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One of Einstein’s great innovations in relativity theory was to 
break with the idea that there is an exchange of kinetic and 
potential energy as an object changes its position in a 
gravitational field.  Instead, he assumed that the unit of energy 
varies in a systematic manner that can be deduced from 
Newton’s Universal Law of Gravitation and his own famous 
mass/energy equivalence relation.  In the present work the 
way in which the units of other physical quantities vary with 
position in a gravitational field is derived on the basis of 
experimental observations such as the gravitational red shift 
and the angle of displacement of star images during solar 
eclipses.  A computational method introduced by Schiff in 
1960 to predict the latter value that does not involve general 
relativity plays a key role in this discussion.  In particular, it 
has been possible to extend this approach successfully for the 
first time to the calculation of the precession angle of the 
perihelion of planetary orbits around the Sun, obtaining 
quantitative agreement with Einstein’s original results.  The 
present work on the gravitational scaling of physical units 
complements earlier work dealing with the analogous 
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“kinetic” scaling of the units of energy, time, length and 
gravitational mass and other quantities derived therefrom. 

Keywords: standard units, light-speed variations, Newton’s 
Law of Gravitation, relativistic Doppler effect, Planck’s 
constant, trajectory calculation, clock rates. 

I. Introduction 
In recent work [1] it has been shown that the units of physical 
quantities differ in a well-defined manner from one inertial system to 
another.  A key example is the unit of time.  It is known from 
experiment [2], and was predicted by Einstein’s special theory of 

relativity (STR [3]), that atomic clocks run ( )
0.52

2

1 uu
c

γ
−

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

 

times slower when they are in motion with speed u relative to the 
observer than when they are stationary in the latter’s rest frame.  It 
therefore follows that the unit of time is directly proportional to γ(u) 
in the inertial system in which the clock is at rest.  The values for 
elapsed times such as radiative periods and non-radiative lifetimes 
measured by different observers are therefore found to be inversely 
proportional to the unit of time in their respective inertial systems.  
Once the ratios of the units of a small number of key physical 
quantities in different inertial systems are known, specifically for 
energy, time, length and gravitational mass, it becomes possible to 
determine the corresponding ratios of units of all related quantities on 
the basis of their definitions in terms of the latter four units. 

The above relationships have been characterized by the term 
“kinetic scaling.”  In the following discussion an analogous set of 
relationships (gravitational scaling) will be derived for observers 
located at different gravitational potentials.  The determination as to 
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how the various units change with distance from a gravitational 
source will be based primarily on the early work of Einstein [4], but 
also on a classic paper by Schiff [5] that computes the angle of 
displacement of star images during solar eclipses. 

II. Variation of the Unit of Energy 
The classical view of how the total energy of an object varies with 
altitude is that there is a gravitational potential energy.  When the 
object falls it is subject to a constant acceleration, which according to 
Galileo is exactly the same for all masses, but its energy does not 
change due to the fact that the accompanying increase in kinetic 
energy is exactly balanced by a decrease in its potential energy.  
Einstein had shown with his STR [2] that the energy of an object at 
rest is equal to the product of its inertial mass and the square of the 
speed of light (E=mIc2).  He deviated further from the traditional view 
by assuming that the increase in kinetic energy as the object falls from 
point P to point O is due to the fact that the unit of energy decreases 
with its distance dr from a gravitational source.  He concluded that the 
relationship between the respective total energies at these two points 
is given by the formula: 

 2
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where dr>0 is the (differential) vertical distance between the two 
points and g is the local acceleration due to gravity as computed by 
Newton’s Universal Law of Gravitation.   

When an object falls a finite distance from infinity toward a 
gravitational source, the corresponding change in the unit of energy is 
obtained by integration [5] of the quantity in parentheses on the right-
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hand side of eq. (1).  It is helpful therefore to make the following 
definition: 

 
21 S

O
O

GMA
c r

= + , (2) 

in which G is the universal gravitational constant (6.67 x 10−11 N 
m2/kg2), MS is the gravitational mass of the source and rO is the 
distance from point O to the source (active mass).  The unit of energy 
is AO times smaller at O than it is at an infinite distance from the 
gravitational source.  The quantity AO plays an analogous role in the 
gravitational scaling procedure as αO does for kinetic scaling [1]: 
clocks at rest on the Earth by definition run αO times faster than their 
counterparts in the rest frame of inertial system O.  

As a consequence of the above definition, it follows that the ratio 
of the energy values measured for the same object by two observers 
located at different distances from the gravitational source, O at rO 
and P at rP, is given by 

 ( ) ( )O

P
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. (3) 

If O is located at a higher altitude than P, i.e., if rO>rP, his energy 
value will be smaller than that of P because AO<AP according to eq. 

(2).  In the following discussion the ratio O

P

A
A

 will be referred to as S.  

It is then analogous to the clock-rate ratio R = αM/αO employed in 
kinetic scaling [1].  Both the ratios R and S are used directly in the 
Global Positioning System (GPS) technology in order to “pre-correct” 
the rates of atomic clocks on satellites so that they run at exactly the 
same rate as identical counterparts located on the Earth’s surface [6, 
7], for example.  It will be shown that the ratios of the respective 
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measured values by observers O and P for all physical quantities are 
given by integral powers of S, just as in kinetic scaling the analogous 
ratios are always integral powers of R.  An important goal thus 
becomes the determination of the powers of R and S that correspond 
to each physical quantity such as energy, time and distance. 

