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Abstract. This paper presents a semi-classical structural model 
for electrons, protons, and their antiparticles.  The structure is 
based on refractive interaction of an electromagnetic saddle 
wave on an elliptic ring path.  These elliptical ring particles 
show a net attractive centripetal force maintaining the closed 
path, equal but opposite charges in pair production, and spin 

π2h (with one caveat).  A deviation from Coulomb’s Law 
similar in effect to a short-range attractive force is inherent to 
a ring’s electromagnetic field at small distances.  The 
calculated electron magnetic moment anomaly is 
approximately 0.0055%, about 21 times better fit than the 
Bohr magneton provides.  About 97% of the remaining 
anomaly could be due to a missing component in the 
CODATA experimental value.  The proton magnetic moment 
anomaly is only about 0.07% between theory and experiment.  
Calculated proton rms radius differs significantly from 2002 
CODATA Rp, but the author identifies one possible systematic 
assumption in the analysis of electron scattering data that 
would account for the entire difference.  Hypothesized 
anomalous dispersion limits the number of stable particle pairs 
to two (electron-positron and proton-antiproton), determines 
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their masses, assists in determining refractive indices and 
phase velocity, and provides additional stability. 

PACS:  14.60.Cd, 14.20.-c, 41.20.-q, 12.90.+b 

1.  Introduction 
A successful theory of matter must include a viable explanation for 
the stability and known properties of the four stable fundamental 
particles with rest mass, the electron, positron, proton, and antiproton.  
The Standard Model of physics does so by introducing extremely 
complicated physical concepts and particle models.  This paper 
presents one structural electromagnetic model for the four stable 
particles using only pre-Standard Model physics and certain 
hypotheses.  It provides stability, uniqueness of mass, quantized 
charge and spin, and magnetic moments that account for most of the 
anomalies between theory and experiment.  Along the way, it 
demonstrates a natural divergence from Coulomb’s Law and 
identifies an electron magnetic moment component that might not be 
accounted for in existing experiments.  And it identifies a possible 
error in the analysis of experimental proton rms charge radius.  
Several tests of the model are possible. 

2.  Generalized model 
In electron-positron pair production, one photon of sufficient energy 
with group wavelength λg~ and group frequency νg~ interacts with 
external fields strong enough to divide the photon’s energy into 
halves and create a particle from each half.  For this paper’s theory, 
essentially two plane-polarized photons are generated from one, then 
half-cycles with aligned magnetic field vectors from each photon are 
combined into particle rings.  Figure 1 describes the resulting two 
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particle rings.  This paper does not attempt to model the pair 
production process, but rather 
the resulting particles.  The 
same structural model is 
found to apply equally well to 
protons and antiprotons. 

2.1.  Hypothesized 
requirements 
The hypotheses used by this 
theory to generate any pair of 
stable rest mass particles 
from a photon are: 

• Two photon half-
cycles with aligned magnetic field vectors associate as one 
particle ring.  This provides a balanced saddle wave 
configuration and generates oppositely charged particle rings. 

• Electromagnetic interaction across the diameter generates a 
refractive index.  The refractive index is key to the particle 
ring’s size, stability, and properties. 

The hypothesis that limits the number of stable rest mass pairs to 
two, specifies their masses, helps determine phase contributions to 
particle properties, and improves stability is: 

• One anomalous dispersion wavelength exists for the ring 
particle electromagnetic waves. 

The hypotheses necessary to nearly match experimental magnetic 
moments for the electron and proton are: 

• Both group and phase wave components of the energy 
contribute to magnetic moment. 

• A non-integer index of refraction causes precession, as long as 
the particle is otherwise stable. 

 
Fig. 1.  Ring particles from pair production 
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2.2.  General model structure 
Consider either particle ring in Figure 1.  At any point on the 
circumference, the EM field extending from the opposite diameter has 
an opposing Poynting vector.  The opposing EM field creates a 
refractive index n that varies around the ring in proportion to its field 
strength.  Varying as a sine function, n refracts the wave, changing its 
group and phase wavelengths and generating an elliptical path with 

rng πλ =~ .  The sine variation of n increases the radius to 22r at 

maximum and decreases it to 22r  at minimum, where r is a 
circular radius that would result if the energy were evenly distributed.  
The majority of this paper’s analysis uses a circular ring instead of an 
ellipse for simplicity.  The values of n derived later for electron and 
proton appear to be averages for their rings, inherently including 
adjustments for the difference in perimeter of an ellipse versus a circle 
and relativistic effects, because neither type of adjustment was found 
to improve accuracy. 

