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There are two factors responsible for the relativistic Doppler 
effect.  One of these contributions is of first-order in the 
velocity of the light source relative to the observer and is non-
relativistic in nature, but there is also a second-order 
(transverse Doppler) effect caused by the difference in rates of 
clocks at the source and in the laboratory (time dilation).  It is 
pointed out that the traditional derivation for the relativistic 
Doppler effect based on the assumed Lorentz invariance of the 
phase of light waves is too restrictive. According to the latter 
argument, when two observers in relative motion send out 
signals to one another employing an identical light source, 
their respective measured Doppler shifts should always be the 
same (totally symmetric).  However, an alternative derivation 
can also be given which indicates that the second-order 
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contribution should in fact be anti-symmetric, although this 
analysis agrees with the conclusion that the corresponding 
first-order Doppler effect is symmetric.  This is because there 
is a reciprocal relation between the ratios of the rates of the 
moving and rest clocks for the two observers.  Quantitative 
calculations of the amount of the predicted anti-symmetry in 
transverse Doppler shifts are made for several examples on the 
basis of experimental data reported for the rates of atomic 
clocks carried onboard airplanes and rockets.  Because of the 
Earth’s rotation about its polar axis, the Doppler shifts can be 
measured in principle by using exclusively land-based atomic 
clocks located at widely different latitudes.  Verification that 
the transverse Doppler frequency shifts are indeed anti-
symmetric would be a definitive confirmation that the oft-
cited symmetry principle of Einstein’s special theory of 
relativity (STR) is incorrect, namely the claim that two 
observers in relative motion should each find that his/her 
clocks run faster than the other’s.  Finally, changes in the 
formulation of relativity theory that bring it into agreement 
with modern-day observations of variations in the rates of 
clocks with state of motion are discussed with reference to the 
methodology of the Global Positioning System (GPS).  

Keywords: transverse Doppler effect, time dilation, Global 
Positioning System, objectivity of measurement, remote 
simultaneity, Alternative Lorentz Transformation (ALT). 

I. Introduction 
The relativistic Doppler effect differs from its classical counterpart in 
that there is not only a first-order effect depending on the speed of the 
source, but also one of second order.  There is thus a transverse 
Doppler effect for light waves, as first verified experimentally by Ives 
and Stilwell [1], although no analogous phenomenon has ever been 
observed for sound because of the lower speeds involved in this case.  
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There is general agreement that this second-order Doppler effect is 
directly related to the time-dilation prediction of Einstein’s special 
theory of relativity (STR [2]). 

In standard texts one finds two different derivations of the 
relativistic Doppler effect.  In the first case [2] it is assumed that the 
phase of light waves should be invariant to a Lorentz transformation 
(LT) for two different observers in relative motion, whereas in the 
other the time-dilation effect is taken into account directly [3].  In the 
following discussion attention is drawn to the relevance of 
experiments carried out to determine the rates of atomic clocks 
carried onboard airplanes [4] and rockets [5]. One knows, for 
example, that there is an East-West effect for these clocks caused by 
the Earth’s rotation about its polar axis. This result raises a critical 
question: are the transverse Doppler frequency shifts the same 
(symmetric) for observers on airplanes/rockets that are in relative 
motion when they exchange light signals, as the invariant-phase 
derivation indicates; or are they equal but of opposite sign (anti-
symmetric) as one should expect based on the other derivation [3]?  
The only definitive way to answer this question is by carrying out a 
two-way Doppler experiment in which signals are exchanged 
between observers whose proper clocks are known to run at different 
rates, something that has not yet been accomplished in previous work.  
How the proposed experiment can be carried out in practice with the 
highly accurate atomic clocks that have been developed since 
Einstein’s original paper [2] is the subject of the following discussion. 

II. Two Factors in the Relativistic Doppler 
Equations 
The phase Φ  of a simple harmonic plane wave in free space is 
defined as: 
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 tωΦ = −k ri , (1) 
where k is the wave vector and ω is the circular frequency.  The phase 

velocity is thus c
k
ω
=  (2.99792458x108 m/s), the speed of light in 

free space.  The relativistic Doppler effect has been derived [2,6] on 
the basis of the assumption that Φ  must be invariant to a Lorentz 
transformation (LT).  For the case when the light source is moving in 
the x direction along the line of observation, this means that ω and k 
transform according to the following equations: 
 ( )' xukω γ ω= −  (2a) 