The conservation of energy principle allows one to obtain a 
relationship between AO in eq. (2) and the key quantity in STR, 

( )
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, as discussed elsewhere [8].  As an object falls 

from P to O, its speed, and therefore its energy in terms of the local 
units, increases.  If the speed of the object is uP at P and uO at O (uO 

>uP), its energy increases as the ratio ( )
( )

O

P

u
u

γ
γ

during the fall according 

to STR if gravitational effects are ignored.  On the other hand, 
according to eq. (3) its energy is lower when it reaches O by a factor 

of O

P

A
A

 if kinetic effects are not taken into account.  Since energy is 

actually conserved throughout the fall, it therefore follows that 
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i.e., γ(uO) increases in  direct proportion to AO as the object falls in the 
gravitational field.  Schiff employs a similar argument [5] to obtain 
the equivalent of eq. (1) based on a power-series expansion of γ(u) 
and another relation from Newton’s classical gravitational theory.  
One may look upon the proportionality in eq. (4) as the definition of 
the AO and AP factors, which in turn may be slightly different than that 
given in eq. (2).  
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III. Gravitational Scaling of Time, Length and 
Mass 
In his 1907 paper [4] Einstein used an equivalence principle to prove 
that clocks run faster as their distance from a gravitational source 
increases.  The relationship between elapsed times measured by two 
observers at different locations in the gravitational field is 

 ( ) ( )P

O

AT O T P
A

= . (5) 

Measurements of the rates of standard atomic clocks have verified 
Einstein’s prediction quantitatively [9]. 

Comparison of eq. (5) with eq. (3) reveals something quite 
interesting, however.  The factor in parentheses in eq. (5) for time is 
the reciprocal of that for the ratio of energy values.  The power of 

O

P

AS
A

= is +1 for energy by definition, but it is –1 for time.  This is in 

stark contrast to the situation found in the case of kinetic scaling of 

the same two quantities.  In that case the power of M

O

R α
α

= is the 

same for both [1], namely +1.  This means, for example, that when 
the speed of a metastable object increases, both its energy and its 
lifetime become greater.  On the other hand, when the same object is 
taken to a higher altitude, its energy increases but its lifetime 
decreases by the same factor.  It is especially interesting that Einstein 
was able to correctly predict the variation of radiative periods with 
distance from a gravitational source by using arguments that are based 
directly on STR [4], that is, by means of his equivalence principle.  
Yet energy and lifetime vary in opposite directions when the position 
of the object in a gravitational field is changed, but in the same 



 Apeiron, Vol. 15, No. 4, October 2008 388 

© 2008 C. Roy Keys Inc. — http://redshift.vif.com 

direction when their speed relative to the observer is altered.  When 
the metastable object is in free fall from P to O, its energy stays 
constant so that eq. (4) holds, but its lifetime increases by the square 

of 1O

P

AS
A

= > .  The rates of clocks decrease because of the increased 

speed as a consequence of the fall, but they also decrease by the same 
proportion by virtue of the change in altitude, so that the overall effect 
is magnified by S2. 

The above scaling relationships also have an interesting 
application with regard to Planck’s radiation law [10].  As already 
discussed in the previous study [1], the ratio of the energy and 
frequency of emitted radiation varies with the state of motion of the 
source relative to the observer.  This is most easily seen from the fact 
that the unit for Planck’s constant h is J s.  As the speed of the 
radiative source increases, both the energy and time units increase as 
well.  According to the relativity principle, the value of h is the same 
in every inertial system, but only when expressed in terms of the 
“local” units.  Since both the energy and time units increase in direct 
proportion to R, it follows that the energy/frequency ratio of a moving 
object measured by the stationary observer varies as R2.  For him the 
energy of the radiation increases, while the frequency decreases by 
virtue of the transverse Doppler effect.  Since the units of energy and 
time are inversely proportional in gravitational scaling, however, no 
such variation in the energy/frequency ratio occurs when only the 
position of the source in the gravitational field is changed relative to 
the observer.  Indeed, this fact was paramount in Einstein’s original 
conclusion that clock rates increase with distance from the 
gravitational source [4].  

Einstein first predicted [11] a value for the angle of displacement 
of star images during solar eclipses that was only half as large as 
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ultimately was observed.  The reason for the discrepancy was that he 
only took into account changes in measurements of time with 
gravitational potential in his 1911 paper [12]. His arguments based on 
the equivalence principle four years earlier [4] indicate that distances 
measured along the radial direction also depend on the position of the 
observer in the gravitational field, however.  Schiff’s approach [5] 
demonstrates that if both the units of time and radial distance are 
scaled for the observer on Earth, the same value for the displacement 
angle is obtained as Einstein found in 1916 on the basis of his general 
theory of relativity [13]. 

It is important to note, however, that the unit of distance 
perpendicular to the gravitational field is assumed to be independent 
of the location of the observer in Schiff’s calculations.  By contrast, 
the unit of length increases in kinetic scaling [1] in the same 
proportion (and in all directions) as the unit of time.  As a 
consequence, the speed of light and all relative velocities are found to 
be independent of the state of motion of the observer, in accordance 
with the second postulate of STR [3].  The conventional derivation of 
the Fitzgerald-Lorentz contraction effect leads to a quite different 
(and erroneous [1, 7]) conclusion about the variation of distances 
between accelerated objects. 