A ring’s energy has group wavelength rngg πλλ 22 ~ ==  and group 
frequency 2~gg νν = , giving the particle half the energy of the 
originating photon.  The particle’s group wavelength and frequency 
then give 
 ggg rnc νπνλ 2== , (1) 

where c is the velocity of light in free space.  The saddle wave has the 
same group and phase properties of an equivalent photon.  Both group 
and phase components are important in this model. 

2.3.  Anomalous dispersion effects 
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Anomalous dispersion is evident for all substances [2 p. 470], so 
considering the possibility in EM interactions is appropriate.  For 
anomalous dispersion to occur, there must exist the equivalent of an 
absorption wavelength.  The author hypothesizes that there exists one 
unique photon wavelength λ1 in the interval defined by one-half the 
equivalent energy wavelength of a proton and an electron.  For that 
wavelength, refractive index 1=n , λddn  is very large or undefined, 
and the equivalent of an absorption band exists. 

Figure 2 is a proposed anomalous dispersion diagram for this 
model.  At minimum and 
maximum n, 0=gddn λ .  The 
velocity of light, group velocity 
ug, refractive index, and group 
wavelength in free space relate 
through the equation [2 p. 478] 

 gg λd
dnn

u
c

−=
. 

For dispersive media 
(refractive index varies with 
wavelength or frequency), the 
following relationship between 
group and phase velocities holds 
[4]: 

 2
g cuu =φ . 

Then when dn/dλg=0 at minimum and maximum n in Figure 2, 

 
n
cu =g , (2) 

 
Fig. 2.  Representative anomalous 
dispersion curve 
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 ncu =φ . (3) 

The “absorption” wavelength between minimum and maximum n 
for which 1=n  is λ1.  Through one absorption wavelength, two 
energy levels are allowed for pair production.  The wavelength at 
maximum n is the electron-positron pair generating wavelength, and 
the wavelength at minimum n is the proton-antiproton pair generating 
wavelength.  Specific n values for the two energies will be determined 
later. 

Stability of a ring structure at 0=gddn λ  is enhanced by the 
anomalous behavior of n.  The value of rng πλ 2=  or rng πλ =~  
cannot change without changing the energy of a ring particle, so the 
product of r and n is constant.  Consider the curve in Figure 2 at 
maximum n for a particle of radius r.  A reduction in r (move left on 
the curve from maximum n) results in a decrease of n, and r is forced 
back to a larger value.  The particle is not allowed to implode.  
Attempt to increase r, and n decreases at a slower rate than the 
increase in r.  As a result, the refractive index is higher than allowed 
for the increased r, and r is reduced until stability is restored.  Similar 
reasoning applies to the proton-antiproton associated wavelength at 
minimum n, with modification due to the inverted n curve.  Assume 
the proton is stable at minimum n.  Decrease r, and n increases but at 
a rate slower than the decrease in r, driving r back to its larger stable 
value.  Increase r, and n increases instead of decreasing, driving r 
down until stability is restored. 

The anomalous dispersion hypothesis may apply only to the 
specific EM interaction in these ring particles or it may apply in 
general to all photons in an imposed EM field.  If it applies to all 
photons and if refractive index 1<n  for all wavelengths shorter than 
λ1, a modification of existing EM theory would be appropriate.  In 
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that case, the group - phase relationship of photons would swap at λ1.  
For wavelengths greater than λ1, a quantum is defined by group 
wavelength λg, group velocity cug ≤ , phase velocity cu ≥φ , phase 
wavelength gλλφ ≤ , and energy transport is at group velocity ug.  
These relationships reflect standard EM theory.  At wavelengths 
shorter than λ1 the group - phase relationship would swap, with a 
quantum defined by phase wavelength λφ, phase velocity cu ≤φ , 
group velocity cug ≥ , group wavelength φλλ ≤g , and energy 
transport at the velocity uφ (assuming the names group and phase 
aren’t simply swapped).  Superluminal energy transport velocities 
would still be still forbidden at all wavelengths by stipulating that 
energy transport occurs at the lower of group and phase velocities.  
The best group - phase wavelength relationship that fits this paper’s 
theory is for phase wavelength ngλλφ = .  Using (1), that leads to 

rπλφ 2=  which would assist in particle stability (ie phase wavelength 
is an integer multiple of rπ2 , corresponding to a similar quantum 
requirement for electron orbits in the Bohr hydrogen atomic model) 
and would further support the analysis of spin later in Section 5. 

