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In this paper we show how relativistic tensor dynamics

and relativistic electrodynamics can be formulated in a bi-

quaternion tensor language. The treatment is restricted

to mathematical physics, known facts as the Lorentz Force

Law and the Lagrange Equation are presented in a rela-

tively new formalism. The goal is to fuse anti-symmetric

tensor dynamics, as used for example in relativistic electro-

dynamics, and symmetric tensor dynamics, as used for ex-

ample in introductions to general relativity, into one single

formalism: a specific kind of biquaternion tensor calculus.
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Introduction

We start by quoting Yefremov. One can say that space-
time model and kinematics of the Quaternionic Relativity are

c©2008 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 15, No. 4, October 2008 359

nowadays studied in enough details and can be used as an effec-
tive mathematical tool for calculation of many relativistic effects.
But respective relativistic dynamic has not been yet formulated,
there are no quaternionic field theory; Q-gravitation, electromag-
netism, weak and strong interactions are still remote projects.
However, there is a hope that it is only beginning of a long way,
and the theory will mature. [1]

We hope that the content of this paper will contribute to the
project described by Yefremov.

Quaternions can be represented by the basis (1, I,J,K). This
basis has the properties II = JJ = KK = −1; 11 = 1;
1K = K1 = K for I,J,K; IJ = −JI = K; JK = −KJ = I;
KI = −IK = J. A quaternion number in its summation repre-
sentation is given by A = a01 + a1I + a2J + a3K, in which the
aµ are real numbers . Biquaternions or complex quaternions in
their summation representation are given by

C = A + iB =

(a0 + ib0)1 + (a1 + ib1)I + (a2 + ib2)J + (a3 + ib3)K =

a01 + a1I + a2J + a3K + ib01 + ib1I + ib2J + ib3K, (1)

in which the cµ = aµ + ibµ are complex numbers and the aµ and
bµ are real numbers. The complex conjugate of a biquaternion

C is given by C̃ = A − iB. The quaternion conjugate of a
biquaternion is given by

C† = A† + iB† =

(a0 + ib0)1 − (a1 + ib1)I − (a2 + ib2)J − (a3 + ib3)K. (2)

In this paper we only use the complex conjugate of biquater-
nions.
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Biquaternions or complex quaternions in their vector repre-
sentation are given by

Cµ =




c01

c1I

c2J

c3K


 , (3)

or by
Cµ = [c01, c1I, c2J, c3K] (4)

We apply this to the space-time four vector of relativistic
biquaternion 4-space Rµ as

Rµ =




ict1
r1I

r2J

r3K


 =




ir01

r1I

r2J

r3K


 . (5)

The space-time distance s can be defined as R̃µRµ, or

R̃µRµ = [−ict1, r1I, r2J, r3K] [ict1, r1I, r2J, r3K] , (6)

giving

R̃µRµ = c2t21 − r2

1
1 − r2

2
1 − r2

3
1 = (c2t2 − r2

1
− r2

2
− r2

3
)1. (7)

So we get R̃µRµ = s1 with the usual

s = c2t2 − r2

1
− r2

2
− r2

3
= r2

0
− r2

1
− r2

2
− r2

3
(8)

providing us with a (+,−,−,−) signature.
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Adding the dynamic vectors

The basic definitions we use are quite common in the usual
formulations of relativistic dynamics, see [2], [3]. We start with
an observer who has a given three vector velocity as v, a rest
mass as m0 and an inertial mass mi = γm0, with the usual
γ = (

√
1 − v2/c2)−1. We use the Latin suffixes as abbreviations

for words, not for numbers. So mi stands for inertial mass and Up

for potential energy. The Greek suffixes are used as indicating
a summation over the numbers 0, 1, 2 and 3. So Pµ stands
for a momentum four-vector with components p0 = 1

c
Ui, p1, p2

and p3. The momentum three-vector is written as p and has
components p1, p2 and p3.

