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It is shown that the distance between a moving object and an
observer obeys longitudina scaling transformations, which
amounts to a contraction when the object and the observer
approach each other and to an elongation when recede from
each other. The contraction-elongation relation is extended to
the scaling transformations that determine, for a genera type
of motion, the relation between the distances of an object and
its location from an observer. It is shown that the scaling
transformations can be interpreted as transformations between
guantities pertaining to a moving body and its initial location
in one inertia frame, or else, between the coordinates of the
body in two inertial frames. Using the scaling transformations,
phenomena such as Micheson and Morley experiment,
lifetime of metastable particles, Doppler’s effect, the drag
effect, and the Sagnac’s effect, all yield to smple and lucid
explanations. Contrary to the relativistic prediction, the scaling
relation implies a compl ete absence of traverse Doppler effect.
The Lorentz transformations (LT) are derived, using the
longitudina scaling relation; the method of derivation restricts
the domain of its validity to space-like and null intervals.
Moreover, a generalized form of Lorentz transformations
(GLT) will be given and briefly discussed. One consequence
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of the GLT is that the familiar LT is only one in a class of
such, and that LT isvalid only for motion on an axis.

Keywords: (scaling transformations, relatively absolute units,
3-physical space, Sagnac’'s effect, generaized Doppler's
effect, generalized Lorentz transformations)

1. Introduction

In the specia relativity theory (SRT) it is postulated that the velocity
of light is a congant c that is independent of the relative motion
between the source and the observe, or as to say, light's speed is the
same in al inertial frames'™. We start with a weaker postulate: the
velocity of light within each inertial frame is a congtant c. By thiswe
mean thet if light is emitted at an ingtant t, from the pointr, and
received at an ingtant t; a the point r;, where i, and r; are stationary
in an inertial frame s, then ‘Fl—fo‘/(tl—to) =C. The dtarting point
we have adopted can hardly be counted a postulate, for it is a
consequence of the equivalence of inertial frames regarding length
and time measurements within each inertial frame. We shall use
tentetively the Galilean law of velocity addition to combine the
velocity of a light’s signal with the velocity of the emitter. It is clear
however that a congtant velocity of light within each inertial frame
cannot be reconciled with the Galilean law of velocity addition unless
length and time measurements in different inertial frames are
subjected to revision in meaning and magnitude. Inthis article:

-We sndll derive new transformetions of disance and time
intervals and show that these preserve the speed of light within each
inertial frame and yield the samerelativigtic law of velocity addition.

-Using the resultant transformations the perplexities thet arise in
propagation of light are resolved. Indeed, the Doppler’s effect, drag's
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effect, the negative results of Michelson and Morley experiment, the
Sagnec’ s effect” , aswell asthe lifetime of meta-steble particles™ are
al explicable in a simple manner. Stellar aberration phenomenon*®,
which is also neatly explicable by the current theory, will be the
subject of aforthcoming article’.

-Starting from the transformations of time and distance intervals,
the LT transformations are derived in a trangparent manner, with
gpace-like intervals are excluded from the domain of its validity.

-A generd form of LT is given and shown to tend to the
corresponding LT for one dimensional motion; it dictates however
that LT is applicable only within this subspace.

2. The Longitudinal Scaling Relation

Suppose that S=bxyzis an inetia frame in standard configuration
with the inertial frame S = BXYZ, and moving relative to Swith a

constant velocity U = Ui, where I isthe unit vector of the X-axis of S
and (u>0). When at the point B(0,0,0)in S the body b emits a
pulse of light in the +X-direction. The pulse of light reaches an S
observer with coordinate X (X > 0) (which we call the observer rX),
and a the same time it reaches aso the observer rx in s thet is
contiguousto rX at the moment of light’ s reception by both observers.
The observers rX and rx that are contiguous when light reaches them
are caled conjugate observers. We take the ingant a which light
reeches rx and rX the mutua zero of timing in both frames,
i.,eT =t=0, whenrXand rx are contiguous. We may conceive light
as if emanated from the source b when was at the point B in S or
from the point B when was occupied by the source b, and
subsequently received by the conjugate observers rX and rx a
T =t=0. Thus we may conceive light emanating from one and the
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same point in a 3-physical space, defined by the body b and the point
that occupiesin S which is B, when light is emitted, and ending up at
the same point defined by rX and rx at the moment of their contiguity.
It follows thet there is one and the same ray of light, whose path isto
be described in two inertia framessand S or else, by using quantities
pertaining to the body b and itslocation B in S