2.4.  Mapping EM energy to the structure 
A cross-section of the average electric field for a photon’s half-cycle 
is described in Figure 3.  The equations shown were derived using 
Coulomb’s Law and determining a set of derivatives that result in E 
when integrated over their included distances. 
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where ( ) 1
04 −= πεk  and ε0 is the 

universal electric constant. 
The energy distribution of a 

photon is then inversely 
proportional to distance from the 
propagation axis (perpendicular to 
the paper at origin 0,0).  Offset 
distance r prevents E from going to 
infinity at the propagation axis and 
is inversely proportional to the 
energy of the photon.  Charge q is a 
point charge equivalent that electric 
field E represents. 

By placing mirror 
images of this field onto 
opposing sides of a circle, 
Figure 4 shows a cross-
section of the interacting E 
fields of a negative charge 
ring particle.  A positive 
charge particle would show 
the fields swapped.  E1 and 
E2 are associated with the 
bold half-cycle at 1−=rx , 
while E3 and E4 are associated with the dashed half-cycle at 1=rx .  
Figure 5 shows the resulting approximate net value ENET in 

 
Fig. 3.  Photon half-cycle E 

cross-section, ( ) 1
04 −= πεk  
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 Fig. 4.  Photon field E mapped to electron 
ring 
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cross-section.  The shape 
of this curve is in general 
agreement with 
experimental evidence of 
the potential well of 
antiprotons or protons. 

Electrons and 
positrons are not 
currently thought to have 
an internal structure, but this model predicts one.  For all calculated 
properties, including the reported proton experimental radius, the 
electron’s structure has significant importance. 

3.  Balance of forces 
Relative to an external frame of reference at rest, a wave of EM 
energy circulates on the ring perimeter.  A net centripetal force acting 
inward is necessary to maintain a closed orbit. 

 3.1.  Electrostatic force 
Total electrostatic force across the ring structure is equal to the 
product of net charge and net E at the diameter.  Referring to Figure 
3, the following equations give cross-section E component values for 
a negative charge ring.  For the purpose of these equations, equal 
distribution of energy around the ring rather than sinusoidal makes 
calculations simpler.  The index of refraction, also not included, is the 
number of times a group wave of specified energy would wrap 
around the circumference if 1=n .  These equations include summing 
over n circumference wraps of the particle’s energy wavelength. 

 ( ) rx
xrr

kqE −>
+

= ,
221 , (4) 

 
Fig. 5.  Representative cross-section of electron 
ENET  
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 rx
rx

kqE2 −≤= ,
2

, (5) 

 ( ) rx
xrr

kqE <
−

= ,
223 , (6) 

 rx
rx
kqE ≥

−
= ,

24 . (7) 

The net electric field at any point is the sum of fields present at that 
point.  Inside the diameter, E1 and E3 combine to form ENET.   
Outside the right diameter, E1 and E4 combine into ENET as seen from 
other particles. 

 ( ) rxr
xr

kqE 2 <<−
−

= ,
4

2
2NET   (inside the diameter). (8) 

 rx

x
rx

kqE ≥

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−= ,
212

NET   (the diameter and outside). (9) 

 rx
r
kqE 2 =−= ,
3NET . (10) 

We define the net charge equivalent qNET at the diameter by 
specifying 

 eqq −=−=
3NET , (11) 

where e is elementary charge.  Then (10) becomes 2
NETNET rkqE =  

when rx = . 
As x approaches infinity, (9) and (11) give 2

NETNET 3 xkqE =  
which is not in line with 2

NETNET xkqE =  expected from Coulomb’s 
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Law.  This gives a larger than expected field strength at large 
distances or a smaller than expected field strength at small distances 
from a charged particle, depending on the choice of where qNET is set 
(at the diameter or infinity).  Setting qq −=NET  to match Coulomb’s 
Law at large x results in 

 rx

x
rx

kqE ≥

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

= ,
212

NET
NET . 