We define the coordinate velocity four vector as

Vµ =
d

dt
Rµ =




ic1
v1I

v2J

v3K


 =




iv01

v1I

v2J

v3K


 . (9)

The proper velocity four vector on the other hand will be defined
using the proper time t0, with t = γt0, as

Uµ =
d

dt0
Rµ =

d
1

γ
dt

Rµ = γVµ =




iγc1
γv1I

γv2J

γv3K


 . (10)

The momentum four vector will be

Pµ = miVµ = m0Uµ. (11)
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We further define the rest mass density as

ρ0 =
dm0

dV0

, (12)

so with

dV =
1

γ
dV0 (13)

and the inertial mass density as

ρi =
dmi

dV
(14)

we get, in accordance with Arthur Haas’ 1930 exposition on
relativity ([4], p. 365),

ρi =
dmi

dV
=

dγm0

1

γ
dV0

= γ2ρ0. (15)

The momentum density four vector will be defined as

Gµ =




i1

c
ui1

g1I

g2J

g3K


 =




ig01

g1I

g2J

g3K


 , (16)

in which we used the inertial energy density ui = ρic
2. For this

momentum density four vector we have the variations

Gµ =
d

dV
Pµ =

dmi

dV
Vµ = ρiVµ = γ2ρ0Vµ = γρ0Uµ = γGproper

µ .

(17)
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The four vector partial derivative ∂µ will be defined as

∂µ =




−i 1

c
∂t1

∇1I

∇2J

∇3K


 ≡

∂

∂Rµ

. (18)

The electrodynamic potential four vector will be defined as

Aµ =




i1

c
φ1

A1I

A2J

A3K


 =




iA01

A1I

A2J

A3K


 . (19)

The electric four current density will be given by

Jµ =




icρe1

J1I

J2J

J3K


 =




iJ01

J1I

J2J

J3K


 = ρeVµ, (20)

with ρe as the electric charge density.

Adding the dynamic vector products, scalars

The dynamic Lagrangian density L can be defined as

L = −Ṽ νGν = −(ui − v · g)1 = −u01 (21)

and the accompanying Lagrangian L as

L = −Ṽ νP ν = −(Ui − v · p)1 = −
1

γ
U01, (22)
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with u0 as the rest system inertial energy density and U0 as the
rest system inertial energy. The latter is the usual Lagrangian
of a particle moving freely in empty space.

The Lagrangian density of a massless electric charge density
current in an electrodynamic potential field can be defined as

L = −J̃νAν = −(ρeφ − J · A)1. (23)

On the basis of the Lagrangian density we can define a four
force density as

fµ ≡
∂L

∂Rµ

= ∂µL = −∂µu0. (24)

In the special case of a static electric force field, and without the
densities, the field energy is U0 = qφ0 and the relativistic force
reduces to the Coulomb Force

F = −∇U0 = −q∇φ0. (25)

Using L = −Ṽ νGν the relativistic four force density of Eq.(24)
can be written as

fµ = −∂µṼ νGν . (26)

We can define the absolute time derivative d
dt

of a continuous,
perfect fluid like, space/field quantity through

−V µ∂̃µ = −Ṽ µ∂µ = v · ∇ + ∂t1 =
d

dt
1. (27)

Thus we can define the mechanic four force density as

fµ ≡
d

dt
Gµ = −(V ν ∂̃ν)Gµ = −V ν(∂̃νGµ), (28)
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using the fact that biquaternion multiplication is associative.

Adding the dynamic vector products, tensors

The mechanical stress energy tensor, introduced by Max von
Laue in 1911, was defined by him as ([5], [6], p.150)

T ν
µ = ρ0U

νUµ. (29)

Pauli gave the same definition in his standard work on relativity
([2], p. 117). With the vector and density definitions that we
have given we get

T ν
µ = ρ0U

νUµ = γ2ρ0V
νVµ = ρiV

νVµ = V νρiVµ = V νGµ. (30)

So the mechanical stress energy tensor can also be written as

T ν
µ = V νGµ. (31)

In the exposition on relativity of Arthur Haas, the first defi-
nition ρ0U

νUµ is described as the ”Materie-tensor” of General
Relativity, while ρiV

νVµ is described as the ”Materie-tensor” of
Special Relativity ([4], p. 395 and p. 365).