The question remains as to how the unit of length scales with 
position in a gravitational field.  Both Einstein [11] and Schiff [5] 
assumed that lengths measured along a direction perpendicular to the 
field are independent of the distance from the gravitational source, 
while those measured in a radial direction are proportional to S. In 
other words, a stationary observer would find that an object “grows” 
in the radial direction as it is moved to higher altitude, whereas no 
change in directions perpendicular to the field would be noted.  As a 
consequence, the unit of distance would seemingly have to vary with 
orientation in the gravitational field.   
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A key piece of evidence in this connection is that Schiff’s 
calculations for the displacement angle of star images [5] assume that 
the observer on Earth scales both time and radial distance.  It is 
important to recall the criterion he used for determining the 
displacement angle, however.  It is the same as Einstein used in his 
original work [11, 13]: Huygens’ principle.  What is actually done is 
to scale the radial component of the speed of light differently than that 
in the tangential direction relative to the Sun.  Huygens’ principle 
states [5] that the angle of displacement is proportional to the rate of 
change of the speed of light with respect to its distance of approach to 
the Sun.  The “local” value of the speed of light is always assumed to 
be c in Schiff’s method and its direction is constant, however.  In 
other words, no acceleration of the local speed of light is assumed, 
only a change in its speed as measured by the observer on Earth or 
other gravitational potential.  

In his discussion of the above results Schiff [5] remarks that “the 
curvature is such that the ray is concave to the Sun.”  Einstein had 
come to the same conclusion in his original work [11, 13, 14].  In 
neither case is the trajectory of the light actually calculated, however.  
Instead, the curvature of the light trajectory is deduced from the fact 
that the speed of light as observed on Earth “increases with increasing 
y [5],” i.e., as the distance of the light ray from the Sun increases.   

Since Schiff assumed that the light ray travels in a perfectly 
straight line for the local observer, with constant speed c, it is 
nonetheless straightforward to actually compute the trajectory as seen 
by the observer on Earth.  The result is shown in Fig. 1.  

First of all, it is clear that the scaling of the time coordinate has no 
effect on the trajectory as observed on Earth.  The light simply travels 
more slowly for him than for the local observer, but the ratio of the 
velocity components in the radial and transverse directions must be 
the same for both on this basis.  This observation by itself 
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demonstrates that there is no direct connection between the shape of 
the trajectory of the light and Huygens’ principle, contrary to what is 
usually assumed. 

 

Fig. 1 Diagram illustrating the 
“pseudo-trajectory” inferred 
from the velocity vector 
computed for the observer on 
Earth in Schiff’s procedure 
(see ref. [5]).  Note that on the 
initial approach the light 
appears to veer away from 
the Sun (convex trajectory) 
because the Schiff [5] 
gravitational scaling reduces 
the magnitude of the radial 
component relative to the 
local straight-line path.  This 
result demonstrates that the 
direction of the latter velocity 
is ignored in Schiff’s method, 
which nonetheless obtains 
perfect agreement with 
Einstein’s value for the angle 
of displacement of star 
images during solar eclipses 
because of its reliance on 
Huygens’ principle to define 
this angle (see Fig. 2).  
General relativity employs the 
same definition for the 
displacement angle.  

Even when the scaling of the radial component of the velocity is 
taken into account, however, the effect on the light’s trajectory is 
different from what is normally expected.  The transverse component 

is scaled by a factor of O

P

AS
A

=  in Schiff’s method [5, 15], which 

means that it is smaller for the observer on Earth (at infinity) than it is 
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for his counterpart near the Sun (where O stands for the observer on 
Earth and P for the local observer).  The corresponding radial 
component is scaled by a factor of S2, so that for the observer at 
infinity this component decreases more than the transverse one.  This 
means that when the light is still approaching the Sun from infinity, 
the direction of the light trajectory is shifted away from the Sun for O 
(see Fig. 1).  It is as if a brake were applied to the light in the radial 
direction, which causes it to veer away and therefore to follow a 
trajectory that is convex to the Sun (see Fig. 1).  The computed 
curvature gradually increases as the light draws nearer to the Sun until 
a maximum is reached at the closest point of approach.  From then on 
the light moves away from the Sun, and that means the effect of the 
radial velocity scaling is to make it appear as if the light is now 
bending toward the Sun.  The result is a Δ-shaped trajectory (Fig. 1) 
that is quite different from the concave path for the light generally 
assumed.  Nonetheless, the computed value for the displacement 
angle for star images [5, 15] is exactly the same as Einstein obtained 
in his original work on general relativity [13, 14]. 

A key point that is easily missed in discussing Schiff’s method, 
however, is that at each stage of the calculation the starting point is a 
local straight-line trajectory for the light.  Only the speed of light 
measured on Earth is affected by the gravitational scaling, not its 
direction.  To obtain the correct result for the displacement angle it is 
necessary to always continue the scaling procedure from a point on 
the local trajectory [15].  On this basis the only way to have internal 
consistency in this approach is to assume that both observers measure 
the same trajectory for the light and, therefore, that the trajectory 
deduced from Schiff’s scaling arguments shown in Fig. 1 is not 
actually observed.  The fact that his method leads to the correct value 
for the displacement angle can be explained quite easily by assuming 
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that the radial distance scaling in his treatment only applies to the 
component of velocity vr in that direction.  In other words, 

 ( ) ( )
2

O
r r

P

Av O v P
A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. (6) 

The corresponding scaling relationship for the tangential component 
vt is 

 ( ) ( )O
t t
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The additional factor of O

P

AS
A

=  in eq. (6) does not imply that the 

component of the distance vector between two points that lies in the 
direction radial to the gravitational field of the Sun in not the same for 

both observers.  There is a common O

P

A
A

factor in eqs. (6, 7) due to the 

scaling of time, as indicated in eq. (5).   
In this connection it is helpful to define a separate quantity Lr* to 

be distinguished from the actual radial component of the distance Lr.  
They scale differently for O and P, namely, 
 ( ) ( )r rL O L P= , (8) 
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There is no need to distinguish between corresponding transverse 
distance components (Lt), i.e. they satisfy the equivalent of eq. (8): 
( ) ( )t tL O L P=  [note that this means that the scaling of distance is 

isotropic, the same as for kinetic scaling].  In practice in Schiff’s 
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computational procedure [5], eq. (9) is used by the observer at infinity 
(O) only to determine the radial component of the velocity of light 
from the perspective of the local observer P [15].  In order to simulate 
this procedure in a computer program it is necessary to determine 
both the velocities v(O) and v(P).  The direction followed by the light 
is parallel to v(P) for both observers, consistent with the above 
arguments [15].  The path taken is a straight line in each case and is 
exactly the same for both observers.  The speed with which the light 
follows this trajectory is different for the two observers, however. It is 
determined by the absolute values of v(O)and v(P), respectively.  In 
effect, the scaling of the radial component of the speed of light only 
affects the elapsed time required by the light to follow a particular 
trajectory as measured on a given observer’s clock. 

