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The three wave hypothesis (TWH) is an attempt to relate the 
particle to an associated wave phenomenon. This hypothesis 
regards that the particle is associated with three waves: one 
transformed and two dispersive waves. Since the two 
dispersive waves are associated with a single particle, in this 
work we try to get a single representation for these two 
dispersions. The single representation exhibits similarities 
with those of a classical gear consisting of two perpendicular 
wheels.  According to this similarity, the parameters of 
dispersive waves correspond to those of the wheels, and the 
transformed Compton wave corresponds to the system 
parameters (the combination). This similarity between the two 
models may possibly point to a hidden structure. 
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1.  Introduction 
One of the controversial problems in quantum mechanics is the 
problem of the relationship between the de Broglie wave and its 
associated particle. There have been many suggestions to clarify this 
problem. One of these is the Three-Wave Hypothesis (TWH) that was 
proposed by Horodecki [1, 2]. This hypothesis implies that a massive 
particle is an intrinsically spatially as well as temporally extended 
non-linear wave phenomenon [2]. In addition to TWH, Elbaz [3, 4] 
proposed an amplitude wave to be in association with the Compton 
wave of a massive particle. This concept is somehow implied in 
TWH as a dual wave [2]. 

The TWH is based on an assumption that, in a Lorentz frame 
where the particle is at rest it can be associated with an intrinsic non-
dispersive Compton wave. When the particle moves with velocity 
v (relative to the lab frame), it will be associated with the three waves:  
the superluminal de Broglie wave (of wavelength Bλ ), a subluminal 
dual wave (of wavelength Dλ ), and a transformed Compton wave (of 
wavelength Cλ ): 

 2
C B Dλ λ λ=  (1-1). 

It should be noted that the properties of the amplitude wave [3] are 
similar to those of dual wave (of TWH). The dispersion relations of 
the de Broglie wave ( Bλ ) and dual wave ( Dλ ) are [1]: 
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where Cω , om , c , ,β  are Compton angular frequency, the rest 
mass of the particle, the velocity of light, Planck’s constant, and the 

ratio of particle velocity to the velocity of light ( v
c

β = ) respectively. 

In addition, the ratios of wavelength are: 
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Here Tμ  is the ratio of the wave parameters and its limit 
is1 Tμ< ≤ ∞ . Dv   and  Bv   are: 

 
2
C D

Dv ω λ
π

= , 
2
C B

Bv ω λ
π

= . 

Dv  corresponds to the group velocity (of the de Broglie wave of phase 
velocity Bv ) and equals the particle velocity ( v ). Dv  can be considered 
as the phase velocity of the dual wave (or amplitude wave), where [1, 
3]: 
 2

D Bc v v=  (1-5), 

and D Bv c v< < . 
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In order to explain these results, Horodecki assumed that the wave-
particle duality is due to the existence of the particle-aether hidden 
interaction [1]. 

It is obvious that: 
1- TWH considers the dispersion in a manner similar to that of light 

dispersion in a medium, where the refractive index is a function 
of wavelength and there is no change in the frequency. There is 
no justification for this consideration. 

2- TWH proposes two dispersion relationships, as though there 
were two separate waves or two separate media. At the same 
time they are supposed to be in association with a single particle. 

In this present attempt we try to overcome these two points, and look 
for a single relationship. This relationship implies a structure similar 
to a classical gear model, which can be accepted through the existence 
of a sub-quantum medium. 

2. The Dispersion and wave parameters 
Eqs. (1-2-a) and (1-2-b) are formulas of normal and anomalous 
dispersion respectively. They can be rewritten in terms of wave 
parameters as: 
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where ( )
2 1

2 21o
C C

m cω ω β= = − . 

It is obvious that there are explicit inclusions of the three 
wavelengths ( Cλ  , Bλ  and Dλ  ), and there is only one frequency Cω   
(ω  in the paper [1]).  Coω  and Coλ  are the parameters of the 
nondispersive wave, and Bλ  and Dλ  describe dispersive waves.  The 
amplitude wave of ELBAZ [3] is of angular frequency 2 NπΩ = , 
and: 
 BN cλ =  (2-2). 