 2  'x x
uk k
c

γ ω⎛ ⎞= −⎜ ⎟
⎝ ⎠

, (2b) 

where u is the speed of approach of the light source toward the 

observer and 
0 52

21
.

u
c

γ
−

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

.  In these equations the unprimed 

variables are the values measured by the observer in the laboratory 
when the source is moving ( 0u > ) relative to him, whereas the 
primed quantities are the corresponding in situ values obtained by the 
same observer when the light source is stationary ( 0u = ).  Since in 
this example, xk c kcω = = , one can rewrite these equations in a 
simpler form: 
 ( )1  'ω γω β= −  (3a) 

 ( )1  'k kγ β= − , (3b) 

with β = u/c. 
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The above equations contain two factors that are dependent on the 
speed of the light source.  For u c� , γ  is second-order in β  and 
thus in actual experiments is generally far outweighed by the (1 β− ) 
factor.  If the velocity of the light source makes an angle ϕ  with the 
line of observation, it is found that only the first-order term is affected 
( 0ϕ =  corresponds to head-on motion of the source toward the 
observer): 
 ( )1  ' cosω γω β ϕ= −  (4a) 

 ( )1  ' cosk kγ β ϕ= − . (4b) 

The corresponding transformation equations for the frequency ν  and 

wavelength λ  of the light waves ( 2ω πν=  and 2k π
λ

=  are 

therefore:   

 ( )1  ' cosνν β ϕ
γ

= −  (5a) 

 ( )1  ' cosλ γλ β ϕ= − . (5b) 

By measuring the wavelength of light for a source moving toward 
( 0ϕ = ) and away (ϕ π= ) from the observer in the laboratory and 
averaging these two values, it is possible to eliminate the first-order 
effect.  This procedure corresponds to an indirect measurement of the 

transverse Doppler effect (
2
πϕ = ), i. e. 'λ γλ= , and the 

corresponding results obtained by Ives and Stilwell [1] with this 
method were in good agreement with Einstein’s predictions [2].  The 
Mössbauer technique was used subsequently [7] to obtain a more 
precise verification of the transverse Doppler effect (to within 1%). 
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It is possible to derive eq. (5) in a more intuitive way [3] that does 
not directly involve the LT, however.  First, one assumes that the 
period of the radiation is longer at the source than in the laboratory 
because of the time-dilation effect.  By assuming that clocks run 
slower by a factor of γ  on the moving source relative to those in the 
laboratory, it follows that both the observed period 1T ν −=  and the 
associated wavelength λ  are greater by this fraction than their 
respective in situ values.  This accounts for the transverse Doppler 

effect directly (
2
πϕ = ).  It is purely a matter of time dilation on 

moving objects.  Since the source is moving relative to the waves that 
it emits, there is a second effect whenever the motion is not 
transverse, however.  If we denote the component of the source 
velocity toward the observer as ru , this means that the observed 

wavelength and period are smaller by a fraction of (1 ru
c

− ) than 

otherwise would be the case. This is the explanation for the 
(1 cosβ ϕ− ) factors in eqs. (5a,b), since cosru u ϕ= .  The latter 
result is simply that part of the Doppler effect that could be confirmed 
for sound waves in classical experiments and thus can be considered 
to be a purely non-relativistic phenomenon.  In summary, the first-
order effect in β  is solely due to the relative motion of the source to 
the observer, while that of second order arises because the rate of the 
observer’s clock is different than for those co-moving with the source. 
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III. The Generalized Version of the Relativistic 
Doppler Transformation 
Both of the above derivations of the relativistic Doppler effect arrive 
at the same conclusion, so it might be thought that there is no way to 
distinguish them experimentally.  This is certainly the case based on 
consideration of eqs. (5a,b) as they stand.  There is nonetheless a 
potential difference that needs to be explored.  The second derivation 
[3] assumes that clocks moving with the light source must run exactly 
γ  times more slowly than those in the laboratory.  However, the 
experimental data obtained for clocks on circumnavigating airplanes 
[4] demonstrate that this assumption is not generally valid.  They 
show instead that it is not possible to successfully predict the ratio of 
the rates of the respective onboard clocks simply by knowing the 
speed of the two aircraft relative to one another.  Instead, it is 
necessary in both cases to know the speed u of a given airplane 
relative to the Earth’s polar axis.  By assuming that the rate of the 
clock on the airplane is always ( )uγ  times slower than an identical 
clock located on this (non-rotating) axis, Hafele and Keating [4] were 
able to predict the relative rates of clocks located on each of two 
airplanes to within about 10% accuracy.  Vessot and Levine [5] used 
the same assumption successfully in analyzing their experimental 
results for transverse Doppler shifts of light signals emitted from a 
rocket. 

