmology µ(z) we obtain ΩΛ = 0.73, and
so Ωm = 1 − ΩΛ = 0.27. These values arise from a best fit for
z ∈ {0, 14}, and the quality of the fit is shown in figure 10. The
actual values for ΩΛ depend on the red-shift range used, as the
Hubble functions for the FLRW-GR and dynamical 3-space have
different functional dependence on z. These values are of course
independent of the actual observed redshift data. In fitting
the Friedmann dynamics to the supernovae/GRB magnitude-
redshift data the best fit is ΩΛ = 0.73, and so Ωm = 0.27 [36],
p40. Of course since this amount of matter is much larger than
the observed baryonic matter, it is claimed that most of this
matter is the so-called ‘dark matter’. Essentially the current
standard model of cosmology ΛCDM is excluded from modelling
a uniformly expanding dynamical 3-space, but by choice of the
parameter ΩΛ the Hubble function HF (z) can be made to fit
the data. However HF (z) has the wrong functional form; when
applied to the future expansion of the universe the Friedmann
dynamics produces a spurious exponentially expanding universe.

16 Implications of the Supernovae and

Gamma-Ray-Burst Data

As already noted above the supernovae and gamma-ray-burst
data show that the universe is uniformly expanding, and that
such an expansion cannot be produced by the Friedmann GR
dynamics for a flat 3-space except by a judicious choice of the
parameters ΩΛ and Ωm = 1−ΩΛ. Nevertheless we find that the
FLRW flat 3-space spacetime metric is relevant but that it does
not satisfy the Friedmann equations. We shall now illustrate
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this by comparing the distance moduli from various choices of
the density parameters in (62). We consider four choices of
parameter values with the plots shown in Figs. 7 and 8:

(i) A pure ‘dark energy’ or cosmological constant driven ex-
pansion has Ωm = 0,Ωr = 0,ΩΛ = 1,Ωs = 0. This produces a
Hubble plot that causes too rapid an expansion, and indeed an
exponential expansion at all epochs. This choice fails to fit the
data.

(ii) A matter only expansion has Ωm = 1,Ωr = 0,ΩΛ =
0,Ωs = 0. This produces a Hubble expansion that is de-accelerat-
ing and fails to fit the data.

(iii) The ΛCDM Friedmann-GR parameters are Ωm = 0.27,
Ωr = 0,ΩΛ = 0.73,Ωs = 0. They arise from a fit to the dynam-
ical 3-space uniformly-expanding prediction as well as a best fit
to the observational data. This shows that the data is imply-
ing a uniformly expanding 3-space. The Friedmann equations
demand that Ωs = 0 in the pressure-less dust case.

(iv) The zero-energy dynamical 3-space has Ωm = 0,Ωr =
0,ΩΛ = 0,Ωs = 1, as noted above. The spatial expansion dy-
namics alone gives a good account of the data. The data cannot
distinguish between cases (iii) and (iv).

Of course the EM radiation term Ωr is non-zero but small
and determines the expansion during the baryongenesis initial
phase, as does the spatial dynamics expansion term because of
the α dependence.
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17 Age of Universe and WMAP Data

The age of the universe is of course theory dependent. From
(61) it is given in general by

t0 =

∫ 1

0

da

ȧ(t)
=

∫ ∞
0

dz

(1 + z)H(z)
(75)

and so we must choose a form for H(z), and one that models the
redshift back to the Big Bang (z =∞). However we only have,
at best, knowledge of H(z) back to say z ≈ 7. The FLRW-GR
H(z) essentially fits to the 3-space form for H(z) over a consid-
erable range of z values, as shown in figure 10, but not over the
full z-range as shown in figure 9. Indeed figure 9 shows that the
two a(t) functions do differ, but that nevertheless they give es-
sentially the same age for the universe. This is just an accident.
However as noted when applied to the future expansion another
extrapolation is employed and the FLRW-GR model predicts an
exponential expansion, while the 3-space dynamics model pre-
dicts a continuing uniform expansion. From (49), with α = 0,
we obtain t0 = 1/H0. However there will be changes to this from
including effects of baryonic matter and that when the universe
is inhomogeneous ρDM may not be small or even positive, and
would not evolve as conserved matter does as in (57).

Analysis of the CMB anisotropies by WMAP [32, 33, 34]
have given results that are consistent with the ΛCDM model.
However as noted herein that model involves a Hubble func-
tion that can also be matched by the Hubble function from the
dynamical 3-space. So the concordance between fitting the su-
pernovae/GRB data and the CMB data to the ΛCDM model
does not imply the correctness of this model. This issue has
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been discussed by Efstathiou and Brown [35], and is known as
the geometric degeneracy effect. What is most telling in this
context is more than the existence of this degeneracy effect, but
that the ΛCDM model parameters can be accurately computed
without reference to the observational data, so they are purely
artifacts of using the FLRW-GR ΛCDM model.

