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It has recently been shown [1] that in Dirac’'s hole theory the
vacuum state is not the minimum energy state but that there
exist quantum states with less energy than that of the vacuum
state. In this paper we extend this discussion to quantum field
theory (QFT) in the Heisenberg picture and consider the
guestion of whether or not the vacuum in QFT is the state of
minimum energy. It will be shown that for a “simple” field
theory, consisting of a quantized fermion field interacting with
a classica dectric fiedd in 1-1D space-time, there exist
guantum states with less energy than that of the vacuum state.

Introduction

178

In quantum theory it is generally assumed that the vacuum date isthe
minimum energy state. However it has been shown that thisis not the

case for Dirac’s hole theory.

In Ref. [1] Dirac’s Hole theory was

examined in 1-1D space-time. It was shown that the vacuum date
was not the state of minimum energy and that there existed quantum
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sates with less energy than that of the vacuum state. In this paper we
will apply the analysis of Ref. [1] to quantum field theory (QFT) in
the Heisenberg picture. We will examine the question of whether or
not the unperturbed vacuum sate in QFT is the state of minimum
energy. We will consider a “smple’ field theory in 1-1D space-time
consging of a quantized fermion field interacting with an
unquantized, classical electric field. It will be shown that, for this
Situation, there exist quantum states with less energy than that of the
vacuum gate.

In the Heisenberg picture the state vectors | Q) are congtant intime

and the time dependence of the quantum gtate is carried by the field
operators 7 (z,t) where z is used to represent the space dimension.

A quantum state is specified by the state vector |Q) and field
operator 47 (z,t). We will write this asthe pair (y,|€2)). The Dirac

Hamiltonian in the presence of a classical electromagnetic field is
given by,
H () = [y "Hydz )
where,

H=H,+qV(zt) 2

and where V (z,t)is an external electric potential, q is a coupling
congtant, and H, isgiven by,

H0=(—icxi+mazj 3
0z

where o, and o, arethe usual Pauli matrices.
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In the Heisenberg picture the evolution of the field operator is
given by,

ow(zt) .raia -
~ =i[H (7 (1) (21)] (4)
The field operator obeys the equal time anti-commutator relationship,
iz, (Z.0)+v,(Z. )l (zt)=6,5(z-7) (5)
with all other equal time anti-commutators being equal to zero. It can

be shown (see Chapt. 9 of [2] or Section 8 of [3]) that when these are
used in (4) we obtain,

o (2.1)
ot

=Hy (zt) (6)

2. Thevacuum state

Assume that a some initial time the electric potential is zero and that
field operator isin its initial unperturbed state which we designate by
7' (z,t). Intha case Eq. (6) becomes,

oy (zt .
R at( ) 1,50 (20) @)

In addition to satisfying the above equation the initia field operator
must also satisfy (5). Thiscan be achieved by writing,

7% (z,t)= 2(6@9 (zt)+d'?) (z,t))
. . ©)
7" (2t)= X (Bl (zt) +d ) (2.1))

r
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where the 6(6*) are the dedtruction(creation) operators for an

electron associated with the stateg!” (z,t) and the d (d') aethe
destruction(creation) operators for a positron associated with the
satep'd (z,t). They satisfy the anticommutator relationships,

{d d } " {bj,bk} ©)
with all other anti-commutators equal to zero. The vacuum state |0)
is defined by,

d,[0)=b,|0)=0 and (0]d' =(0|b' =0 forall j (10)

The quantities gofr)(z,t) are solutions of Eq. (7). We will assume
periodic boundary conditions so that the solutions satisfy
@7 (z,t)= ¢ (z+L,t) where L is the 1-dimensiona integration
volume. Therefore, we obtain,

—ig(o) in z
o) (2t) =0l (2)e " o (2)=u, € (12)

where ‘r' isan integer, 4 =+1 isthesign of theenergy, p, = 2zr/L,

and where,

efr =AE ; E =+p>+m’ (12)
1

AE, +m

B ;N/l,r =
(AE, +m) 2LAE,

u, =N,

(13)

N

The quartities ¢!” (z) satisfy the relationship,

0) — (0 (0)
Ho("z,r (Z) =& P (Z) (14)
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The ¢!° (z) forman orthonormal basis set and satisfy,

[ &9 (2000 (2)dz=6,,5, (15)