Eqs. (5a,b) are derived under the assumption that the same speed u 
is to be used in evaluating both β  and γ  therein.  For head-on 
motion of the source toward the observer ( 0ϕ = ), this allows one to 
make a simple cancellation so as to arrive at the following two 
equations: 
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0 5

1
1

.

' βν ν
β

⎛ ⎞+
= ⎜ ⎟−⎝ ⎠

 (6a) 

 
0 5

1
1

.

' βλ λ
β

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

. (6b) 

On this basis, one is forced to conclude that there is a definite 
symmetry for the Doppler effect.  If each of the airplanes in the HK 
experiment [4] were to send out light signals of identical frequency to 
the other, the Doppler shift should be exactly the same for both 
according to this analysis.   

It is sometimes argued that the above result does not follow 
directly from eqs. (2-6) because of the fact that the airplanes are not 
perfectly inertial systems (IS).  The HK analysis [4] claims, for 
example, that the non-rotating polar axis qualifies as an IS, whereas a 
point on the Earth’s surface away from the Poles does not.  The 
centrifugal acceleration ( 2RΩ ) at the Equator due to the Earth’s 
rotation is 0.04 m/s2 and it decreases with latitude χ  in direct 
proportion to 2cos χ .  Accordingly, the corresponding value at each 
of the Poles is null to be sure, but this argument nonetheless overlooks 
a critical point.  There is also acceleration caused by the Earth’s orbit 
around the Sun.  It has a magnitude of 0.006 m/s2 and is the same at 
the Poles as it is at the Equator.  It is therefore incorrect to claim that 
the non-rotating polar axes correspond to an IS and this fact raises a 
number of questions about the HK [4] interpretation.  In other words, 
where do we draw the line as to what level of acceleration is allowed 
for the purposes of choosing a reference frame from which to apply 
Einstein’s formula? 

It also needs to be pointed out that a counter-balancing force can 
always be applied in any given rest frame that makes it an IS 
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according to the accepted definition of perfectly null acceleration 
(validity of Newton’s First Law).  The HK hypothesis would have us 
believe that an observer’s measurement of relative clock rates 
depends critically on whether such a potentially miniscule force has 
been applied to his detector or not.  The IS argument that is used to 
explain why the slowing of clock rates is only predicted correctly 
when speeds are taken relative to the non-rotating polar axis is 
therefore specious.  Consequently, one needs to find another 
explanation for the uniqueness of the polar axis for this determination, 
and this has been done in a companion publication [8].   

The key point in the present context is that there is no justification 
whatsoever for using the HK argument about the uniqueness of the 
polar axis as an IS to invalidate the use of eqs. (2-6) for the proposed 
two-way Doppler experiment. The relative speed (β ) of the other 
airplane in the HK experiment [4] is obviously the same in each case, 
so since the in situ value for the frequency ( 'ν ) of their respective 
light signals is also identical, it follows from eq. (6a) that the 
observers on both airplanes must measure exactly the same value ν  
for the frequency of the other’s signals.  In other words, STR and the 
LT predict unequivocally that the relativistic Doppler effect is totally 
symmetric. 

Consideration of the alternative derivation based on the time-
dilation effect indicates that the above relationship is not totally 
symmetric, however.  Even though the (1 cosβ χ− ) factor in eqs. 
(5a,b) is clearly the same for both airplanes, the situation is different 
for the second-order (time-dilation) effect.  Let us assume, for 
example, that the observer’s clocks on one of the airplanes run Oα  
times slower than the reference clock mentioned above for the HK 
experiment [4].  If identical clocks on the second airplane run Mα  
times slower than the same reference clock, it is necessary to modify 
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eqs. (5a,b) as follows in order to be consistent with the time-dilation 
effect: 

 O

M 1
'
cos

α νν
α β ϕ

=
−

 (7a) 

 ( )M

O

1' cosαλ λ β ϕ
α

= − . (7b) 

This is the generalization of the relativistic Doppler transformation.  It 
assumes that measurement is objective and rational [9], and therefore 
that the rates of the two clocks are always in the same proportion 
independent of who the observer is in a given case.  This is the main 
distinction between eqs. (7a,b) and the invariant-phase result of eqs. 
(5a,b).  Because of the assumption of Lorentz invariance in the latter’s 
derivation, it is necessary to conclude that measurement is subjective, 
in particular that two observers may disagree as to which of two 
clocks is running slower than the other. 