Although the derivation seems to demonstrate an equiva-
lence between the two formulations of equation (29) and equa-
tion (31), the difference between the two is fundamental. Equa-
tion (29) is symmetric by definition, while equation (31) can be
asymmetric, because, as von Laue already remarked in 1911, V ν

and Gµ do not have to be parallel all the time ([5], [6] p. 167)
This crucial difference between ρ0U

νUµ and V νGµ was also dis-
cussed by de Broglie in connection with his analysis of electron
spin ([7], p. 55). In our context, where we want to fuse the
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symmetric and antisymmetric formalism into one, we prefer the
stress energy density tensor of equation (31), the one called the
”Materie-tensor” of Special Relativity by Arthur Haas.

So the stress energy density tensor T ν
µ can be given as T ν

µ =

Ṽ νGµ and gives

T ν
µ = [−iv01, v1I, v2J, v3K]




ig01

g1I

g2J

g3K


 =




v0g01 iv1g0I iv2g0J iv3g0K

−iv0g1I −v1g11 −v2g1K v3g1J

−iv0g2J v1g2K −v2g21 −v3g2I

−iv0g3K −v1g3J v2g3I −v3g31


 (32)

Its trace is T νν = Ṽ νGν = −L.
In relativistic dynamics we have a usual force density defi-

nition through the four derivative of the stress energy density
tensor

∂νT ν
µ = −fµ (33)

or
∂νV νGµ = −fµ (34)

We want to find out if these equations still hold in our biquater-
nion version of the four vectors, tensors and their products.

We calculate the left hand side and get for ∂νT ν
µ = ∂ν Ṽ νGµ:
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[
−

i

c
∂t1,∇1I,∇2J,∇3K

]




v0g01 iv1g0I iv2g0J iv3g0K

−iv0g1I −v1g11 −v2g1K v3g1J

−iv0g2J v1g2K −v2g21 −v3g2I

−iv0g3K −v1g3J v2g3I −v3g31


 (35)

which equals




−i1

c
∂tv0g01 − i∇1v1g01 − i∇2v2g01 − i∇3v3g01

−1

c
∂tv0g1I −∇1v1g1I −∇2v2g1I −∇3v3g1I

−1

c
∂tv0g2J −∇1v1g2J −∇2v2g2J −∇3v3g2J

−1

c
∂tv0g3K −∇1v1g3K −∇2v2g3K −∇3v3g3K




= −




i(1

c
∂tv0g0 + ∇1v1g0 + ∇2v2g0 + ∇3v3g0)1

(1

c
∂tv0g1 + ∇1v1g1 + ∇2v2g1 + ∇3v3g1)I

(1

c
∂tv0g2 + ∇1v1g2 + ∇2v2g2 + ∇3v3g2)J

(1

c
∂tv0g3 + ∇1v1g3 + ∇2v2g3 + ∇3v3g3)K


 (36)
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Using the chain rule this leads to

∂νT ν
µ = −




i(1

c
v0∂tg0 + v1∇1g0 + v2∇2g0 + v3∇3g0)1

(1

c
v0∂tg1 + v1∇1g1 + v2∇2g1 + v3∇3g1)I

(1

c
v0∂tg2 + v1∇1g2 + v2∇2g2 + v3∇3g2)J

(1

c
v0∂tg3 + v1∇1g3 + v2∇2g3 + v3∇3g3)K


 −




i(1

c
(∂tv0)g0 + (∇1v1)g0 + (∇2v2)g0 + (∇3v3)g0)1

(1

c
(∂tv0g1) + (∇1v1)g1 + (∇2v2)g1 + (∇3v3)g1)I

(1

c
(∂tv0g2) + (∇1v1)g2 + (∇2v2)g2 + (∇3v3)g2)J

(1

c
(∂tv0g3) + (∇1v1)g3 + (∇2v2)g3 + (∇3v3)g3)K




= −(
1

c
v0∂t + v1∇1 + v2∇2 + v3∇3)




ig01

g1I

g2J

g3K




−(
1

c
∂tv0 + ∇1v1 + ∇2v2 + ∇3v3)




ig01

g1I

g2J

g3K




= (Ṽ ν∂ν)Gµ + (∂ν Ṽ ν)Gµ(37)