This field is less than the Coulomb’s Law definition by 50% at 2 
radii, 20% at 8 radii, and only 5% at 38 radii.  Electrostatic interaction 
at large separation distances would show essentially no deviation 
from Coulomb’s Law.  This divergence would make charged particle 
short range interactions behave as if a separate attractive short-range 
force exists, compared to what Coulomb’s Law specifies.  If the 
particle were a point charge, this divergence would not occur. 

Using (10) and (11), total electrostatic force is then 

 rx
r

kq
r

kqEq ==== ,
9

F 2

2

2

2
NET

NETNETE . (12) 

By evaluating E  within radius r and total E  of the particle using 
(4) through (7), it can be shown that the fraction of total E , and 
therefore energy, within r is 1/3.  Using 3ghν  within a spherical 

volume of 34 3rπ  to represent the energy per volume, and using the 
standard EM equation 2

0Evolenergy ε=  [5 p. 22], it can be shown 
that 

 
n

hc
q 02 18ε

= . (13) 
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Then substituting for q2 from (13) and one r from (1) into (12), we 
find 

 
r

h g
EF

ν
= , (14) 

and total electrostatic force is repulsive for both negative and positive 
charge ring particles. 
 3.2.  Gravitational force 
The gravitational force between two half-masses of a particle, 

22ch gν , separated by a distance 2r is given by 

 
( )

2

2
g

2
21

G 42
F ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=

rc

h
G

r
mGm ν

. (15) 

Comparing these electrostatic and gravitational forces for an 
electron, assuming classical CODATA electron radius [3]: 
 N 05350662.29FEe = , 

 and N 10x359066922.4F 43
Ge

−−= . 
Gravitational force is insignificant in this model and will be ignored 
in further calculations. 
3.3.  Magnetic force 
The standard magnetic force equation for a charge moving through a 
stationary field is Bu xB gq=F , where Bu xg  is the cross product of 
group velocity vector ug and imposed magnetic field vector B [1].  
For an EM wave in 1=n  space, HB 0μ=  where ( ) EH 21

0με0=  [5 
pp. 11, 21].  Since the wave has been wrapped onto a ring n times, the 
magnitude of both E and H are n times what they would be for an EM 
wave in 1=n  space.  Therefore Bu xB gnq=F .  Using net charge and 
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field values appropriate for this model, we have 
NETNETB x Bugnq=F .  To a stationary observer, relative group wave 

motion between opposite sides of the ring is at velocity ncug 22 = .  
Using that relative interaction velocity and the standard equation 

( ) 1
00

2 −= μεc  [5 p. 14] gives 
 NETNETB 2F Eq−= . (16) 

The direction of FB is inward from the diameter to the center of the 
particle for both negative and positive charge models.  Performing the 
same substitutions used in reducing the equation for FE, we have 

 
r

h g
B

2
F

ν
−= . (17) 

3.4.  Combined forces 
When we combine the always repulsive electrostatic and always 
attractive magnetic forces from (14) and (17), a net attractive force 
remains which is equal to rh gν− .  This is equal to what the 
magnetic force would be for a static magnetic field and is the 
centripetal force that keeps the wave on a closed path around the ring. 

4.  Electron charge and refractive index 
Solving (11) for q and substituting into (13) gives the net ring charge 
qNET. 

 
2/1

0
NET

2
⎟
⎠

⎞
⎜
⎝

⎛±=
n

hc
q

ε ,  n=refractive index. (18) 

Both this particle ring and its antiparticle twin have the same 
charge with opposite signs.  Comparing this formula to the formula 
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derived for e from the fine structure constant equation hcke22πα =  
[5 p. 186] indicates that for the electron, 

 0359991.1371
e == −αn  (19) 

where α is the fine structure constant.  Since refractive index is a 
function of ε, we can generalize to say that the net charge of a particle 
with this theory is more properly shown as 

 
2/1

NET
2

⎟
⎠
⎞

⎜
⎝
⎛±=

n
εhcq , where αεε 0=n . (20) 

This form of the equation allows the net point equivalent charge of a 
proton to equal (with opposite sign) the charge of an electron, as long 
as the ratio αεε 0p =n . 