More details about the definition of the “clock-rate parameters” 
Oα  and Mα  in eqs. (7a,b) may be found elsewhere [8].  The latter 

relations reduce to eqs. (5a,b) in the special case when the light source 
has been accelerated to speed u relative to the observer in the 
laboratory ( Mα γ=  when O 1α = , for example).  More importantly in 
the present context, however, this analysis indicates that if the roles 
are reversed for the two airplanes, that is, if the subscripts M and O 
are interchanged in eqs. (7a,b), the results for ν  and λ  do not remain 
the same.  The first-order effect in β  is symmetric with respect to 
such an exchange, but the ratio of clock rates is not.  There is clearly 
a reciprocal relation between the latter factors for the two airplane 
observers if we assume that measurement is objective [9]. 
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The reasoning behind the conclusion that the phase Φ  in eq. (1) 
must be Lorentz invariant overlooks a basic fact.  Since kcω =  and 

' 'k cω =  because of the constancy of the speed of light, it follows 
that there is a free parameter in the Lorentz invariance condition that 
is invariably omitted from consideration in discussions of this point, 
namely: 
 ( )2 2 2 2 2 2 2' 'k c k cω ε ω− = − . (8) 

The value of ε  is completely undetermined in this equation because 
of the constancy of the speed of light in both rest frames, whereas the 
phase argument for the Doppler effect assumes the only allowed 
value for it is 1ε = .  An analogous degree of freedom exists for the 
relativistic space-time transformation, as was first pointed out by 
Lorentz [10] several years before Einstein’s seminal work [2].  In this 
case, the Lorentz invariance condition proves to be incompatible with 
the principle of remote simultaneity of events that is essential to the 
workings of the GPS methodology.  This observation eliminates the 
LT as a physically viable space-time transformation [11,12].  Eq. (8) 
is compatible with eqs. (7a-b) for any values of the clock-rate 
parameters Oα  and Mα  (and also for any value of ε ) since 

'
'

c
k k
ω ωνλ = = =  in all cases. 

IV. Numerical Examples 
The points discussed above can best be illustrated with some 
numerical examples.  One airplane E heads in an easterly direction 
with a ground speed of 1000 kmh, while another (W) heads westerly 
with the same ground speed.  Their relative speed is thus 555.6 m/s.  
They each send out light signals to the other with an in situ frequency 
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'ν .  The Doppler shift 'ν ν νΔ = −  caused by the ( ) 11 cosβ ϕ −
−  

factor in eq. (7a) is the same for observers on both airplanes.  There is 

a positive (first-order) shift of 
'
ν
ν
Δ

= 1.853x10-6 for each of them.  In 

order to compute the additional factor due to time dilation, it is 
necessary to know the rotational speed of the Earth around its polar 
axis.  Let us assume that this value is 1500 kmh in the easterly 
direction in the present example.  The speed of airplane E relative to 
the polar axis is thus 2500 kmh, whereas that of W is only 500 kmh.  
According to the Hafele-Keating analysis [4], the onboard clocks on 
E are running slower than the reference clock on the polar axis by the 
factor of E 1α = + 2.6829x10-12 on this basis, i.e. γ (u = 2500 kmh).  
The corresponding factor for the W clocks is W 1α = + 1.0730x10-13, 

so that the ratio O E

M W

α α
α α
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 in eq. (7a) for the observer on airplane 

E is 1+ 2.5758x10-12.  The corresponding ratio for the observer on 
airplane W is the reciprocal of this value.  When they exchange 
signals, E observes a blue shift ( )E 0νΔ > , whereas W observes a 
red shift of the same magnitude.  The fractional transverse Doppler 

shift 2

'
ν
ν
Δ  for their respective measured frequencies is therefore: 

 
( ) ( )2 2E W
' '

ν ν
ν ν

Δ −Δ
= =2.5758x10-12. (9) 

The key point is that according to eq. (7a), this second-order 
(transverse Doppler) shift is anti-symmetric for the two observers 
rather than being in the same direction for both.  In addition, it is 
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important to note that the relative speed of E and W does not enter 
directly into the computation. 