The role that Huygens’ principle plays in the above procedure is 
illustrated in Fig. 2.  Two light rays separated by a distance dy each 
travel along straight lines from a star to the observer on Earth.  
Because their speed is different, however, they do not reach the Earth 
simultaneously.  As is clear from the diagram, this has the effect of 
rotating the wave front of light [16].  A simple calculation of the angle 
of rotation shows that it has the same value as that determined by 
Huygens’ principle.  The reason that the star images appear to be 
displaced is not because the light travels in a curved trajectory, but 
rather because the direction from which the light is coming is 
determined by the naked eye (or corresponding photographic device) 
to be normal to the above wave front.  More details regarding the 
above calculations and their interpretation are given elsewhere [15]. 

Experience with calculations of planetary trajectories indicates the 
scaling of gravitational mass mG is especially simple by contrast.  One 
obtains consistent results from Newton’s classical theory, 
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Fig. 2.  Schematic diagram 
showing light rays emitted by 
stars to follow straight-line 
trajectories as they pass near 
the Sun.  Gravitational scaling 
causes the speed 'c  of the 
light rays to increase with 
distance from the Sun, with 
the effect that the 
corresponding Huygens’ 
wave front gradually rotates 
away from it.  As discussed in 
the text, the normal to a given 
wave front points out the 
direction from which the light 
appears to have come, 
causing the star images to be 
displaced by an angle θ 
during solar eclipses. 

for example, by assuming that the masses of the Sun and planets are 
independent of both their state of motion relative to the observer and 
their location in a gravitational field.  Hence,   
 ( ) ( )G Gm O m P= . (10) 

The same assumption has been employed successfully in calculations 
of the precession angle of Mercury’s perihelion [8].  

As noted in previous work [1, 17], the unit of inertial mass mI of 
an object does change with its state of motion, however.  The same is 
true for gravitational scaling, but the corresponding power of S is not 

the same as for R in kinetic scaling.  The unit of inertial mass is 
2sN

m
, 

which is to be distinguished from kg, the unit of gravitational mass 
mG.  Accordingly, mI scales as R but as S−1 because of the way that 
energy, time and length vary with gravitational potential [see eqs. (3, 
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5, 8)].  A summary of the factors involved in kinetic and gravitational 
scaling is given in Table 1.  Their application to the computation of 
trajectories of objects in gravitational fields is the subject of the next 
section. 

IV. Scaling of the Acceleration Due to Gravity 
The main thesis of Schiff’s 1960 paper [5] is that the trajectories of 
objects moving under the influence of a gravitational field can be 
accurately computed using the methods of classical mechanics when 
account is taken of the way the units of physical quantities change 
with distance from the gravitational source such as the Sun.  He 
speculated that the same techniques he employed to compute the 
angle of displacement of star images during solar eclipses could be 
successfully applied to the determination of the orbital trajectories of 
planets such as Mercury and Venus.  In order to accomplish this 
objective he claimed that it was necessary to have “an equation of 
motion for a particle of finite rest mass” and to take account of the 
fact that the planets move at speeds less than c.  He also felt that 

higher orders of the O

P

A
A

 factor [see eq. (2)] would have to be included 

in such calculations. 
In a companion paper [8], Schiff’s approach has been modified 

successfully to obtain the angle of precession of the perihelion of the 
orbits of Mercury and other planets.  Rather than relying on an 
equation of motion for the planets, it is simply assumed that Newton’s 
Universal Law of Gravitation holds for the local observer, that is, for 
someone (M) at the same distance from the Sun and co-moving with  



 Apeiron, Vol. 15, No. 4, October 2008 397 

© 2008 C. Roy Keys Inc. — http://redshift.vif.com 

Table 1. Variation of the units of various physical quantities with gravitational 
potential. The object of the measurement is at point P in the gravitational field with 
clock-rate parameter αM (see text), whereas the observer carrying out the 
measurement is at point O with clock-rate parameter αO.  The ratio of the respective 
units of a given quantity is conveniently given as the integral power n of the ratio 

= O

P

AS
A

(see eq. 2 for definition).  The corresponding ratio in kinetic scaling is 

indicated in the last column by means of the integral power q of the ratio 
α
α

= M

O

R (see ref. 1) in each case. 

Physical Quantity 
Standard Unit 
(mks system) 

Power of ratio S 
N 

Power of ratio R 
q 

Energy J=Nm 1 1 
Time  s -1 1 
Length m 0 1 
Gravitational mass kg 0 0 

Velocity  
m
s

 1 0 

Differential length a 
radial to field (Lr*) 

m* 1 1 

Velocity radial to fielda 2
m*

s
 2 0 

Inertial mass N
2s

m
 -1 1 

Acceleration 2
m
s

 2 -1 

Accel. due to 
gravity ga 2

m*
s

,
2

kg*
m*

 -3 -2 

Speed of light c 
m
s

 1 0 

Force N 1 0 
Angular momentum Nms 0 2 
Momentum Ns 0 1 

a Scaling only used in Schiff’s procedure [5] with Ao=1 (observer at infinity) 
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the planet.  Accordingly, the local acceleration to gravity is given by 
the classical expression: 

 2
S

M
GMa g

r
= = , (11) 

with MS equal to the gravitational mass of the Sun (1.99x1030 kg); r is 
the distance of the planet from the Sun and G is the universal 
gravitational constant (6.67 x 10−11  m3/kg s2).  In order to carry out 
the calculations from the perspective of an observer at infinity (O), it 
is necessary to know how g scales with both the relative speed of the 
observer to the planet and their respective distances from the Sun.  
For this purpose it is important to follow Schiff’s suggestion [5] of 
introducing a third observer P who is located at the same gravitational 
potential as M but is co-moving with O and also with the Sun. 