In this context we also note another geometric degeneracy,
namely that if we use a FRW metric with a non-flat 3-space then
the Friedmann equations now permit the term with coefficient
b in (60), but with α = 0, arises. This term, however, has
completely different origins: in the FLRW-GR cosmology it is
associated with 3-space curvature, while above it is related to
the dynamics of the flat 3-space.

So from the beginning of cosmology the flawed Friedmann
model of an expanding universe with a non-dynamical 3-space
has been employed. The neglect of the 3-space dynamics up
to now means that other methods for studying the so-called
‘dark energy’ and ‘dark matter’ need to be re-investigated: these
include Baryonic Acoustic Oscillations (BAO), Galaxy Cluster
Counting (GCC) and Weak Gravitational Lensing (WGL) [36].
In particular BAO analysis will be affected by the α-dynamics
term in (10) which can produce significant effects when the sys-
tem is inhomogeneous. Similarly the GCC and WGL are also
affected by this α-dynamics. These effects impact on the deter-
mination of the baryonic matter content and on the computed
age of the universe.
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18 Ricci Curvature from the Dynam-

ical 3-Space

We now note the form of the Ricci scalar, which is a measure of
the non-flatness of the induced spacetime metric. From either
(66) or (67) we obtain the Ricci scalar to be

R = −6

(
ȧ2

a2
+
ä

a

)
=
−96 + 24α

(4 + α)2t2
6= 0 (76)

on using, say, expression (48) for a(t). So even though the dy-
namical 3-space leads to the FLRW spacetime metric, with a
flat 3-space, the spacetime itself is not flat. Nevertheless it is
important to note that the induced spacetime has no ontological
significance - it is merely a mathematical construct.

19 Conclusions

The notion of dark energy and dark matter arose because in
the analysis of the supernovae red-shift data [7, 8] Newtonian
gravity was used in modelling the cosmological expansion of the
universe, although usually presented in the more abstract for-
malism of the FLRW-GR theory. Newtonian gravity is only
valid in special cases - such as outside of large spherical mass
systems, such as the sun. However a more general account of
gravity requires an explicit account of the dynamical 3-space,
and the universality of this account has been established by us-
ing data from bore-hole experiments, blackhole mass systematics
in star systems ranging from globular clusters to large galaxies,
light bending, spiral galaxy flat rotation curves, to the universe
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Hubble expansion. The minimal model of a classical dynamical
3-space requires two-parameters, with one being G and the other
being α. That this α is the fine structure constant is determined
from various experimental/observational data. Generalising the
Schrödinger and Dirac equations then explains the phenomenon
of gravity - gravity is an emergent phenomenon arising from
the wave-nature of quantum matter. The dynamical 3-space
theory is then shown to explain various phenomena, including
the so-called ‘dark matter’ effects - essentially these are related
to the α-dynamics that is missing from Newtonian gravity and
GR. The 3-space dynamics has an expanding flat-universe solu-
tion that gives a parameter-free account of the supernovae/GRB
data. This expansion occurs even when the energy density of the
universe is zero. In contrast the FLRW-GR expansion dynamics
only permits an expanding universe when the energy density, in
the case of a pressure-less dust, is non-zero, and also essentially
large. To fit the expanding 3-space solution a least-squares best-
fit gives ΩΛ = 0.73 and Ωm = 0.27 in the FLRW-GR model,
independent of the observational data. Not surprisingly these
are the exact values found from fitting the FLRW-GR dynam-
ics to the supernovae/GRB data. However a spurious aspect to
this is that the FLRW-GR fit generates an anomalous exponen-
tial expansion in the future, as the FLRW-GR Hubble function
has the wrong functional form. Because of the dominance of
ΩΛ = 0.73 and Ωm = 0.27 the FLRW-GR dynamics has be-
come known as the ΛCDM ‘standard’ model of cosmology. It
is thus argued that the Friedmann dynamics for the universe
has been flawed from the very beginning of cosmology, and that
the new high-precision supernova data has finally made that ev-
ident. The derived theory of gravity does away with the need
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for ‘dark energy’ and ‘dark matter’. The Friedmann dynamics
and its use as the ΛCDM standard model of cosmology has had
a long and tortuous evolution, but essentially it is Newton’s the-
ory of gravity applied to the whole universe, and so well beyond
its established regime.
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