In the above example the clocks on the ground (Earth’s surface) 
are moving with a speed of 416.67 m/s relative to the polar axis.  The 

M

O

α
α

 ratio for signals emanating from airplane E that are received by 

an observer G on the ground is thus 1+1.7171x10-12.  If identical 
signals are sent from the ground to airplane E, the respective 
transverse Doppler frequency shifts are thus: 

 
( ) ( )2 2E G
' '

ν ν
ν ν

Δ −Δ
= =1.7171x10-12. (10) 

In order to obtain this result in practice, a gravitational correction 
must be applied to the measured frequencies, consistent with the 
procedure employed in the HK study [4].  The first-order (non-
relativistic) Doppler effect must also be eliminated in the actual 
measurements to be consistent with the above formulas.  This can be 
done experimentally with transponder devices by employing a 
method used by Vessot and Levine [5] in their experiments with 
atomic clocks carried onboard a rocket in flight.  After both the 
gravitational and the first-order Doppler corrections are made, the 
(adjusted) frequency shift ( )2 EνΔ  should be positive by the 
fractional amount in eq. (10), whereas the corresponding value 

( )2 GνΔ  that the observer on the ground measures for the signals 
with the same in situ value that arrive from airplane E should be 
negative.  The underlying reason for this anti-symmetry is the fact 
that the onboard clocks aboard E are known [4, 5] to run slower than 
those located on the Earth’s surface after the difference in 
gravitational potential is taken into account. 
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V. The Earth as Rocket Ship 
The Doppler experiments discussed in the previous section can be 
carried out without the use of airplanes or rockets.  One simply needs 
two laboratories located on the Earth’s surface at greatly different 
latitudes to accomplish the same purpose.  For example, a clock 
located at the Equator is moving at a speed of 463 m/s relative to one 
at either Pole.  Thus a laboratory (M) near the Equator can play the 
role of the rocket ship in the Twin Paradox in the proposed 
experiment, whereas that at the Pole (O) corresponds to the station 

from which the flight originated.  The key M

O

α
α

 ratio in eqs. (7a,b) 

thus has a value of 1+1.1926x10-12 in the proposed experiment.  A 
transverse Doppler blue shift ( 2νΔ ) of this amount should thus be 
observed at the Equator, whereas a red shift of the same magnitude 
should be measured at the polar laboratory if the assumption that the 
time dilation effect is anti-symmetric (reciprocal) is correct.  If one 
assumes instead that the effect is governed solely by the Lorentz 
invariance condition, as discussed in Sect. II, there should be a red 
(negative) transverse Doppler shift of the above magnitude for each 
observer, i.e. using u = 463 m/s in eq. (4a).  There is thus a clear 
difference in the predictions of the two theories. 

Carrying out the proposed experiment in Earth-based laboratories 
has distinct advantages over using airplanes or rockets.  Clearly, it is 
much easier to obtain optimal stabilities for the various atomic clocks 
if they are land-based.  In addition, it is possible to minimize the 
influence of the gravitational red shift on the respective frequencies 
by having the two laboratories at close to the same gravitational 
potential.  The usual gravitational correction ( GνΔ ) would have to be 
made in any case.  This contribution to the frequency shift is also 
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assumed to be anti-symmetric in character, whereby a blue shift 
would be observed at the laboratory located at lower altitude, as 
demonstrated by the experiments of Pound and coworkers [13].  If the 

difference in altitude is equal to h, G
2'

gh
c

ν
ν
Δ

= , where g is the 

acceleration due to gravity at the Earth’s surface.  
One problem that is not present when airplanes are used is that the 

light signals cannot generally be exchanged in straight lines between 
the two laboratories.  At least in principle, this is akin to making a 
telephone call between them.  The signals have to be transmitted with 
the aid of a transponder device on an appropriately located satellite 
that is already available for telecommunication purposes.  The key 
point is that both laboratories must be equipped with their own 
transmission and detection devices so that a “two-way” Doppler 
experiment is achieved.  This includes a device in each laboratory that 
can be used to determine the magnitude of the first-order Doppler 
shift from the incoming frequency.  Vessot and Levine [5] dealt with 
this problem by transmitting a light signal to a transponder on the 
rocket and then measuring the frequency shift as it returned to the 
laboratory.  In this way both the transverse Doppler and gravitational 
shifts are eliminated since the signal is emitted and detected at 
virtually the same point in space with a negligible time delay.  The 
value of 1νΔ  is just one-half of the latter frequency shift.  Since two 
laboratories (O and M) are involved in the proposed experiment, a 
first-order shift needs to be measured for each of them ( 1OνΔ  and 

1MνΔ ) relative to the communicating satellite.  The total first-order 
Doppler shift ( 1νΔ ) is the sum of these two quantities and is the same 
for both laboratories. 