5.  Spin and Bohr stability 
The Bohr stability test (spin =∗∗= radiusvelocitymassPs  an integer 
multiple of π2h ) can be extended from the atomic level to the 
particle level of this theory by using phase velocity.  In the context of 
this theory, the de Broglie relation muh=λ  used in the Bohr 
hydrogen model [5 p. 184] would refer to the phase wavelength and 
phase velocity of a photon.  Using 2−= chm gν  with (1) and (3), we 
find 

 
πφ 2s
hrmuP == , (21) 

and the test is satisfied.  The quantization of internal spin is satisfied 
by the phase wave, not the group wave.  When in a bound state or 
external field, there is nothing in this theory to prevent the electron’s 
spin from being space quantized to its then accepted value π43 21 h . 
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6.  Absorption wavelength and proton refractive 
index 
The author used CODATA mass energy values for the electron and 
proton [3] to derive their equivalent wavelength and frequency, using 
the relation ghcm ν=2

0  where m0 is rest mass.  Using the 
corresponding pair production wavelengths, α1e =n , and several 
estimates of np, the author determined that the following relationships 
appear to exist. 
 m10x793956528.1 15

1
−=λ , (22) 

 
π

λ e
1

2r
= , (23) 

 
p

p
1

2
n

rπ
λ = , (24) 

 2
p

e
2

e

p

n
n

m
m π

= , (25) 

 858248026.0p =n . (26) 

This value of np was found via several analyses that led 
successively closer to the value shown, while at the same time λ1 was 
being researched.  Equations (23 - 25) brought both analyses together 
and set the values of λ1 and np shown.  The energy of a photon with 
wavelength λ1 is 691.1214909 MeV. 
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7.  Radii of the electron and proton 
Solving (1) for r gives a theoretical circular radius.  Elliptic minor and 
major axes are found by applying the appropriate power factor.  For 
the electron, 

 m10x817940325.2 15
e

−=r , the classical electron radius, (27) 

 m10x992584713.1
2
2 15

eemin
−== rr , minor axis, (28) 

 m10x985169426.3
2

2 15
eemaj

−== rr , major axis, (29) 

 ( ) m10x401554876.3
2
2 15

eminemajeminerms
−=−+= rrrr . (30) 

For the proton, 

 m10x450444438.2 16
p

−=r , (31) 

 m10x732725879.1
2
2 16

ppmin
−== rr , minor axis, (32) 

 m10x465451758.3
2

2 16
ppmaj

−== rr , major axis, (33) 

 ( ) m10x957948098.2
2
2 16

pminpmajpminprms
−=−+= rrrr . (34) 

This calculated proton rms radius differs significantly from 
CODATA’s m10x750.8 16

p
−=R  derived from electron scattering 

experiments [3].  The author believes that an inherent assumption in 
the analysis of electron scattering may cause the discrepancy, and will 
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demonstrate how the CODATA value for Rp could include a large 
component related to the electron’s elliptical shape. 

An elliptical electron at closest approach to an elliptical proton in a 
scattering experiment will exhibit a varying distance between centers 
depending on ellipse orientations.  We can calculate the experimental 
rms radius for a proton reported in such an experiment, assuming that 
the experimenter believes the electron is either circular in cross-
section and the electron’s diameter is its classical value, or the 
electron is a point particle but its classical diameter is assumed in 
calculations via use of, for instance, the Bohr radius, fine structure 
constant divided by electron mass, Rydberg constant, or Hartree 
energy. 

Distances between centers at closest approach, assuming no 
overlap of elliptical perimeters or shape deformation are 
 pmineminmin rrd += , (35) 

 pmajemajmax rrd += . (36) 

The expected value to be reported for proton rms radius in such an 
experiment is then 

 ( ) eminmaxminpexprms d-
2
2 rddReported R −+=  

  m10x794650244.8 16−=  

 p005102885.1 R= . (37) 

This theoretical Reported Rpexprms matches CODATA’s Rp to within 
about 0.5%, while the standard uncertainty of Rp is nearly 0.8%.  This 
qualifies as complete agreement. 

Also significant is the range of reported radii that this theory 
predicts.  By assuming the electron’s orientation is random and the 
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proton’s orientation is fixed at minimum or maximum interaction 
radius due to the nature of the scattering target, we can calculate the 
range of values that might be reported if classical electron radius is 
assumed in the experiment.  The following range of values is found. 

 m10x302249409.9m10x569197454.7 16
pexprms

16 −− ≤≤ RReported .(38) 

This range should include the results of most scattering 
experiments that assume directly or indirectly a circular electron 
cross-section of classical radius. 