When light is considered emanating from the pointB e S, the
light's trip(B — X and x) may be viewed to take place within S
and hence its length X relates to its duration T by X = cT . Smilarly,
when light is consdered to emerge from the source b, the trip
(b > xand X) may be viewed to take place within s, and hence
Xx=ct, where x and t are the length and duration of the trip
respectively. Note that in each frame, B and b are coincident at the
ingant of light's emission whereas X and x are not, and that at the
ingant of light's reception, X and x are coincident whereas B and b
are not. The equations

(i) X =cT, (i) x=ct, (21
yield
X_ T I'(u), (2.2
X t

where I'(u)denotes the common value of both ratios. Since each

frame can count itself dtationary while the other is moving, the
proportionality factor should be such that

I Hu)=T(~u) adr(0)=1. 2.3
To determine the factor I'(u) we use tentatively the Galilean law

of velocity addition. To the S observers the light's trip
(b— xand X), tha yields equation (2.1ii) when viewed within s,
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is identical to the trip(batB— X and x). Since b however is

moving with velocity u relative to S the Sobservers relate the period t
of thetrip to its length X by the equation

X =(c+ujt. (2.9
Similarly, and since B is moving relative to s with velocity —u, the s
observers relate the period T of the trip (Batb — xand X) to its
length x by the equation

x=(c—-u)T. (2.5)
Dividing the lagt two equations side to side and using (2.1) we obtain,
onsetting f =u/c, therelation

pB1

1-pT

which determines the scaling factor:

I'(u)= M (2.6)
1-5
The transformations (2.2), which was derived in previous works™°
through different methods, will be referred to as the contraction-
elongation relation, or the longitudinal scaling relation. The reason
underlying this terminology will appear soon.

3. Remarks on the Contraction-Elongation
Relation.

(1) It isimportant to note that the same transformations (2.2) holdsif B
is the true source of light while b is merely a virtua source. It isaso
clear that if sin which b is gationary is moving with velocity (—u)
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relative to S then u is to replaced by (—u) in (22). A smilar
replacement has be made if the coordinate x is negative (but u is ill
positive).

(i) The transformations (2.2) guarantee that X /T = x/t, which
inturn givesriseto the firs postulate of SR in aspecific sense: if light
propagates in one frame with velocity ¢, it propagates also with the
same velocity c in the other frame. This does not mean however that
the velocity of light isindependent of the source's velocity”.

(iii) At the beginning of the light’strip the true and virtual sources
b and B are contiguous to each other while the observersrx and rX are
not, and the converse is true a the end of the trip. In a given frame,
say S the digance x between a body b and an observer rX is by
definition their distance at the final ingtant T =0, while the distance
X of its location from rX is the distance between them at the instant
light was emitted (T=-X/cC); or as to say, it is the distance
between an S observer a B and the observer rX. The relations (2.2)
relate the distance separating the body b and the observer rX to the
distance between its location and rX. It follows that one frame, say s,
can be dismantled, while there exists in the other (hereis S) two types
of distance intervals:(i) the geometric (or stationary or satic) distance
which is the distance of the body from the observer & (- X /c), and

the “proper” (or mobile or kinemetical) distance X, = x whichisthe

distance of the body fromtheobservera T =0.

(iv) Given two objects A and B moving on the same line, an
inertial frame S can be chosen such that either object, say A, is
dationary in S and taken as an observer, wheress the other, B, is a
source. By remark (iii) and the transformetions (2.2), the distance D
between the location of the object B and the observer A relates to the
distance d between the object B and the observer Aby D =T"(u)d if
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A and B agpproach each other with a relative velocity u, and by
D=T""(u)d=T(-u)d if A and B recede from each other with
velocity u.
(v) Because of the concept of location in Sis a primary one, it is
quite natural for the S observers to consider light emanating from
B € S. But why do we require that the s observers should adopt B as
avirtual source of light? Our requirement is justified by the fact thet,
if B was atrue source whereas b was not, then b would be the location
of the body B in s when light is emitted, and the s observers would
certainly consider light emanating from b as well as from B and
demand that the S observers should imagine b as a virtual source of
light. This leads the Sand the s observers, when both observe light's
emission from asource, to treat virtual and real sources evenly.

4. Interpretations of the Scaling Transformations

The Active View

In a given frame S a unit of length (or distance) is presupposed and
can be chosen arbitrarily in any convenient way, such as, the distance
between any given two material points in § or the length of a rod
joining such, or the wave length of a specific spectra line
characterizing dationary emission of some chemical element. After
choosing a unit of length, the geometric distance in S between any
two material points A and B, thet are ationary in S can be quantified.
Moreover, the axes of arectangular Cartesian syssem OXYZ in Scan
be calibrated by multiples and fractions of the chosen unit, and
consequently, points in S can be specified by their coordinates. When
Sis endowed with the sysem OXYZ, the geometric distance between
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amaterial point on an axis and the origin O is the absolute value of its
coordinate on that axis.