This can be abbreviated to

∂ν(Ṽ νGµ) = (Ṽ ν∂ν)Gµ + (∂ν Ṽ ν)Gµ (38)

So
∂νT ν

µ = (Ṽ ν∂ν)Gµ + (∂ν Ṽ ν)Gµ. (39)

We have Ṽ ν∂ν = − d
dt

and if we assume the bare particle velocity

continuity equation ∂ν Ṽ ν = 0, then we get

∂νT ν
µ = −

d

dt
Gµ = −fµ. (40)
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Electrodynamic vector products

If we apply this to the case in which we have a purely elec-
tromagnetic four momentum density Gµ = ρeAµ then we have

L = −Ṽ νGν = −Ṽ νρeA
ν = −J̃νAν , (41)

and
T ν

µ = Ṽ νGµ = J̃νAµ. (42)

The relativistic force equation

∂νT ν
µ = (Ṽ ν∂ν)Gµ + (∂ν Ṽ ν)Gµ. (43)

can be given its electrodynamic expression as

∂νT ν
µ = (J̃ν∂ν)Aµ + (∂ν J̃ν)Aµ. (44)

If the charge density current continuity equation ∂ν J̃ν = 0 can
be applied, then this reduces to

∂νT ν
µ = (J̃ν∂ν)Aµ = (Jν ∂̃ν)Aµ = Jν(∂̃νAµ). (45)

The electrodynamic force field tensor Bν
ν is given by

Bν
µ = ∂̃νAµ. (46)

In detail this reads

Bν
µ =

[
i
1

c
∂t1,∇1I,∇2J,∇3K

]



i1

c
φ1

A1I

A2J

A3K


 =




− 1

c2
∂tφ1 i1

c
∇1φI i1

c
∇2φJ i1

c
∇3φK

i1

c
∂tA1I −∇1A11 −∇2A1K ∇3A1J

i1

c
∂tA2J ∇1A2K −∇2A21 −∇3A2I

i1

c
∂tA3K −∇1A3J ∇2A3I −∇3A31


 (47)
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To see that this tensor leads to the usual EM force field biquater-
nion, we have to rearrange the tensor terms according to their
biquaternionic affiliation, so arrange them according to the basis
(1, I,J,K). This results in




(− 1

c2
∂tφ −∇1A1 −∇2A2 −∇3A3)1

(∇2A3 −∇3A2 + i1

c
∇1φ + i 1

c
∂tA1)I

(∇3A1 −∇1A3 + i1

c
∇2φ + i1

c
∂tA2)J

(∇1A2 −∇2A1 + i1

c
∇3φ + i 1

c
∂tA3)K


 (48)

This equals

Fµ =




∂̃νAν1

(B1 − i1

c
E1)I

(B2 − i1

c
E1)J

(B3 − i1

c
E1)K


 =




F01

F1I

F2J

F3K


 . (49)

For this biquaternion to be the exact match with the stan-
dard EM force field, one has to add the Lorenz gauge condi-
tion F0 = ∂̃νAν = 0. (If F0 6= 0, then the usual biquaternion
expressions for the Lorentz Force and the two inhomogenious
Maxwell Equations contain extra terms. The biquaternion for-
malism demonstrated in this paper doesn’t involve these extra
terms.) The operation of rearranging the tensor terms according
to their biquaternion affiliation is external to the mathematical
physics of this paper. We try to develop a biquaternion version
of relativistic tensordynamics. The above operation destroys
the tensor arrangement of the terms involved. It is alien to the
system we try to develop in this context. It may be a useful op-
eration in others areas though, for example in quantum physics.
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The electrodynamic force field tensor B ν
µ can also be given

by
B ν

µ = ∂̃µAν . (50)

This leads to the same EM force field biquaternion.
The combination of Eq.(45) and Eq.(46) leads to

∂νT ν
µ = JνBν

µ, (51)

which is valid if charge is conserved so if ∂ν J̃ν = 0.
We can write Eq.(45) also as

∂νT ν
µ = (J̃ν∂ν)Aµ = ρe(Ṽ

ν∂ν)Aµ = −ρ
d

dt
Aµ. (52)

The two EM force expression we gave in this and the previous
sections based on fµ = −∂νT ν

µ and fµ = ∂µL do not result in the
well known Lorentz Force. But we can establish a relationship
between these force expressions and the Lorentz Force.