For the kinetic scaling [1] it is assumed that g in eq. (11) varies as 
R−2.  This follows directly from the fact that the distance r scales as R, 
whereas the gravitational mass Ms does not vary with R (R0, Table 1).   

In the present case, ( )  M M

P O

R uα α γ
α α

= = = , where u is the speed of 

the planet relative to observer P expressed in his units.   It is important 
to see that this choice for the power of R in the kinetic scaling of g is 
consistent with Schiff’s assumption [5] that the “local” speed of light 
is always equal to c.  For light, the value of γ(u=c) is infinite, so the 
result of applying the R−2 scaling in eq. (11) is that the acceleration 
due to gravity as measured by P is exactly zero.  This means of course 
that the velocity of light is indeed constant for him, as required.  
There is another subtle point to be considered, however.  The ratio 

M

O

α
α

 is generally only equal to γ(u) if M was previously accelerated 

from the rest frame of O [18], as has been assumed above.  The 
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justification for this choice in the present application is clearly that the 
planet was ejected from the body of the Sun at some point in time, as 
seems quite plausible.  The successful calculation of the orbits of the 
planets on this basis gives clear support to the latter cosmological 
assumption. 

The gravitational scaling of g remains to be discussed.  If it is 
assumed that g scales in the same manner as radial velocity divided 
by elapsed time (and therefore as 3S , see Table 1), the result obtained 
for the advancement angle is quite different than that inferred from 
both experiment and general relativity [13].  Consideration of 
Newton’s classical definition of g in eq. (11) suggests another 
possibility, however.  If one assumes instead that the distance from 
the Sun in this expression scales in the same manner as Lr* in eq. (9), 
then a contribution of S−2 to the scaling factor of g is indicated.  
Moreover, an additional factor of S−1 is required if one assumes that 
the mass in eq. (11) scales as the inertial mass for this purpose, so that 
the actual gravitational scaling factor for g is S−3, as indicated in Table 
1.  Calculation of the planetary orbits employing a standard numerical 
time-step procedure [8] obtains results that are in very good 
agreement with those observed experimentally when the scaling 
factors of Table 1 are employed to account for the distinctions in the 
units of time, length and mass of various observers in different states 
of motion and locations in a gravitational field.  In particular, the 
same dependence of the precession angle of the perihelion of orbiting 
planets on both the average distance from the gravitational source and 
its mass MS is found as in Einstein’s general theory of relativity [13, 
14].  More details of these calculations may be found in the original 
reference [8]. 
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V. Variation of the Properties of Light with 
Kinetic and Gravitational Scaling 
Einstein consistently used the properties of light as a guide in 
developing the special and general theories of relativity [3, 13], 
particularly its speed in free space.  After determining the manner in 
which the units of various physical quantities vary with changes in the 
state of motion of the observer and his location in a gravitational field, 
it is of particular interest to consider what influence these conclusions 
have on the general subject of light.  A summary of these results is 
given in Table 2.  It is assumed that the light source is in the rest 
frame of inertial system M, with clock-rate parameter αM, and is 
located at point P in the gravitational field, whereas the observer is 
located at point O in an inertial system with clock rate αO.  

The speed of light observed by O is proportional to the ratio 
O

P

AS
A

= .  In accordance with Einstein’s second postulate of STR [3], 

when the source and the observer are at the same gravitational 
potential (AO=AP), the value of the speed of light is always equal to c, 
regardless of the magnitude of their relative speed.  The different rates 
of clocks in the respective rest frames of the source and the observer 
that are caused exclusively by the time dilation effect have no 
influence on the measured value, consistent with the results of the 
Michelson-Morley and Kennedy-Thorndike experiments [19, 20].  
This is the justification for concluding in Table 1 that lengths scale as 
R, the same ratio as for elapsed times.  The dependence of the speed 
of light on location in a gravitational field given above and in Table 1 
is the same as deduced by Einstein in his 1911 paper [11].  It is 
greater than c when the source is located at a higher potential than the 
observer O, and it is smaller when it is located at a lower potential as 
in the classic example of light passing close to the Sun. 



 Apeiron, Vol. 15, No. 4, October 2008 401 

© 2008 C. Roy Keys Inc. — http://redshift.vif.com 

Table 2. Dependence of various properties of light on the positions of the object and 
observer in a gravitational field and on the corresponding clock-rate parameters αO 
and αM (see Table 1 and text for definitions).  The corresponding dependence for in 
situ measurements (AO=AP and αM=αO) is given in the third column, whereas in the 
fourth, the corresponding results are given for the case of light in free fall in a 
gravitational field from point P to P’ for the same (stationary) observer (AP’>AP).  The 
powers of S and R are given in parentheses below each quantity (see Table 1 for 
definitions). 