Reverting to the frame S considered above, we identify X as the
“geometric’ distance between an S observer a the location B of the
body b and the observer rX. Being geometric, the distance X depends
only on the two points B and rX in S s0 that whenever these two
points are specified the distance X can be determined by geometric
means, and it is independent of the instant & which the measurement
is carried out. On the other hand, the quantity x can be envisaged as
the distance of the moving body b from the observer rX when light is
received by rX. Equivalently, x is the distance between an S observer
B', thet is contiguous to b when light is received, and the S observer
rX, i.e, it is what we have aready named the proper, or mobile,
distance between the source b and the observer rX. Thus the relations
(2.2) can be interpreted as transformations within the same frame S
between the geometric length X and the proper length x at any ingtant
of observation. Note that in this interpretation X can be assumed
aready given or known, while x which is caculable by the
transformations (2.2) has to coincide with its measured value in Sif
the theory is correct. According to the latter interpretation, the
transformeations (2.2) which hold within the same frame of reference
S there exigs in addition to the usual geometric distance between a
body and an Sobserver, aproper distance that depends on the velocity
of the body, and these two types of distance are identical only for
dationary bodiesin S On account of (2.1) parallel satements hold for
the geometric and proper durations T and t respectively.

Alternatively, the transformations (2.2) hold within s, but with the
rules of b and B as true and virtual sources are interchanged; X is the
proper distance of atrue body B, which is moving with velocity —u in
s, and x is its geometric distance from rx. Although it is convenient to
consider the geometric quantities as given or known data, it is aso
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possible to start from the measured mobile quantities and calculate the
geometric quantities pertaining to the virtual source a the ingant of
emission.

In the active view, the dationary and proper disances are
essentially coordinates. The distances X and x are the coordinetes of
the observers rX and rx in S a the ingtant of light reception. Or, we
may view x and X as the coordinates of the body b and its location B
in Sif the origin of Sistaken a the conjugate observersrX and rx and
the X-axis is directed towards the body. We shall adopt the latter
convention whenever we speak of the geometric and mobile
coordinates of a moving body in S For u<<c, the transformetions
(2.2) are gpproximated by

X —x=X1-1T)=uT — (u?/c)T +..~uT.

It is noted that the active view “decouples’ the two frames Sand s,
in the sense tha one can be contented with measurements of
quantities pertaining to abody and its location in one frame.

The Passive View

In the active view no ambiguity arises regarding units, because the
same units in a single frame S are used to measure the length and
duration of the trips(B — X)and (b — X). When two frames are
involved in measuring the length and duration of the same trip, it is
necessary beforehand to specify the units of length and time in each
frame.

We have seen in section 2 that light emitted from the body b and
received latter by the conjugate observers rX and rx can be
considered by all observers to emanate from the same point (bat B)

=(Batb) and to end up at the same point (X and x) in the 3-physical
gace. Thus a single light's trip (Borb—rXandrx), which
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involves only one true source, is considered an absolute entity in the
3-physical space, and processes accordingly absolute length and
duration, whereasthe relations (2.2) are interpreted as transformations
between units of length and time in Sand s. Denote the units of length
(time) in Sand s by S.U (STU) and du (stu) respectively, then by
(2.2), SLU/T" = Slu/1. Hence, the units of lengthsin Sand sarein the
proportionI":1, or, SLU =T"du. If the unit of time in each frame is
St equal to the duration taken by light to cross the unit length trip,
then STU /T =stu/l, and c=1 in each frame. It is possble of
course to adopt any chosen length (period) in one frame as the unit of
length (time), but the choice of the unit of length (time) in any other
frame must respect the proportion specified above. Units of length
(time) in Sand s that respect the proportion specified above will be
called relatively absolute units.

Now, if b isthe source of light, then the length of the trip (b — X)
which occurs exclusively within s is equal to its geometric length
X=X, Uls ins. Inthe passive view of the scaling transformations, a
single light's trip is considered an absolute entity in the 3-physical
gpace, and hence its length X in Smust be equal to itslength xin s, i.e.
X =x=x,uls. The light trip (b — rx) which occurs within s can

be viewed in Sas arting from the moving source b in Sand ending at
the S observer rX, which is the trip (b — rX). The question now is

that: if it is known that the length of a light's trip within s is X4
(which means x=x,.du), then what would be its measured length
X,,in S? The answer is simple. Since the unit of length in S'is
I" times the unit of length in s, the length of the trip (b — rx) when
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observed in Sis its length within s divided by I", i.e. X, =x /T .
Indeed, and if X =X, ULS, then
X uls= X ULS & x uls= X .(Tuls) < X = xg/F

Similarly, and if the S observers assign to a light's trip (B — rX)

that occurs exclusively within Sa length X, then its length, when
observedins, is x, =T'X .