8.  Magnetic moment 
Magnetic moment is calculated in the classical way 
( )rotation of periodareacharge∗  except for the addition of two 
adjustments.  First, group and phase waves are treated as equally 
capable of generating magnetic moments.  Second, a precession of the 
ellipse is proposed because the group wavelength defined by the 
particle’s energy is not an integer multiple of rπ2  (or alternatively, 
refractive index n is not an integer).  That precession adds an 
additional component to total magnetic moment. 

Since n is not an integer for the electron or proton, the endpoint of 
group wavelength rnπ2  does not correspond to the beginning location 
on the ring as seen by an outside stationary observer.  The author 
proposes that a non-integer index of refraction, instead of unbalancing 
these rings, causes precession on the order of ( ) 12 −nπ  fraction of one 
turn per turn.  When nπ2  trips of the wave around the perimeter have 
been completed, the ellipse has rotated one complete revolution. 

The area of the ellipse is the same as the area of a circle of radius r.  
Group and phase wave contributions differ only in their velocities 

nc  and nc , affecting their periods.  Period for the group component 
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is crnπ2  and for the phase component ncrπ2 .  Total magnetic 
moment equals group μ plus phase μ, where each has a similar 
equation of the form 
 ( ) periodareachargefactor precession1 phaseor  group ∗∗+=μ . 

The total magnetic moment for one of these particles is then 

 ⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ +=

n
necr

n
1

22
11
π

μ . (39) 

For the electron, 

 CODATA 000055005.1JT10x285274825.9 e
-124

e μμ =−= − . (40) 

And for the proton, 

 CODATA 000701558.1JT 10x411596332.1 p
-126

P μμ == − . (41) 

Their antiparticles have the same values with reversed signs.  These 
results represent very good fit between this basic theory and 
CODATA experimental values [3]. 

An even better fit for μe is possible by leaving out its group 
component.  When that is done, CODATA 000001746.1 ee μμ = , a 
reduction of about 97% in remaining anomaly.  Then the remaining 
electron anomaly is only about 1.64 times the remaining proton 
anomaly.  These considerations imply a real possibility that 
CODATA’s μe does not include the group component, which is 2

en , 
or about 18779, times weaker than the phase component and is 
associated with a period 18779 times greater.  The proton’s ratio of 
group/phase magnetic moment is about 1.36 and the CODATA value 
appears to include both components, from this theory’s perspective. 
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9.  Tests of the theory 
The lack of an apparent electron internal structure in experimental 
evidence may be due to assumptions inherent in the analysis of data.  
A thorough modeling of expected interactions in electron-electron 
and electron-photon scattering, using the proposed model as a basis 
and relativistic electromagnetic and optical interactions, needs to be 
performed to see if theoretical scattering would then show the same 
results as experimental. 

The specified divergence from Coulomb’s Law at small separation 
distances for charged particles should be testable via re-analysis of a 
variety of experimental results.  Direct comparison can also be made 
to current theories of short-range attractive forces affecting charged 
particles. 

Refraction in this model is provided by an EM field whose 
Poynting vector opposes the Poynting vector of a passing EM wave.  
Such refraction should be testable through the use of an 
interferometer where one path proceeds through crossed electric and 
magnetic fields with a Poynting vector opposite the direction of 
passage of photons.  EM field strengths might have to be considerable 
to generate an index of refraction large enough to observe, and both 
paths should be through vacuum.  Since refractive index in a physical 
substance is normally proportional to the energy of the photon passing 
through, the same is expected in this test and relatively high photon 
energies might make the test more sensitive. 

Experiments might be possible to detect and measure the 
electron’s group magnetic moment, separate from its phase magnetic 
moment, as identified by this theory.  If a separate group component 
does appear in testing, the theory would be supported. 

This theory’s accuracy in calculating the particle properties begs 
for experimental confirmation of anomalous dispersion at a specific 
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wavelength.  It is not clear if an experimental test is straightforward, 
since it involves EM energy and no physical substance and may be 
specific to the EM ring particle structure.  If the hypothesized 
anomalous dispersion applies to all photons, then photons of one 
wavelength λ1 should be impossible to generate and detect since the 
λ1 quantum would have infinite extent (because group and phase 
wavelengths would always be equal).  Refraction of photons with 
wavelengths slightly larger and smaller than λ1 would show 
anomalous behavior in a test that sends them through an EM field of 
sufficient strength with an opposing Poynting vector.  An alternative 
explanation for the effects attributed to anomalous dispersion might 
also be found. 
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