 Apeiron, Vol. 16, No. 2, April 2009 218 

© 2009 C. Roy Keys Inc. — http://redshift.vif.com 

The observed fractional shift 
'
ν
ν
Δ  for light signals of standard 

frequency 'ν  exchanged between the two laboratories is equal to: 

 1O 1M 2 G

' '
ν ν ν νν

ν ν
Δ + Δ +Δ +ΔΔ

= . (11) 

According to the Lorentz-invariant theory of eq. (4a), 2νΔ  is the same 
for both laboratories. In the other case [see eq. (7a)], a blue shift is 
expected for the laboratory closer to the Equator and a red shift of 
equal magnitude for the other.  The rotational speed of each 
laboratory depends on its latitude Iχ .  If we use the polar axis as 
reference, each clock-rate parameter Iα  in eq. (7a) is given by (R is 
the radius of the Earth and Ω  is its rotational frequency): 

 

2
I

I 1
2

cosR
c

χ

α

Ω⎛ ⎞
⎜ ⎟
⎝ ⎠= + . (12) 

As already stated, the maximum value possible for 2

'
ν
ν
Δ  on this basis 

is 1.1926x10-12, i.e. for laboratories located at the Equator and one of 
the Poles.  It is proportional to ( )2

M Ocos cosχ χ−  in the Lorentz-
invariant theory of eq. (4a), in which case the result is invariant to an 
exchange of detector and source location (O and M).  According to 
eq. (7a), however, it is proportional to 2 2

M Ocos cosχ χ− , which is 
clearly anti-symmetric with respect to such an exchange.  The value 

of G

'
ν
ν
Δ  in eq. (11) can be accurately computed and is potentially 

negligible in any event.  The magnitudes of the first-order shifts 
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( 1O 1Mν νΔ + Δ ) should be minimized by the nearly transverse motion 

of the satellite [
2
πϕ =  in eq. (7a)] and are to be determined by 

experiment.  The time delay for signals to be transmitted between 
each laboratory and the communicating satellite needs to be taken into 
account in the determination of the first-order corrections, but this can 
presumably be accomplished to sufficient accuracy by carrying out 
the measurements of these quantities on a continuous basis during the 
course of the experiment. 

Measurement of a frequency shift 
'
ν
ν
Δ  of the order of one part in 

1012 is certainly feasible with present-day atomic clocks.  This is not a 
“null” experiment in which one looks for deviations from a specific 
result such as the speed of light in free space or the existence of decay 
positrons from protons.  A definite value for the frequency shift at 
each laboratory can be observed that is outside the error limits of the 
measurement.  The proposed experiment is thus a potentially 
definitive one.  The 2νΔ  shifts should not be time-dependent, unlike 
the case when airplanes or rockets are used.  

If the two transverse Doppler shifts ( )2 MνΔ  and ( )2 OνΔ  both 
have the same value (in magnitude and direction), it would be a 
stunning verification of the theory (STR) that two clocks in relative 
motion can each be running slower than the other at the same time.  
This result is predicted by the invariant-phase derivation of the 
transverse Doppler effect that is based on the assumption of Lorentz 
invariance for every inertial system.  As safe as this assumption might 
seem to some, it is in fact not supported by the results of the HK 
experiments [4].  The latter indicate that clocks run more slowly at the 
Equator (M) than they do at the Earth’s Poles (O), from which one 
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must conclude that a second-order red shift will be observed at the 
latter position and a blue one at the other.  The HK formula [eq. (4) of 
ref. [4]] is derived on the assumption that the ratio of clock rates can 
be determined solely from knowledge of the respective altitudes and 
speeds of the laboratories relative to the Earth’s polar axis.  That is a 
quantitative indication in itself that measurement is totally objective 
and rational [9], contrary to what is assumed in STR on the basis of 
the Lorentz-invariant phase derivation of the Doppler effect. 

VI. GPS Simulation of the Two-way Experiment 
The GPS navigation technology makes use of a procedure for atomic 
clocks that can also be applied for the proposed Doppler 
measurements.  The frequency of a clock to be carried onboard a GPS 
satellite is “pre-corrected” prior to launch so that upon reaching orbit 
it will be exactly equal to that of an identical clock left behind on the 
ground.  In this way one can directly compare the timing results 
obtained at both positions in order to accurately measure elapsed 
times for light signals passing between them.   