In the remainder of this section we summarize the passive view of
interpretation of the scaling transformations by the following
elements

- The transformations (2.2) define relatively absolute units of
length and time in Sand sthat are inthe proportion I":1.

- If it is known in s that the geometric length and duration of a
given tripis (Xg,tg) , then the observed valuesin S corresponding to

these geometric data are given by
X Ty 1 413
X, t, T

Similarly, there corresponds to the S geometric data (X4, T,) the
observed values (x.,t.) ins where

X T
fo_ o 1 (4.1b)
X t T

Therefore and when observed in S the value of a geometric s
quantity is simply the S equivalents (means using S units) of its value
ins, and vice versa.

- A conciseformof (4.1) is
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X T 1
X t T

provided we understand that
1. X and x refers to the coordinates of the 3-physical point
(bat B) =(Batb) in the frames S and s respectively, or asto

say, to the coordinates of one true source, either b or B, (but
not both) in Sand srespectively.

2. Either the quantities in the numerator or the denominators,
but not both, are geometrically measured. Precisely, the
geometric quantities pertains to the frame in which the body is
at red.

Note that although the scaling transformations (4.2) between two
frames have the inverse form of the contraction-elongation relations
(2.2) which hold within one frame, both forms embody the same
geometric and physical contents.

(4.2)

5. Conjugate Sources

If B and b are both true sources of light then we have two light's
pulses emanating simultaneously from B and b. Now each observer
rX and rx receives two pulses but not simultaneously, and hence rX
and rx are conjugate observers only for the pulse that is first received.
To see that thisis indeed the case, we use the fact that the length of a
light's trip is absolute and equal to its geometric length. The length of
the light's trip (b — rx) is x=x,uls, and the length of the light's

trip(B — rX) is X = X ULS. It follows that
1 x _ Xuls  x1
I X X,ULs X I’

g

(5.1

and hence
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X,=X,=4d. (5.2

Similarly
t,=T,=4. (5.3)
This means that the readings of the geometric lengths and

durations of the true trips (B—rX) and (b—rx) in Sand s

respectively are equal. The lengths of these trips however and their
durations are not equal. Indeed

x=auls=aULS/T = X/T", (54)

t=auts=a UTS/T'=T/T. (5.5
The lagt relation means that the trip (b — rx) takes less time than
thetrip (B — rX) provided that T"(u) >1, and longer time provided
that T'(u) <1. Confining ourselvesto thecase T'(u) >1, we see that
the conjugate observers rX and rx receive first the pulse emanating
from b, and after they individuate, each receive the pulse emanating
from B. Each of the observers rX and rx can claim itself gationary
while receiving the two pulses, whereas the other has moved a certain
distance after receiving the first pulse. Assuming that the emission of
the two pulse of light from (b and B) takes place & T =t =0, the
observer rx registers t =a,.uls at receiving the first pulse (from b)
and al'uls=tI" a receiving the second (from B). The difference
between theseis
At(rx) =t(C' =Y =a, (' -uls.
The observer rX register (a,/T)ULS=T/I a receiving the first pulse
(fromb) and aULS=T at receiving the second (from B). The delay
period between receiving these two pulsesis
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AT(rX)=T(@1-1T')=a (1-YT)ULS.

Thus, athough the speed of light within each inertia frame is c,

the velocity of light is not independent of the relative velocity

between the source and the observer. Indeed, the two pulses emanated

at the same time from two conjugate sources b and B do not reach rX
(orrx) a the sametime.

6. The Scaling Relations in General

Le S=0OXYZ be an inetia frame endowed with a sysem of
spherical coordinates(R, 8, ¢) , with @ is the azimuth angle between
the OX axis and the radius vector R. Consider a body b moving
relative to Swith velocity T = ui (u > 0), with 1 is the unit vector of
OX and (u>0). It is shown’* that the transformations from the
geometric coordinates (R,8,¢) of the body b to its proper
coordinates (r,8',¢") aregiven by

r S
E_r(e,u), 0'=0,¢'=¢, - r(o,u), (6.2)
with
2 5R2
r(6.u) = m+ﬂcose’ 62)
\1- B2
and

2 .2
r4(0,u) =T (0,-u) = Y1=5 \71”722_ A )