Quantity 
General Value 

(not in free Fall) 
In Situ 
Value 

Free Fall Value 
(emitted from P) 

Speed of Light 
(1, 0) 

⎛ ⎞
⎜ ⎟
⎝ ⎠

O

P

A
c

A
 c 

'

⎛ ⎞
⎜ ⎟
⎝ ⎠

O

P

A
c

A
 

Wavelength 
(0, 1) 

α λ
α

⎛ ⎞
⎜ ⎟
⎝ ⎠

M

O

 λ  
'

α λ
α

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
M P

O P

A
A

 

Frequency 
(1, −1) 

α
ν

α
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
O O

M P

A

A
 ν  

α
ν

α
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
O O

M P

A

A
 

Energy 
(1, 1) (“E=hν”) 

α
α

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
OM

O P

A

A
E  E 

α
α

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
OM

O P

A

A
E  

Momentum 

(0, 1) (“p=
λ
h ”) 

α
α

⎛ ⎞
⎜ ⎟
⎝ ⎠

M

O

p  p 
'α

α
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
M P

O P

A
A

p  

Planck’s Constant 
(0, 2) 

2α
α

⎛ ⎞
⎜ ⎟
⎝ ⎠

M

O

h  h 
2α

α
⎛ ⎞
⎜ ⎟
⎝ ⎠

M

O

h  

Accel. due to gravity 
(−3, −2) 

32α
α

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
O P

M O

A

A
g  g g=0 for light 

The wavelength of light is proportional to M

O

R α
α

= , i.e., it is 

dependent on both the state of motion of the source and the observer 
[21].  The in situ value for a given source is the same for all 
observers, however, consistent with the relativity principle and 
experiment [20].  The transverse Doppler effect [22] allows a 
verification for the dependence on R.  There is an additional factor of 
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1 u
c

⎛ ⎞±⎜ ⎟
⎝ ⎠

if the light source is moving directly away/toward the 

observer O due to the motion of the latter into the waves (first-order 
Doppler effect).  The wavelength of light is independent of the 
location of both the source and the observer in a gravitational field.  
The Doppler factor mentioned above is not actually a relativistic 
effect, but simply reflects the fact that the light source is moving 
either out of or into the wave pattern.  

The variation of the light frequency must be such as to satisfy the 
rule that in free space it is always equal to the quotient of the light 
speed and the corresponding wavelength.  It is, therefore, proportional 

to both 1 O

M

R α
α

− =  and O

P

AS
A

=  (see Table 2).  There is also a first-

order Doppler factor in this case if the light source is moving toward 
or away from O.  It is the reciprocal of that required for wavelengths, 
consistent with the light-speed constancy requirement. 

In order to deduce the variation of the energy and momentum of 
the photons it is necessary to know how Planck’s constant [10] varies 
with the state of motion of the source [1] and with its relative location 
in the gravitational field.  Since energy is a scalar quantity, its value 
must be independent of the direction in which the light travels, 
whereas the light frequency is subject to the Doppler effect.  This 
means that the value of Planck’s constant must vary with the 
orientation of the light velocity to the observer as well.  A simple 
means of circumventing this complication is to restrict one’s attention 
to the case of the transverse Doppler effect.  This eliminates the 

1 u
c

⎛ ⎞±⎜ ⎟
⎝ ⎠

 factor from the calculations.  Further, only light moving 

perpendicular to the gravitational field needs to be considered to 
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establish the value of the required energy/frequency ratio, from which 
it can be concluded that its value is proportional to R2, as already 
discussed elsewhere [1].  This relationship can be tested 
experimentally by means of the photoelectric effect.  The variation of 
the energy of the photons is then comparatively simple.  It is 
proportional to both R and S, independent of the orientation of the 
light velocity to both the observer and the gravitational field. 

The magnitude of the corresponding momentum of the photons 
can be obtained by using the same value for Planck’s constant in the 

relation “ hp
λ

= ”.  The quotation marks are used to indicate that the 

value to be inserted for each quantity is that actually measured by the 
observer in a given situation.  On this basis, “p” is found to be 

proportional to M

O

R α
α

=  and is completely independent of the 

location of both the light source and the observer relative to the 
gravitational source (momentum scales in the same manner as length; 
see Table 1).  Note that there is no Doppler effect for either 

momentum or energy, i.e., no 1 u
c

⎛ ⎞±⎜ ⎟
⎝ ⎠

 factor is required in either 

case. 
The corresponding values for the above quantities that are 

observed in situ are shown in the third column of Table 2.  These 
values are obtained from the previous (general results) by setting 

O PA A= and recalling that the observations are being made by 
observer M in each case (i.e., M Oα α= ).  In accord with the relativity 
principle, they are all independent of both the state of motion of the 
observer and his location in a gravitational field.  
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On the basis of the results discussed above, it is possible to make 
definitive predictions regarding the variation of the properties of light 
when the source is lowered (as opposed to dropping in free fall) in the 
gravitational field (without altering its velocity).  Let us assume that 
the source is initially at point P in the gravitational field and is then 
lowered to point 'P  [ 'PA > PA , see eq. (2)].  The speed of light 

decreases by a factor of 
'

P

P

A
A

for O after the source has changed its 

position.  This result is obtained by simply replacing PA  by 'PA  in 
the general expression for this quantity in Table 2 (second column).  
The light frequency decreases in the same proportion, whereas the 
wavelength remains constant throughout.  The value of Planck’s 
constant does not change either, and thus the energy decreases in 
direct proportion to the frequency while the momentum stays the 
same.  The variation of the photon energy is independent of the 
orientation of the light velocity to the gravitational field.  