3. Thechangein energy
If the electric potential is zero then the energy of the quantum state
(v.]Q)) isgiven by,

£(1,]Q) = (Q[Ho (#)|Q) = (| [ Haidz|Q)  (16)
Next we want to consider the following problem. Start with the
system in the initial unperturbed vacuum state. In this case the field
operator is 7' (zt) and the state vector is |0). The question we
want to address is whether or not the unperturbed vacuum sate
(1/7(0)(Z,t),|0>) is the state of minimum energy or do there exist

gates with less energy than that of the vacuum state? In order to
address this problem consider the change in the energy of the vacuum
date due to an interaction with an external electric potential which is
applied at sometime t > t, and then removed at some later time t, SO

that,

V(zt)=0fort<t;V(zt)=0fort,<t<t;V(zt)=0fort>t (17)
Under the action of the electric potential the system evolves

fromtheinitial vacuum state (1/7(0) (z,tO),|0>) ,a t,, tothefinal state

(v(z1,),/0)),at,. Thechangeintheenergy isgiven by,
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Ao =E(7(21)]0)-£(5° (21,).]0)) (18)

To evauate this we must determine the change in the field operator
over time. The time evolution of the field operator in the presence of
an electric field isgiven by (6). The solution, for time t >t is,

v (zt)=Y (b, (zt)+dlo,, (21)) (19)
wherethe ¢, , (z,t) evolve according to,

; o9, (z1)
ot

and where the ¢, (zt) saisfy the initid condition
9, (21) =0 (2,t,) o that the field operator 7 (z,t) will satisfy
the initial condition y(z,t,) =y (zt,). Use(19) along with (9),
(10), and (16) to obtain,

£(v(z1),|0)) = quﬂh (zt)Hop ., (z,t)dz (21)
Therefore the change in the energy from t,, to t,isgiven by,
T Y
"\ [ el (26 Hop, (2.8,) dz

Use the initial condition ¢, , (zt,) = ¢! (z,t,) aong with (14) and
(15) to obtain,

=Hgp, (z1) (20)

(22)

Al =D 06, (23)

where,
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55,1,r =('|A(0:1r,r (Z’tl) HO(Dﬂ,r (z,tl)dz)—gfr) (24)

4.  Calculating the change in energy

We shal now apply the results of the last section to a specific
perturbation. Let the electric potential V (z,t) begiven by,

V(2.t)=4cos(k,2) {ﬂj (25)

where misthe mass of the electronand k, = 2zw/L < m wherew is
a poditive integer. It is obvious from the above expression that
V(zt)—>0 a t— +oo. Under the action of this electric potential

each initial wave function ¢!”) (z,t,), where t, — —0, evolves into
the final wave function ¢,  (zt,) where t; — +00 . We need to solve
for o¢, , .

This problem has already been addressed in [1] and a solution was
obtained using standard perturbation theory. In [1] it was shown that

dg, , can be expressed as the following expansion in the parameter
q,

Se,, = A0} +q'oel) +O(a) (26)
where O(q®) means terms to the third order of g and higher. For
the problem at hand it was shown in [1] that,

sel =0 (27)
and,
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562 = 22%K, [( = k) _( = kw)j (28)

r+w T—W

It was also shown that &{i)r <0 for all r. Therefore in the limit of
smal g weobtain,

Se,, =06, +0(0) = s’y <0 (29)
, , o ,
Usethisin (23) to obtain,
M =200, = X (a0, +O(a)) =, X525, <0 (30

r

Itisshown in[1] that thisequals,
A&, = 470°k°L (3D

gq—>
As can be seen from this result the change in the energy is negative
S0 that energy of the final state is less than the energy of the initial

unperturbed vacuum state. Therefore energy has been extracted from
the vacuum state due to the application of the electric field.

5. Conclusion
We gart out with a system in the initial unperturbed vacuum sate
(#(2%),/0)) a the initial time t, >0 where the electric

potential is zero. Under the action of the electric potential of Eq. (25)
the field operator evolves in time according to (6). The systemisin

the state (y7(zt,),|0)) at the final time t, - where the electric

potential is, once again, zero. The change in energy fromthe initial to
the final dtate is then calculated. It is shown that, for sufficiently
smal q, this change is negative.  Therefore the final date
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(v(z.1,),|0)) has less energy than that of the vacuum state. The

conclusion isthat in the Heisenberg picture of QFT states must exist
with less energy than that of the vacuum gstate. The is the same result
that was derived in Ref. [1] for Dirac’s hole theory.

References

[1] D. Solomon. “Some new results concerning the vacuum in dirac shole
theory”. Physc. Scr. 74 (2006) 117-122. (see aso quant-ph/0607037)

[2] W. Greiner, B. Muller, and J. Rafe ski. Quantum electrodynamics of strong
fields. Springer-Vdag, Berlin, 1985.

[3] W. Pauli.Pauli Lectureson Physics Vol 6 Selected Topicsin Field
Quantization, MIT Press, Cambridge, Massachusetts, 1973.

© 2008 C. Roy Keys Inc. — http://redshift.vif.com