© 2008 C. Roy Keys Inc. — http://redshift.vif.com



Apeiron, Vol. 15, No. 1, January 2008 108

The transformations (6.1) will be referred to as the scaling
transformations. On account of the equations

r'(O,u) = % =T (u), T(r,u)=T"}u), (6.4)

the transformations (6.1) reduce to the contraction-elongation
relations

X=Tux, Y=y=0 Z=z=0 (X>0) (65
ford =0, andto

X=T(u)x Y=y=0, Z=z=0 (X<0) (66
for @ =7 . The relaion (6.5) corresponds to the case in which the
body is receding from the observer, and the second, (6.6), to the case
in which the body is approaching the observer. For =37, the

transformations (6.1) reduce to the identity transformeations in the
plane containing the source and perpendicular to the velocity vector
X=x=0, Y=y, Z=z (6.7)
Inthe last casethere is no contraction or elongation effect.
Using the passive view, the relations (6.1) hold between the units

of length and time in Sand s, and the scaling transformations between
Sand sassumethe form

Rir=T(0,u), 06=6, ¢=¢', T/t=T(0,u), (6.8)

with (R,8,¢) and (r,6',¢") are the coordinates of the body b in S
and srespectively.
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7. Comparison with Experiment

Lifetime of Meta Stable Particles

The 1 —meson particles have a short lifetime 7 ~ 2.10°s, during
which and even it moves with the velocity of light, it can covers only
adisanced ~ ¢z = 0.6km. The 1 —meson particles are generated
at an altitude D = 60km with a very high speed closeto that of light.
In spite of its short lifetime, these particles can be detected abundantly
a the earth surface. According to the active view, the distance of an
1 —meson particle generated a an dltitude D and approaching the

earth’s surface shrinks to avalue d =T"'D, and in order to reach
the earth surface the particle should possess a velocity v such that

—fﬂ 0.6> 60. (7.0)
This yields > 0.99980002, which is a probable value for the

gpeeds of such particles. Relative to an observer a an altitude
D=60km and stationary with respect to the earth, the particles heading
towards the earth surface are receding away from him, and hence
D =I'd, whichisequivalent to the formula used above.

The Drag Effect

This effect® isexplained in the SRT using the law of velocity addition,
which isalso valid in the current theory as we show here: Let x> 0,
and S be moving with velocity v(v > 0) relative to athird reference

frame S’ whose origin is contiguous to B at the instant of light’s
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emission. Adopting the passive view, we find that the transformations
fromsto S'is

X' =T W)X =W Hu)x=T (V)x, (7.2)
where
1+V/c
T = , 7.3
V) 1 Vic (7.3)
and
V+Uu
V="-"-—. 74
1+uv/c? (74

Equation (7.3) is interpreted as asserting that the frame s moves
relativeto S’ with velocity V given by (7.4), which is the same law
of velocity addition in pecial relativity.

Doppler’s Effect

Le S=OXYZ and s=oxyz be inetia frames in standard

configuration, and assume that s trandates parallel to OX with a
congant velocity u (u>0). Let b be a source of light thet is stationary

in s, and hence moving with a constant velocity G =ui relaiveto S
Suppose that the source b is radiating a monochromatic light of a
characteristic wave-length 4. The light emitted from b is received

by any s observer and in particular by the observer o, as a
monochrometic light of the same wave-lengthA,. If (R,0,¢)and

(r,0,p) ae the spherical coordinates of b in S and s respectively,
then at any ingtant of actual observation,

R=T(@,uwr, =60, ¢=¢, (7.5)
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where the passive view is adopted. If the distance r corresponds to
onewave length A, in's, then the distance R corresponds to one wave
length A in S(which is the distance between two nodes for example).
Setting R=A and r = in (7.5) yields the generalized Doppler’'s

formula
26n2
/1:,80050+w/1—,f sin 0/10 76)
V1-58

which determines the wave length as measured by the dationary
observer O. Note that the radiating source here is a a postion of
azimuth angle @, and that the polar axis is OX. The lagt relation

shows thet A > L, for 0<@< 37, and A< for Sz <f<x.
The source b is receding from the observer in the f|rst caxe, and
approaching it in the second.

The generalized formula (7.6) reduces, for € =0, to the red shift
Doppler’sformula

1= |8

1-p

corresponding to the source and the observer receding from each
other. For &=, the relaion (7.6) reduces to the blue shift

Doppler’sformula
A= /1 B Ao (7.8
1+

corresponding to the source and the observer gpproaching each other.
For =1 > 7T , therelation (7.6) reducesto

P (7.7)
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A=A, (7.9)

which, contrary to the relativigtic prediction, shows that there is no
traverse Doppler’s effect.