The Lorentz Force Law

The relativistic Lorentz Force Law in its density form is given
by the expression

fµ = Jν(∂̃νAµ) − (∂µÃν)Jν , (53)

or
fµ = JνBν

µ − (∂µÃν)Jν . (54)

This expression matches, qua terms involved, the standard rel-
ativistic Lorentz Force Law. It doesn’t have the problem of the
extra terms that are usually present in biquaternion versions of
the Lorentz Force Law.
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If charge is conserved we also have

fµ = ∂νT ν
µ − (∂µÃν)Jν (55)

as an equivalent equation. If we examen this last part (∂µÃν)Jν

in more detail, an interesting relation arises. We begin with the
equation

−∂µL = ∂µJ̃νAν . (56)

Now clearly we have J̃νAν = ÃνJν = u01 as a Lorentz invariant
scalar. Together with the chain rule this leads to

∂µJ̃νAν = (∂µJ̃ν)Aν + (∂µÃν)Jν . (57)

This equation is crucial for what is to come next, the connection
of a Lagrange Equation to the Lorentz Force Law. So we have
to prove it in detail, provide an exact proof, specially because
biquaternion multiplication in general is non-commutative. We
start the proof with ∂µÃν :

∂µÃν =




−i 1

c
∂t1

∇1I

∇2J

∇3K


 [−iA01, A1I, A2J, A3K] =




−1

c
∂tA01 −i 1

c
∂tA1I −i 1

c
∂tA2J −i 1

c
∂tA3K

−i∇1A0I −∇1A11 ∇1A2K −∇1A3J

−i∇2A0J −∇2A1K −∇2A21 ∇2A3I

−i∇3A0K ∇3A1J −∇3A2I −∇3A31


 (58)

In the next step we calculate (∂µÃν)Jν and use the fact that
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(∇3A1)J2 = J2(∇3A1):

(∂µÃν)Jν =


−1

c
∂tA01 −i1

c
∂tA1I −i 1

c
∂tA2J −i1

c
∂tA3K

−i∇1A0I −∇1A11 ∇1A2K −∇1A3J

−i∇2A0J −∇2A1K −∇2A21 ∇2A3I

−i∇3A0K ∇3A1J −∇3A2I −∇3A31




[iJ01, J1I, J2J, J3K] =


(−i 1

c
J0∂tA0 + i1

c
J1∂tA1 + i1

c
J2∂tA2 + i1

c
J3∂tA3)1

(J0∇1A0 − J1∇1A1 − J2∇1A2 − J3∇1A3)I
(J0∇2A0 − J1∇2A1 − J2∇2A2 − J3∇2A3)J
(J0∇3A0 − J1∇3A1 − J2∇3A2 − J3∇3A3)K


 (59)

Now clearly (∂µÃν)Jν and (∂µJ̃ν)Aν behave identical, only
J and A have changed places, so

(∂µJ̃ν)Aν =


(−i 1

c
A0∂tJ0 + i1

c
A1∂tJ1 + i1

c
A2∂tJ2 + i1

c
A3∂tJ3)1

(A0∇1J0 − A1∇1J1 − A2∇1J2 − A3∇1J3)I
(A0∇2J0 − A1∇2J1 − A2∇2J2 − A3∇2J3)J
(A0∇3J0 − A1∇3J1 − A2∇3J2 − A3∇3J3)K


 (60)
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If we add them and use the inverse of the chain rule we get

(∂µÃν)Jν + (∂µJ̃ν)Aν =


−i1

c
(∂tJ0A0 − ∂tJ1A1 − ∂tJ2A2 − ∂tJ3A3)1

(∇1J0A0 −∇1J1A1 −∇1J2A2 −∇1J3A3)I
(∇2J0A0 −∇2J1A1 −∇2J2A2 −∇2J3A3)J
(∇3J0A0 −∇3J1A1 −∇3J2A2 −∇3J3A3)K


 =




−i 1

c
1

∇1I

∇2J

∇3K


 (J0A0 − J1A1 − J2A2 − J3A3) = ∂µ(J̃νAν) (61)