In an analogous way, the frequencies of the source and detector 
located at one latitude can be adjusted so as to return to their original 
values upon being transported to the other latitude in the experiment.  
For example, let us assume that clocks run Q times slower at the 
Equator (E) than at the latitude of the other laboratory (A).  One 
would adjust the frequencies downward by this amount while the 
source and detector are still at the Equator.  Upon moving to A their 
rates will speed up by the same factor, with the end result that they are 
brought back to their original values at E.  A two-way Doppler 
experiment can then be carried out using the “equatorial” source and 
detector along with their counterparts running at the normal rate for 
location A.  This procedure obviously eliminates both the first-order 



 Apeiron, Vol. 16, No. 2, April 2009 221 

© 2009 C. Roy Keys Inc. — http://redshift.vif.com 

Doppler and gravitational shifts because all detectors and light 
sources are at rest at the same location.   

Experience with the GPS technology indicates that the transport of 
the atomic clocks by itself has no significant effect on their rates.  The 
pre-correction is done on the ground simply because it is inconvenient 
to adjust frequencies on an orbiting satellite.  In the present case it is 
clearly easier to alter the frequencies of the clocks in laboratory A and 
avoid the transport phase entirely.  When signals are exchanged 
between the two sets of devices under these circumstances, it is 
obvious what will happen.  The detector running at the lower 
frequency will record a blue shift for a signal coming from the 

uncompensated light source, i.e. 2 1
'

Qν
ν
Δ

= −  ( 1Q > ).  The 

corresponding shift for the other detector will be equal in magnitude 

but opposite in sign ( 2 1
'

Qν
ν
Δ

= − ) because its frequency is Q times 

greater than for the source with the compensated value.  One can 
choose a larger value for Q than is appropriate when the source and 
detector are actually located at different latitudes on the Earth’s 
surface, thereby making it easier to measure the Doppler shifts under 

the simulated conditions.  By construction, Q is equal to the ratio O

M

α
α

 

in eq. (7a), so the expected result is obviously consistent with this 
formula as well as with the predicted anti-symmetry/reciprocity of the 
theory from which it is derived. 

VII. Conclusion 
The relativistic Doppler effect is governed by two separate factors 
that have quite distinct characteristics.  When two observers send out 
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light signals to one another, there is a first-order Doppler shift that is 
the same for both since it only depends on their relative speed.  There 
is also a second-order contribution, however, which potentially 
destroys this symmetry.  It is proportional to the ratio of the rates of 
clocks co-moving with them.  As such, there is a reciprocal rather 
than a symmetric relationship for the two observers for this portion of 
the Doppler effect.  The value of the clock-rate ratio in a given case 
depends on a number of factors, as demonstrated by the experiments 
carried out with circumnavigating airplanes by Hafele and Keating 
[4].  Specifically, it is not always equal to the γ  factor that appears in 
the conventional derivation of the Doppler effect based on the 
assumption that the phase of an electromagnetic plane wave must be 
invariant with respect to a Lorentz transformation.   

The predicted anti-symmetry in the second-order Doppler effect is 
perfectly consistent with the relativity principle.  The latter only 
requires that the in situ frequency of a given light source be 
independent of the state of motion, as guaranteed by the general 
expressions given in eqs. (7a,b).  In this case the clock-rate parameters 

Mα  and Oα  are necessarily equal and of course 0β = , so that 'ν ν=  
and 'λ λ=  in any such application.  Experimental verification of the 
predicted asymmetry is critical since it would prove that that the LT is 
not a valid space-time transformation [11,12] and that the precept of 
STR that “everything is relative” is actually of much more limited 
validity than is widely assumed.  If the clocks on an airplane are 
known to run more slowly than those on the ground, for example, 
there shouldn’t be any question that those on the ground must 
therefore be running faster than the ones on the airplane.  Indeed, the 
GPS methodology could not function properly if it was not perfectly 
clear that this simple rule holds [11].  The time-dilation effect proves 
that the unit of time varies from one inertial system to another, as do 
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those for other physical quantities such as energy and inertial mass.  
The relativistic Doppler effect can be very useful in obtaining 
accurate determinations of the ratios of these units for different rest 
frames.   
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