The Sagnac's Effect

Consider two electromagnetic waves emitted from a point at the
earth’s equator pardlel to the equator and in opposite directions. It is
experimentally verified that the spinning of the earth about its axis
amounts for a complete round to approximately 207 ns advance
(delay) for a wave propagating westward (eastward) parallel to the
earth’s equator”.

Let S=OXYZ betheinertial frame of fixed starswith origin O at
apoint o of the earth’s equator, and take OX tangent to the equator at
o0 and directed eastward, so that the linear velocity uof oin S when o
is contiguous to O, is positive. Suppose that two pulses of light are
emitted simultaneously from o in opposite directions parallel to the
equator. Let X, (X,,) bean Sobserver that is contiguous to 0 when

light emitted is received back by o and hence by X (X,,) . In other
words, 0 and X, (0 and X,,) are conjugate observers when light

emitted eastward (westward) is received by o.

The path of light circling the equator can be decomposed into
sraight segments with two conjugate observers, an S observer and an
equatorial observer, at the end of each segment. The problem can thus
be visualized as a linear one. Let s=o0xyz be an inertia frame in
standard configuration with Sand moving relative to Swith velocity u
(u>0). We may envisage the pulse emitted eastwards from (o and

O) and received by (0 and X,), asif received by the conjugate Sand
sobservers (o’ and X, ), with o' on the negative x-axis of sand at a
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distance x from o that is equal to the circumference of the earth, as
measured in s. For the eastward trip the emitter is receding from the
observer X, and the relatively absolute units of time in Sand sare
in the proportion 1: T"(u) . The westward trip can be viewed as a trip
starting from (0 and O) and ending a (o"and X ), with 0" on the
positive side of the x-axis and at a distance x equal to the earth
circumference as measured in s. For the westward trip the emitter o is
approaching the observer X, , and hence the absolute units of time in
Sand sarein the proportion 1:1/T°(u) .

It isimportant to note thet the Stime is the time read by our clocks
on earth. To the unit “second” of the Stime, there correspond two
relatively absolute units of time in s, which we name the east and west
equatorial seconds. Let’s denote the latter absolute units by Esec and
Wsec respectively. According to the passive view of interpretation,
the latter absolute unitsrelate to the unit of timein Shy

1sec=T"(u)W sec, 1sec=TI"(-u).Esec. (7.20)
Similar relations hold for the units of length, say “meter”:
Im=T(u)Wm, Im=TI'(-u).Em (7.12)

Let t, be the geometric duration of the eastward trip
(oatO — o' and X,) ins. Sincethe length of thetrip in sisthe earth’s
circumference in absolute s units, we have
_circum_ 40,000(Ekm) 2
¢ 300,000(Ekm/Esec) 15

Similarly t,, = &W sec. The difference between these

te Esec. (7.12)
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2 2
t—t, = T (Esec—W sec) = T (I'(u)-T'(-u))sec

2 2ulc (7.13)

15,1 (uoy?

represents the delay period between receiving the two waves. When
calculating (7.13), the linear velocity u of a point of the equator was
taken

u = 40,000km/23h56 minx 60 (min/h) x 60(s/min)
~ 0.46425km/ s

sec ~ 2x 206.33nsec,

Michelson and Morley Experiment

Perhaps there is no experiment in physics higtory that was studied,
analysed, and disputed as much as was the Michelson's and Morley's
experiment (MM for short). The experiment was designed to detect
the earth’'s motion through the ether by measuring the difference in
time taken by light to make from a point, 2-way trips along two
perpendicular axes, one of which points in the direction of the almost
trandational motion of the earth around the sun and the other is
perpendicular to it. The observed effect was much less than the
expected one. Similar experiments were carried out by other
scientists', and the same result was found: the observed fringe shift is
much less than the calculated one.

In this article we argue that the expected effect in the MM and
smilar experiments is due to the rotational motion of the earth about
its axis, but not to its orbital motion around the sun. This argument is
based on the following facts.

- There is no ether inthe scaling theory,
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- The time we use on earth is the time of the frame S trandating
with the earth in its orbital motion, and hence there can be no
fringe displacement due to the earth's orbital motion.

- A frame with origin at the earth surface and rotating with the

earth can be considered during a short period of time an inertial

frame thet is trandating relative to S with the linear velocity of its
origin, and hence its units of length and time are different from

those of S.

In the following trestment, it is assumed that the reader is well
informed of the MM experiment which can be found in mogt text
books on special theory of relativity™= .

