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It has recently been shown [1] that in Dirac’s hole theory the 
vacuum state is not the minimum energy state but that there 
exist quantum states with less energy than that of the vacuum 
state.  In this paper we extend this discussion to quantum field 
theory (QFT) in the Heisenberg picture and consider the 
question of whether or not the vacuum in QFT is the state of 
minimum energy.  It will be shown that for a “simple” field 
theory, consisting of a quantized fermion field interacting with 
a classical electric field in 1-1D space-time, there exist 
quantum states with less energy than that of the vacuum state. 

1. Introduction 
In quantum theory it is generally assumed that the vacuum state is the 
minimum energy state.  However it has been shown that this is not the 
case for Dirac’s hole theory.  In Ref. [1] Dirac’s Hole theory was 
examined in 1-1D space-time.  It was shown that the vacuum state 
was not the state of minimum energy and that there existed quantum 
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states with less energy than that of the vacuum state.  In this paper we 
will apply the analysis of Ref. [1] to quantum field theory (QFT) in 
the Heisenberg picture.  We will examine the question of whether or 
not the unperturbed vacuum state in QFT is the state of minimum 
energy. We will consider a “simple” field theory in 1-1D space-time 
consisting of a quantized fermion field interacting with an 
unquantized, classical electric field.  It will be shown that, for this 
situation, there exist quantum states with less energy than that of the 
vacuum state. 

In the Heisenberg picture the state vectors Ω  are constant in time 
and the time dependence of the quantum state is carried by the field 
operators ( )ˆ ,z tψ  where z  is used to represent the space dimension.  

A quantum state is specified by the state vector Ω  and field 

operator ( )ˆ ,z tψ .  We will write this as the pair ( ),ψ Ω .  The Dirac 
Hamiltonian in the presence of a classical electromagnetic field is 
given by, 

 ( ) †ˆ ˆ ˆ ˆH H dzψ ψ ψ= ∫  (1) 

where, 

 ( )0 ,H H qV z t= +  (2) 

and where ( ),V z t is an external electric potential, q is a coupling 
constant, and 0H  is given by, 

 0 x zH i m
z

σ σ∂⎛ ⎞= − +⎜ ⎟∂⎝ ⎠
  (3) 

where xσ  and zσ  are the usual Pauli matrices.  
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In the Heisenberg picture the evolution of the field operator is 
given by, 

 ( ) ( )( ) ( )
ˆ , ˆ ˆ ˆ, , ,

z t
i H z t z t

t
ψ

ψ ψ
∂ ⎡ ⎤= ⎣ ⎦∂

 (4) 

The field operator obeys the equal time anti-commutator relationship, 
 ( ) ( ) ( ) ( ) ( )† †ˆ ˆ ˆ ˆ, , , ,z t z t z t z t z zα β β α αβψ ψ ψ ψ δ δ′ ′ ′+ = −  (5) 

with all other equal time anti-commutators being equal to zero.  It can 
be shown (see Chapt. 9 of [2] or Section 8 of [3]) that when these are 
used in (4) we obtain, 

 ( ) ( )
ˆ ,

ˆ ,
z t

i H z t
t

ψ
ψ

∂
=

∂
 (6) 

2. The vacuum state 
Assume that at some initial time the electric potential is zero and that 
field operator is in its initial unperturbed state which we designate by 

( ) ( )0ˆ ,z tψ .  In that case Eq. (6) becomes, 

 
( ) ( ) ( ) ( )
0

0
0

ˆ ,
ˆ ,

z t
i H z t

t
ψ

ψ
∂

=
∂

 (7) 

In addition to satisfying the above equation the initial field operator 
must also satisfy (5).  This can be achieved by writing, 

 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

0 0 0†
1, 1,

0 † 0 † 0 ††
1, 1,

ˆ ˆˆ , , ,

ˆ ˆˆ , , ,

r r r r
r

r r r r
r

z t b z t d z t

z t b z t d z t

ψ ϕ ϕ

ψ ϕ ϕ

−

−

= +

= +

∑

∑
 (8) 
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where the r̂b ( †
r̂b ) are the destruction(creation) operators for an 

electron associated with the state ( ) ( )0
1, ,r z tϕ  and the ˆ

rd ( †ˆ
rd )  are the 

destruction(creation) operators for a positron associated with the 
state ( ) ( )0