All the above results can be obtained from those given first by 
simply replacing PA  by 'PA  (see Table 2).  The situation is different 
if the light is emitted from point P and is later observed by O at point 

'P  in the gravitational field, however.  The energy is unchanged 
during the free fall of the light, whereas the speed of light decreases 

by a factor of 
'

P

P

A
A

⎛ ⎞
⎜ ⎟
⎝ ⎠

.  The value of Planck’s constant is determined 

by the relative speed of the light source only, so the frequency also 
does not change as the light descends (i.e., the value in the fourth 
column is independent of 'PA ).  In order to satisfy the local “c=λν” 
condition, it is necessary for the wavelength of light to gradually 
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decrease during its fall by a factor of 
'

P

P

A
A

.  This, in turn, means that 

the momentum of the light increases by the reciprocal of this factor 
(see fourth column in Table 2).  

It may seem strange that the momentum of the light increases 
while its speed decreases, but this is required by the local “E=pc” 
condition.  A similar situation has been noted when light passes 
through dispersive media [23].  The energy of the photons does not 
change as the light moves from one medium to another.  Newton 
claimed that the corresponding momentum must increase in direct 
proportion to the index of refraction n, but concluded incorrectly that 
the speed of light must also increase.  After experiment showed that 
the speed of light actually decreases in the medium of higher n, it was 
concluded that Newton had also been in error with regard to his 
prediction of an increase in photon momentum.  There is strong 
theoretical evidence that Newton was, in fact, correct in his 
conclusion about momentum, however, because it is also known that 
the wavelength λ of light decreases in direct proportion to n and 

quantum mechanics has shown that hp
λ

=  holds quite generally.  

The phenomenon of light refraction is therefore consistent with what 
is indicated for light in gravitational free fall, namely that the 
momentum and the speed of light must change in opposite directions 
since the photon energy remains constant [16]. 

Thus far in the discussion, three cases have been considered: a) the 
light is emitted from a source fixed at a higher gravitational potential 
than the observer, b) the light source is moved to a different position 
in the field prior to emission, and c) the light itself is in free fall from 
a source fixed at a higher gravitational potential than the observer.  A 
fourth case is considered in Table 3, namely when the source itself is  
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Table 3. Dependence of various properties of light on the positions of the source 
and observer in a gravitational field and their relative states of motion on the kinetic 

scaling factor α
α

= M

O

R and the gravitational scaling factor = O

P

AS
A

 (see Table 1 

and text for definitions).  The first two rows contain results for the case when the 
light source (or other object) begins free fall at point P (S>1) in the gravitational field.  
The succeeding two rows give the corresponding results when the light source is in 

free fall and has reached point P’ in the field [ ' 1γ = >P

P

A
A

, see Table 2 and eq. (4)].  
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S
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In situ 'P  c E ν  p λ  mI h 

O γ
Sc  RS E 

ν

γ
S

R 2
 γRp  γ λR  γ IRm

S

2
γ R h2 2  

 
in free fall as it emits light.  It is assumed that the frequency and 
wavelength of the emitted light have the values ν and λ in the 
observer’s rest frame when measured in situ at his location in the 
gravitational field.  The corresponding values for the speed of light, 
its energy, momentum and inertial mass are c, E, p and mI, 
respectively, as in Table 2.  The source has been accelerated so that its 
clock-rate parameter is αM, and the corresponding kinetic scaling 
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factor is, therefore, M

O

R α
α

= .  It is also located at a higher 

gravitational potential, with the gravitational scaling factor O

P

AS
A

=  

(see Table 2).  The in situ values do not change as a result of the light 
source’s movement, in accord with the relativity principle. 

The second row of Table 3 gives the corresponding values for 
these quantities as measured by the stationary observer (O) before the 
source starts to fall.  The energy of the light for O is now RS E, 

whereas the frequency is Sv
R

because the value of Planck’s constant 

for light generated from the moving source is R2h, as discussed in 
Section III. The speed of light is Sc because of the difference in 
gravitational potential of the source; the value of the wavelength is 

Rλ.  The momentum is thus 
2

“ ”h E R h RSE Rp
c R Scλ λ

= = = = .  The 

inertial mass is obtained as 2“ ” IRmE p
c c S

= = . 

When the light source falls, it is necessary to apply eq. (4) to the 
scaling factors.  Because of energy conservation, as discussed in 
Section II, the kinetic scaling factor (R) increases by the same amount 
(γ) as the gravitational scaling factor (S) decreases.  The instantaneous 
values of the in situ light properties are not affected by the free fall of 
the source, as already noted.  The corresponding values for O are 

obtained by making the substitutions of S
γ

for S and γR for R relative 



 Apeiron, Vol. 15, No. 4, October 2008 408 

© 2008 C. Roy Keys Inc. — http://redshift.vif.com 

to his initial measurements.  The observed frequency becomes 2

Sv
Rγ

, 

for example, whereas the wavelength becomes γRλ. 

The quantum mechanical relationships, “ ”E hν=  and “ ”hp
λ

= , 

are satisfied in all four cases in Table 3.  In addition, the mass/energy 
equivalence relation holds throughout as well 2“ ” “ ” “ ”IE m c pc= = .  
As a result, all property values are determined from the speed of light 
and its corresponding energy and momentum as determined by the 
observer.  This state of affairs is not restricted to light, however.  The 
same relationships hold for all particles of matter, although the Planck 
energy/frequency relation is of little practical significance for particles 
such as the electron because of their finite mass and correspondingly 
high rest energy.  The energy of “massive” particles is no longer 
equal to the product of momentum and the speed of light, but 

2“ ”IE m c=  continues to be valid for them.  Their velocities between 
fixed points in a given inertial system also scale in the same way as 
the speed of light.  These observations are consistent with Einstein’s 
original work on STR [3], in which he showed that the relativistic 
velocity transformation is equally valid for massive particles as it is 
for photons. 