The frame S with origin O a the earth's center, which does not
rotate relative to distant stars can be considered inertial, for it executes
within asmall period of time only atrandational motion. Relativeto S
the earth spins about its axis with a constant angular velocity, and the
linear velocity of the a point o of the earth's surface is usin @ whereu
is the linear velocity of a point of the earth's equator, and @ is the
azimuth angle of the point 0. For smplicity we assume temporarily
that the experiment is carried out &t the earth equator, with one of the
arms is pointing eastwards and the other northwards. Let s=oxy bea
frame rotating with the earth, with origin at the light's source o, the x-
axis pointing eastwards, and oy northwards. For a trip of light along
oy, southwards or northwards, the units of length in Sand s are equal.
The units of length (and time) in S and s are respectively in the
proportion 1:T°(u,0) for an eastwards trip and in the proportion
1:T(u,7)=1/T(u,0) for an westwards trip. Assuming that the arms
are oriented initially eastwards and northwards respectively, and that
the length of each arm is|, then the difference in the light's path will
be

A = (I.Emeter + | Wmeter) — 2l.meter , (7.149)
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AZI(\/1+U/C+\/1—U/CJ_ZI
1-u/c l+ul/c
=2l (1— (u/c)y )1/2 ~1(u/c)’ meter . (7.15)

When the interferometer is rotated by a right angle the difference
doubles giving rise to a fringe shift

_2A(uy
f= l[cj . (7.16)

or

Inthe MM experiment
A =6x10""meter , | =120cm.
Subgtituting u = 0.46425kmy/s and ¢ =298792.5km/swe obtain
f ~0.00001,

which is just (1/4000) of the commonly predicted value, and (1/1000)
of the observed result, which is 0.01 fringe.

Going through the results of varioustrials of the MM experiments
listed in Wikipedia, or in French®, we note that the observed effect
corresponds to a velocity u that is always greater than the rotational
speed of the earth about its axis. According to the Wikipedia, the least
upper limit of u, which is therein the orbital velocity of the earth,
while it is the linear rotational speed of the earth in our argument,
occurs in the lllingworth's trial (1927) with u is less than one kilo
meter per second. The second reasonable upper limit is found in Joos
trial (1930), with u=1.55knVs. In fact the MM experiment yields a

fringe shift corresponding to an orbital speed u =4.75kny's, which is
gill closer to the vaue of the linear rotationa speed,
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(0.46425sin@)kmy's, of the location a which the experiment is
carried out.

8. Lorentz Transformations

Let Sand s be inertial frames as prescribed in section 2, and assume
that s is moving relative to S with velocity u (u>0). Let o and x be
pointsin s, with x> 0. At theingant t = 0in sa source of light b a
X emits two pulses, a pulse (+) in the +x-direction and a pulse (-) in
the —x-direction. At an indtant t in s the pulse (+) reaches a point p,

in s with coordinate x+ ct, while the pulse (-) reaches a point p_

with coordinate —x+ct in s When the pulses (+) reach the
observers p, , a theingtant t in s, there exist two Sobservers P, that
are contiguousto p. . The observers p, can consider light reaching
them from x as emanated from o a the ingants F X/ C respectively.
When light is emitted from x, at t=0 in s, there exist two points X and
O in Sthat are contiguous to x and o respectively. The light received
by the s observers p, and by the conjugate S observers P, can be
consdered by the S and s observers as emitted from x or from the
point X in Sthat was contiguous to X at the ingtant of light emission.
The Sobservers are at liberty to sart the clock a X a any time they
wish, say T =0, and synchronize the rest of their clocks with the X-
clock in the natural procedure of light synchronization®. There
corresponds to the period t in s during which the pulses emitted from
xreached p, aperiod T in Sduring which the pulses emitted from X

reach P, . When the pulses resch P, the clock a X reads T. The
observers S can consider light reaching P_ as emanated from X a an
ingant T =0, or fromO at aningant T = X /. The coordinate of
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P_when light is received is —c(T —X/c)= X —cT.The light
reaching P, can be considered by the observers S as had been emitted
fromXa T=0,orfromOa T =—-X/c. Thecoordinae of P_ a
light reception is X +CT . Thus the S observers associate with the
light trip (0— p_and P_) the period t —x/c and with the light
trip (O — p_and P_) theperiod T — X /¢, and since o is receding
from P_, the contraction-elongation relation yield
T-X/lc=T"}t-x/c). (8.13)
The S observers assign to the light trip (O — p, and P,) a period
T+ X/c and to the light trip (0— p, and P,) the period
t+ Xx/c. Since o is gpproaching P, the S observers relate the latter
periods, according to the contraction elongation relation, by
T+ X/c=T(t+x/c). (8.1b)
Solving equations (8.1) for X and T we obtain the Lorentz
transformations (LT)