1, ,r z tϕ− .  They satisfy the anticommutator relationships, 

 { }†ˆ ˆ,j k jkd d δ= ; { }†ˆ ˆ,j k jkb b δ=  (9) 

with all other anti-commutators equal to zero.  The vacuum state 0  
is defined by, 

 ˆ ˆ0 0 0j jd b= =  and † †ˆ ˆ0 0 0j jd b= =  for all j  (10) 

The quantities ( ) ( )0
, ,r z tλϕ  are solutions of Eq. (7).  We will assume 

periodic boundary conditions so that the solutions satisfy 
( ) ( ) ( ) ( )0 0

, ,, ,r rz t z L tλ λϕ ϕ= +  where L is the 1-dimensional integration 
volume.  Therefore, we obtain, 

 ( ) ( ) ( ) ( )
( )0

,0 0
, ,, ri t
r rz t z e λε

λ λϕ ϕ −= ;  ( ) ( )0
, ,

rip z
r rz u eλ λϕ =  (11)

where ‘r’ is an integer, 1λ = ±  is the sign of the energy, 2rp r Lπ= , 
and where, 

 ( )0
,r rEλε λ= ; 2 2

r rE p m= + +  (12) 

 
( )

, ,

1
r r r

r

u N p
E m

λ λ

λ

⎛ ⎞
⎜ ⎟=
⎜ ⎟⎜ ⎟+⎝ ⎠

; , 2
r

r
r

E mN
L Eλ

λ
λ
+

=  (13)

The quantities ( ) ( )0
,r zλϕ  satisfy the relationship, 

 ( ) ( ) ( ) ( ) ( )0 0 0
0 , , ,r r rH z zλ λ λϕ ε ϕ=  (14) 
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The ( ) ( )0
,r zλϕ  form an orthonormal basis set and satisfy, 

 ( ) ( ) ( ) ( )
2

0 † 0
, ,

2

L

r s rs
L

z z dzλ λ λλϕ ϕ δ δ
+

′ ′
−

=∫  (15) 

3. The change in energy 
If the electric potential is zero then the energy of the quantum state 
( ),ψ Ω  is given by, 

 ( ) ( ) †
0 0

ˆˆ ˆ ˆ ˆ, H H dzξ ψ ψ ψ ψΩ = Ω Ω = Ω Ω∫  (16) 

Next we want to consider the following problem.  Start with the 
system in the initial unperturbed vacuum state.  In this case the field 
operator is ( ) ( )0ˆ ,z tψ  and the state vector is 0 .  The question we 
want to address is whether or not the unperturbed vacuum state 

( ) ( )( )0ˆ , , 0z tψ  is the state of minimum energy or do there exist 

states with less energy than that of the vacuum state?  In order to 
address this problem consider the change in the energy of the vacuum 
state due to an interaction with an external electric potential which is 
applied at some time 0t t>  and  then removed at some later time 1t  so 
that, 

( ) 0, 0 for V z t t t= ≤ ; ( ) 0 1, 0 for V z t t t t≠ < < ; ( ) 1, 0 for V z t t t= ≥ (17) 

 Under the action of the electric potential the system evolves 
from the initial vacuum state ( ) ( )( )0

0ˆ , , 0z tψ , at 0t ,  to the final state 

( )( )1ˆ , , 0z tψ , at 1t .   The change in the energy is given by, 
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 ( )( ) ( ) ( )( )0
1 0ˆ ˆ, , 0 , , 0vac z t z tξ ξ ψ ξ ψΔ = −  (18) 

To evaluate this we must determine the change in the field operator 
over time.  The time evolution of the field operator in the presence of 
an electric field is given by (6).  The solution, for time 0t t≥  is, 

 ( ) ( ) ( )( )†
1, 1,

ˆ ˆˆ , , ,r r r r
r

z t b z t d z tψ ϕ ϕ−= +∑  (19) 

where the ( ), ,r z tλϕ  evolve according to, 

 
( ) ( ),

,

,
,r

r

z t
i H z t

t
λ

λ

ϕ
ϕ

∂
=

∂
 (20) 

and where the ( ), ,r z tλϕ  satisfy the initial condition 

( ) ( ) ( )0
, 0 , 0, ,r rz t z tλ λϕ ϕ=  so that the field operator ( )ˆ ,z tψ  will satisfy 

the initial condition ( ) ( ) ( )0
0 0ˆ ˆ, ,z t z tψ ψ= .   Use (19) along with (9), 