Thus we have given the exact proof of the statement

∂µJ̃νAν = (∂µJ̃ν)Aν + (∂µÃν)Jν . (62)

So we get

−∂µL = ∂µJ̃νAν = (∂µJ̃ν)Aν + (∂µÃν)Jν . (63)

We now have two force equations, fL
µ = ∂µL = −∂µu0 and

fT
µ = −∂νT ν

µ = d
dt

Gµ. We combine them into a force equation
that represents the difference between these two forces:

fµ = −fT
µ + fL

µ = ∂νT ν
µ + ∂µL. (64)

For the purely electromagnetic case this can be written as

fµ = ∂ν J̃νAµ − ∂µJ̃νAν (65)

and leads to

fµ = (J̃ν∂ν)Aµ + (∂ν J̃ν)Aµ − (∂µJ̃ν)Aν − (∂µÃν)Jν . (66)
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If we have ∂ν J̃ν = 01 and ∂µJ̃ν = 0 then this general force
equation reduces to the Lorentz Force Law

fµ = (J̃ν∂ν)Aµ − (∂µÃν)Jν . (67)

This of course also happens if ∂ν J̃ν = ∂µJ̃ν , so if the RHS of
this equation has zero non-diagonal terms.

The Lagrangian Equation

If the difference between fT
µ and fL

µ is zero, we get the inter-
esting equation

−∂νT ν
µ = ∂µL. (68)

For the situation where ∂µṼ ν = 0 we already proven the
statement

∂νT ν
µ = −

d

dt
Gµ, (69)

so we get
d

dt
Gµ = ∂µL, (70)

which equals
d

dt
Gµ =

∂L

∂Rµ

. (71)

We will prove that

Gµ = −
∂Ṽ νGν

∂Vµ

=
∂L

∂Vµ

, (72)

see the Appendix for the proof and its limitations.
Combined with the forgoing equation, this leads us to

d

dt
(
∂L

∂Vµ

) =
∂L

∂Rµ

(73)
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as equivalent to
−∂νT ν

µ = ∂µL. (74)

A canonical Lagrangian density

If we choose a canonical Lagrangian density as

L = −Ṽ νGν + J̃νAν = v · g − J · A− ui + ρeφ, (75)

and an accompanying stress energy density tensor

T ν
µ = Ṽ νGµ − J̃νAµ, (76)

then our force equation fT
µ = fL

µ can be split in an inertial LHS
and an EM RHS

(−fT
µ + fL

µ )inertial = −(−fT
µ + fL

µ )EM . (77)

For situations were (fL
µ )inertial = −∂µu0 = 0 this results in

f inertial
µ = fLorentz

µ . (78)

as
d

dt
Gµ = Jν(∂̃νAµ) − (∂µÃν)Jν . (79)

Maxwell’s inhomogeneous equations

We end with the formulation of the two inhomogeneous equa-
tions of the set of four Maxwell Equations, as they can be ex-
pressed in our terminology. They read

∂ν ∂̃νAµ − ∂µ∂̃νAν = µ0Jµ. (80)
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As with the Lorenz Force Law, this expression matches the stan-
dard relativistic inhomogeneous Maxwell Equations, it doesn’t
contain extra terms as can be the case with the usual biquater-
nion formulation of Maxwell’s Equations.

The previous equation can be written as

(−∇2 +
1

c2

d2

dt2
)Aµ − ∂µ(−∂tφ −∇ · A) = µ0Jµ, (81)

so as the difference between a wave like part and the divergence
of the Lorenz gauge part.