X+ ut ct+ux/c
cT = )

J1-p2 J1-P?
The method used to derive LT promotes the following comments:
(i) Equations (8.1) are valid only after the observers O and o have
received the wave front (-) mentioned above. Assuming X > 0, we
should have X —cT <0, which impliestha0< X <cT. The last
inequality combined with the result of a similar argument concerning
thecase X <0, renders LT valid in the domain

| X [€cT. (8.3

X =

(8.2)
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Therefore, LT is valid only for time-like and null intervals. The
physical meaning of the latter statements is thet, the pulses received
by P. and P_ can be considered as have been emitted from any X

that satisfies (8.3) for agivenT.
ThelLT (8.2) reduceto
X =Tx, X =cT fort=x/c(x>0), (8.4)
andto
X =T, X =—cT fort=-x/c(x<0). (8.5)

(if) Since T is always positive, it is not legitimate to consider the
invariance of LT under time inversion.

(iii) Objections may rightfully be raised claiming tha the
congraint (8.3) is a consequence of the particular method followed to
derive LT. In reply, we note that the LT (8.2) is algebraically
equivaent to (8.1), and hence a tangible interpretation for (8.1) must
be sought. In fact, the factors T" and T~ gppearing in the form (8.1):

X +cT=I(x+ct), X-cT=I"(x-ct)

of LT are precisely the factors sought by Eingein in his smple
derivation of LT.

9. The Generalized Lorentz Transformations

Let S=0OXYZ be an ineatia frame endowed with a system of
spherical coordinates(R, 9, @) , with & is the azimuth angle between

the OX axis and the radius vector R. Consider a body b moving
relative to S with velocity G =ui (u>0), with i is the unit vector of
OX and (u>0). In away very much similar to that followed in
deriving the redtricted LT, a general form of Lorentz transformeation
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(GLT) relating the geometric quarntities(R, &, #;T) and the mobile
quartities (r,8’,¢';t) can be obtained™; it isthus written

2an2
R J1-4°sin“@r + fcosdct (9.14)
\1- 32

0=0', ¢=¢ (9.1b)
 p2qn2
cT=‘/1 £°sin 9ct+,8cos€.r. (9.10)
-5
The transformation (9.1) are valid in the domain
R=|R[CT. (9.2)

One consequence of the last congtraint on validity region of GLT
isthat, choosing a common origin of two frames of reference is not a
passive process, for it entails a specific restriction on the possible
values that can be assigned to spatial and time coordinates, which is
due to mutual observation of the same light trip by O and o.
Moreover, and as it is shown below, the relative motion of an
observed object and an observer, if one dimensional, then LT is
reduced to atransformation of motion in one-dimensional space. The
GLT preserve the Minkowski metric. i.e.

C’T?2—R?>=c%?-r?. (9.3)
For 8=0or @ =7z theGLT reduceto
X+ ut ct+ux/c
X = , T ="r—2,
\1-p? J1-p? (9.4)
Y=y=0, Z=2z=0.
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For 8 =7 /2 ,theLT assumethe form
X=x=0 Y=y Z=2 T =t. (9.5

Velocity Addition Once More
If a particle has an ingtantaneous velocity v along the radius vector in

s then its ingantaneous velocity in S is aso radia and has the
algebraic magnitude

[ p2an2
V- 1- p“sin“ @ v+ucosd | 96)
J1-%sin? 0 +uvcosd/ c?

The relation (9.6) is obtained through dividing the differentials of
(9.18) and (9.1c), with &',¢"kept constants because the motion is
radial. The relation (9.6) reduces to the familiar formula (7.4) of
velocity additionin SRT for @ =0or 0 = 7 . For 8 = /2, we have
V =V. Moreover, the relation (9.6) guarantees that c is invariant.
Indeed and setting V= in (9.6) gives V =c. The last result, by no
means, implies that ¢ is the maximum speed in nature; it implies
however that (9.6) is valid, in the same way as the theory itself, for
motions with velocities that doesn’t exceed c. The speculation that ¢
is the maximum speed in nature should be postulated independently.

Conclusion

We have shown that the postulate of SRT regarding light velocity isa
result of a weaker postulate, and that optical effects that formed a
challenge to the pre-relativigtic era can be explained in a smple
manner using the scaling formulae obtained above. It was aso
demongtrated that the same formulae lead to LT confined to the
region of time-like and null intervals. The expressions of GLT were
listed and briefly commented on. The concept of the 3-physical space
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introduced in this work is the subject of an expound study in
subsequent works™.
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