(10), and (16) to obtain, 

 ( )( ) ( ) ( )†
1, 0 1,ˆ , , 0 , ,r r

r
z t z t H z t dzξ ψ ϕ ϕ− −=∑∫  (21) 

Therefore the change in the energy from 0t  to 1t is given by, 

 
( ) ( )
( ) ( )

†
1, 1 0 1, 1

†
1, 0 0 1, 0

, ,

, ,

r r

vac
r r r

z t H z t dz

z t H z t dz

ϕ ϕ
ξ

ϕ ϕ

− −

− −

⎛ ⎞
⎜ ⎟Δ =
⎜ ⎟−⎝ ⎠

∫∑
∫

 (22) 

Use the initial condition ( ) ( ) ( )0
, 0 , 0, ,r rz t z tλ λϕ ϕ=  along with (14) and 

(15) to obtain, 
 1,vac r

r

ξ δε−Δ =∑  (23) 

where, 
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 ( ) ( )( ) ( )0†
, , 1 0 , 1 ,, ,r r r rz t H z t dzλ λ λ λδε ϕ ϕ ε= −∫  (24) 

4. Calculating the change in energy 
We shall now apply the results of the last section to a specific 
perturbation.  Let the electric potential ( ),V z t  be given by, 

 ( ) ( ) ( )sin
, 4cos w

mt
V z t k z

t
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (25) 

where m is the mass of the electron and  2wk w L mπ= <  where w is 
a positive integer.  It is obvious from the above expression that 
( ), 0V z t →  at t → ±∞ .  Under the action of this electric potential 

each initial wave function ( ) ( )0
, 0,r z tλϕ , where 0t →−∞ , evolves into 

the final wave function ( ), 1,r z tλϕ  where 1t →+∞ .  We need to solve 
for ,rλδε .   

This problem has already been addressed in [1] and a solution was 
obtained using standard perturbation theory. In [1] it was shown that 

,rλδε  can be expressed as the following expansion in the parameter 
q , 

 ( ) ( ) ( )1 22 3
, , ,r r rq q O qλ λ λδε δε δε= + +  (26) 

where ( )3O q  means terms to the third order of q  and higher.  For 
the problem at hand it was shown in [1] that, 
  ( )1

, 0rλδε =  (27) 

and, 
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 ( ) ( ) ( )2 2
, 2 r w r w
r w

r w r w

p k p k
k

E Eλδε π λ
+ −

+ −⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (28) 

It was also shown that ( )2
1, 0rδε− <  for all r .  Therefore in the limit of 

small q  we obtain, 

 ( ) ( ) ( )2 22 3 2
1, 1, 1,0

0r r rq
q O q qδε δε δε− − −→

= + = <  (29) 

Use this in (23) to obtain, 

 ( ) ( )( ) ( )2 22 3 2
1, 1, 1,0

0vac r r rqr r r
q O q qξ δε δε δε− − −→

Δ = = + = <∑ ∑ ∑  (30) 

It is shown in [1] that this equals, 
 2 2

0
4vac q

q k Lξ π
→

Δ = −  (31) 

As can be seen from this result the change in the energy is negative 
so that energy of  the final state is less than the energy of the initial 
unperturbed vacuum state.  Therefore energy has been extracted from 
the vacuum state due to the application of the electric field. 

5. Conclusion 
We start out with a system in the initial unperturbed vacuum state 

( ) ( )( )0
0ˆ , , 0z tψ  at the initial time 0t →−∞  where the electric 

potential is zero.  Under the action of the electric potential of Eq. (25) 
the field operator evolves in time according to (6).  The system is in 
the state ( )( )1ˆ , , 0z tψ  at the final time 1t →∞  where the electric 
potential is, once again, zero.  The change in energy from the initial to 
the final state is then calculated.  It is shown that, for sufficiently 
small q , this change is negative.  Therefore the final state 
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( )( )1ˆ , , 0z tψ  has less energy than that of the vacuum state.  The 
conclusion is that in the Heisenberg picture of QFT states must exist 
with less energy than that of the vacuum state.  The is the same result 
that was derived in Ref. [1] for Dirac’s hole theory. 
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