VI. Conclusion 
The units of physical quantities depend on the location in a 
gravitational field and also the state of motion of the observer.  In the 
present work attention has centered upon the precise specification of 
the scaling of the units with changing gravitational potential, and 
comparison has been made with the corresponding “kinetic” scaling 
that occurs when the state of motion changes.  In each case, Einstein 
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has led the way.  He deduced that clocks run slower on a fast-moving 
rocket than they do in the rest frame of the Earth, and that they run 
faster when they are taken to higher altitude.  The unit of time 
therefore increases in the first case and decreases in the second.  The 
unit of energy increases in both cases, however.   

Determining the manner in which the unit of length varies in these 
two cases has been complicated by theoretical arguments based on the 
Lorentz transformation, specifically by the derivation of the 
Fitzgerald-Lorentz contraction effect of STR [3].  It has been pointed 
out recently [1, 7], however, that the unit of length must vary in direct 
proportion to that of time in order to satisfy Einstein’s second 
postulate.  This means length expansion, and by the same proportion 
in all directions.  An important observation is that the units of energy, 
length and time always remain in the same ratio when the state of 
motion of the observer changes. By contrast, gravitational mass is 
completely unaffected by acceleration.  The situation is different for 
inertial mass, however.  The unit of the latter quantity is derived in an 
unambiguous manner from its relation to the units of energy, time and 
distance.  In other words, the unit of inertial mass is not kg in a strict 

sense, but rather N
2s

m
. 

A key quantity in expressing the variation of units in gravitational 

fields is 21 S
O

O

GMA
c r

= + , as defined in eq. (2).  This quantity was used 

successfully by Schiff [5] to compute the angle of displacement of the 

images of stars during solar eclipses.  The unit of energy is O

P

AS
A

=  

times greater/smaller at point P than for the observer at point O who is 
at a closer/farther distance from the gravitational source.  The 
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gravitational scaling of units can be specified quite succinctly in terms 
of integral powers of S, as shown in Table 1.  Energy scales as S, time 
and inertial mass as S−1, length, momentum and gravitational mass as 
S0, for example, and the manner of scaling for other quantities derived 
from these fundamental quantities is easily accomplished on this 
basis. 

Schiff has shown, based on Einstein’s original work [11], that the 
scaling of velocities requires an additional measure when computing 
trajectories from the standpoint of an observer at infinity, namely the 
component radial to the gravitational field must have an extra factor 
of S than the perpendicular components in this special case.  If one 
ignores this distinction, the value of the above deflection angle is 
computed to be only half as large as that observed and predicted from 
the general theory of relativity [13].  Analysis of Schiff’s results for 
this deflection angle has shown that the above scaling procedure 
should only be used to compute the ratio of the relative speeds of a 
given object (light or a planet) to an observer at infinity and a 
counterpart located at the same gravitational potential as the object.   
In his method there are two velocities and two position vectors for 
each light ray, one set for the “local” and one for the primary observer 
on Earth (infinity).  The position vectors must be the same at all 
times, however, by virtue of the fact that the unit of length is the same 
(Table 1) for both observers (it is assumed that they are not in relative 
motion in Schiff’s procedure [5]).  The corresponding light trajectory 
is therefore a straight line.  Only the elapsed time is different from 
these two perspectives.  The “bending” of light by the Sun is actually 
seen to be a misunderstanding of the criterion used for the angle of 
displacement, namely Huygens’ principle.  In reality, what the 
calculations show, whether those of Einstein or Schiff, is that the 
wave front of the light coming from the star is rotated away from the 
Sun, creating an optical illusion which merely tricks the eye into 
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believing that the stars have been displaced during the eclipse.  The 
kinetic scaling of the acceleration due to gravity ensures that the light 
is in fact not bent as it passes by the Sun, as discussed in a companion 
article [15].  The direction of the light’s velocity (along this straight-
line trajectory) is the same as for the local velocity for all observers, 
regardless of their position in a gravitational field or their state of 
relative motion.  But the light speed itself for the observer at infinity 
is equal to the magnitude of the corresponding velocity vector in his 
units.  In effect, the additional scaling of the radial component of the 
velocity produces a further decrease in the light speed over and above 
that caused by the normal scaling of time with S−1 (Table 1).  When 
all is said and done, however, the speed with which an object moves 
with respect to a given observer in Schiff’s method can simply be 
determined by knowing the relative rate of his atomic clocks to those 
located at infinity.  The slower one’s clocks run, the faster the object 
appears to move from his perspective.  Thus velocity scales as S in all 
directions. 

A very interesting aspect of Schiff’s method is that it allows one to 
compute the displacement angle of star images without the full 
apparatus of general relativity.  He has also pointed out that the 
gravitational red shift is easily accounted for by scaling the unit of 
time (i.e. as S−1 in Table 1).  He therefore concluded that the 
superiority of general relativity could only be demonstrated by means 
of its prediction of the precession of the perihelion of planets orbiting 
the Sun.  He could only speculate about whether a similar scaling 
procedure as used above could be successful in this application as 
well, and, in fact, apparently never succeeded in accomplishing this 
objective.  In recent work [8], it has been shown that quantitative 
agreement with general relativity is obtained in this application as 
well by computing the planetary trajectories with a conventional time-
step procedure and taking account of the gravitational scaling of units 
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for all quantities, including the acceleration due to gravity g.  The 
same dependence of the precession angle for the perihelion of the 
orbits upon the solar mass and the length and eccentricity of the 
planetary radius is obtained in this relatively simple procedure as 
Einstein found in his original work employing the general theory of 
relativity.  The implication is thus that once one takes proper account 
of both the kinetic and the gravitational scaling of physical units, it 
becomes possible to remove all errors in the computation of 
trajectories of objects moving in gravitational fields.  The scaling 
procedures thus perfect Newton’s original Law of Universal 
Gravitation without resorting to the notably more complicated field 
theoretic approach introduced by Einstein.  
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