Conclusions

We have presented a specific kind of biquaternion relativistic
tensor dynamics. We formulated the general force equation

∂νT ν
µ + ∂µL = 0. (82)

The stress energy density tensor of a massive moving charged
particle in a potential field was formulated as T ν

µ = Ṽ νGν +

J̃νAν with an accompanying Lagrangian density L as its trace
L = T νν. Under curtain continuity conditions for the four cur-
rent and the four velocity, this leads to the Lorentz Force Law
and to the usual equations of relativistic tensor dynamics. One
advantage of our specific kind of biquaternion formalism is that
it is very akin to the standard relativistic space-time language
and that it lacks the extra terms that usually arise in biquater-
nionic electrodynamics. Our formalism contains the results of
both symmetric and anti-symmetric relativistic tensor dynam-
ics. Curiously, our Lorentz Force Law in terms of the potentials
and currents is not anti-symmetric, nor is it symmetric. This
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non-symmetric property of Eq.(53) was then related to the gen-
eral force equation Eq.(82).

Appendix

We want to proof that, under curtain conditions, we have

∂L

∂Vµ

= −
∂

∂Vµ

Ṽ νGν = Gν . (83)

The chain rule as we have used and shown before gives a first
hunch. The chain rule leads us to

∂

∂Vµ

Ṽ νGν = (
∂

∂Vµ

Ṽ ν)Gν + (
∂

∂Vµ

G̃ν)V ν . (84)

As before, we cannot assume this, because it uses commutativity,
so we have to prove it.

We start the proof with ∂
∂Vµ

Ṽ ν :

∂

∂Vµ

Ṽ ν =




−i ∂
∂v0

1
∂

∂v1

I
∂

∂v2

J
∂

∂v3

K


 [−iv01, v1I, v2J, v3K] =




− ∂
∂v0

v01 −i ∂
∂v0

v1I −i ∂
∂v0

v2J −i ∂
∂v0

v3K

−i ∂
∂v1

v0I − ∂
∂v1

v11
∂

∂v1

v2K − ∂
∂v1

v3J

−i ∂
∂v2

v0J − ∂
∂v2

v1K − ∂
∂v2

v21
∂

∂v2

v3I

−i ∂
∂v3

v0K
∂

∂v3

v1J − ∂
∂v3

v2I − ∂
∂v3

v31


 . (85)
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Now we use the property of the orthogonal basis, so ∂
∂vµ

vν = δµν :

∂

∂Vµ

Ṽ ν =




−11 0I 0J 0K
0I −11 0K 0J
0J 0K −11 0I
0K 0J 0I −11


 . (86)

Then we multiply Gν with the result, giving

(
∂

∂Vµ

Ṽ ν)Gν =




−11 0I 0J 0K
0I −11 0K 0J
0J 0K −11 0I
0K 0J 0I −11


 [ig01, g1I, g2J, g3K] =




−ig01

−g1I

−g2J

−g3K


 = −Gµ. (87)

The result of this part is

−(
∂

∂Vµ

Ṽ ν)Gν = Gµ. (88)

For the second part,

−(
∂

∂Vµ

G̃ν)V ν , (89)
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we have two options. The first is the easiest, assuming particle
velocity and particle momentum to be independent properties,
which makes this part zero and gives us the end result

∂L

∂Vµ

= −
∂

∂Vµ

Ṽ νGν = −(
∂

∂Vµ

Ṽ ν)Gν = Gµ. (90)

In the case that L = J̃νAν this assumption is allowed.
The second option is that particle velocity and particle mo-

mentum are mutually dependent through the relation Gν =
ρiV

ν , with ρi as the inertial mass density. In that case we have
to go back to the original equation. If we assume a velocity
independent mass density this gives

∂L

∂Vµ

= −
∂

∂Vµ

Ṽ νGν = −ρ
∂

∂Vµ

(Ṽ νV ν) =

−ρ
∂

∂Vµ

(v2

0
− v2

1
− v2

2
− v2

3
) = 2Gµ. (91)

The last situation is assumed in relativistic gravity, where the
stress energy tensor is given by ρiŨνU

ν . In that situation could
be tempted to choose the Lagrangian as L = 1

2
ρiŨ

νUν in order
to preserve the outcome

∂L

∂Vµ

= Gν . (92)

This is done for example by Synge in his book on relativity ([8],
page 394).

But that is outside our scope. So we have to restrict the use
of

∂L

∂Vµ

= −
∂

∂Vµ

Ṽ νGν = Gν (93)
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to the situations in which Vµ and Gµ are independent of each
other.
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