This frequency is the same as that in first term of Eq. (1-2-a), ( 2

B

c π
λ

). 

Accordingly, the effect of dispersion on the wavelength may be 
generalized to include the frequency. This consideration will have no 
effect on the formulation of TWH. It is implicit. So there will be three 
frequencies ( Cν , Bν  and Dν  ) with the three wavelengths. The N  
frequency of Elbaz may be called the de Broglie frequency ( B Nν ≡  
or Bω ≡ Ω ). Nothing changes in using these representations: 
2

D
D

cπ ω
λ

=  and 2
B

B

cπ ω
λ

= . So Eqs. (1-2) can be rewritten in terms of 

frequencies rather than the wavelength (of dispersive waves) as: 
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Or as: 

 ( )
1

2 2 2
C B Cω ω ω= ± +  (2-4-a) 

 ( )
1

2 2 2 2
C D Cω ω ω β −= ± −  (2-4b). 

It is now possible to obtain a formula similar to that of 
wavelengths (Eq. (1-1)): 
 2

C D Bω ω ω=  (2-5). 

Then Eq. (1-4) can be presented in terms of the dispersive parameter 
ratio ( Tμ ) as: 
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where
2

a λ
π

= , and:  

 D D B B C Ca a a cω ω ω= = =  (2-7). 

The wave parameters may be divided in two groups: those of 
dispersive ( Ba , Da , Dω , and Bω ) and nondispersive ( Coa , 0Cω ) 
waves. The relationships ((2-5), (2-6), and (2-7)) show a symmetry 
between the wavelength and angular frequency forms. 

From both sets of formulations, in frequencies and wavelengths, it 
is worth noting that: 
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1- The parameters of the dispersive waves do not form four-vectors 
( Bω , 1

Ba −   ) and ( Dω , 1
Da − ). 

2- The only possible four- vector (positive interval or time-like) is 
for Cω , 1

Ba − , which is originally related to Cω  
1

Ca −  

(transformed Compton). These quantities ( Cω & 1
Ca − ) are 

represented by the product of the dispersion quantities (Eqs.(1-1) 
and (2-5)). 

2.1. The three wave system 
The frequency Cω  is common to the two types of dispersion, and Eqs. 
(2-4-a) & (2-4-b) are equivalent. Then, one finds that: 
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In terms of  μT (Eq. (2-6)), this form can be rewritten as: 

 ( )
1

1 2
2 2 2 1

D B C T
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⎝ ⎠
 (2-8-c). 

Eqs.(2-8) are the single representations of the three waves in terms of 
the dispersive parameters ratio. 

The proportionality (between the wavelengths and angular 
frequencies) and the single representation (of ωD and ωB) then  shows 
that there is: 
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1- Similarity between Eq. (2-6) and the ratio for a gear train of two 
wheels. 

2- Similarity between Eq. (2-7) and the velocity of the two wheels 
of the gear train. 

3- The forms of Eqs. (2-8) are the same as that of a gear train of 
two perpendicular wheels. 

3. The gear system 
A simple gear system is assumed and will be considered in a classical 
frame. This system consists of two perpendicular, touching, circular 
units (e.g. a bevel gear) of radii 1a  and 2a  (where 1 2a a≤  ) as in 
Fig.(3-1).  

The wheel of large radius is the guiding wheel. The ratios of the 
angular velocities and the radii are: 

 2 1 2

1 2 1

a
a

ω τ μ
ω τ

= = = −  (3-1), 

where 2πω
τ

=  . The limit of μ  is 1 μ≤ < ∞ . The negative sign is 

related to opposite rotation of wheels; in this work the absolute ratio 
will be considered. μ  is the characteristic-coupling constant of the 
two wheels. The linear velocity is: 
 1 1 2 2 Ra a vω ω= =  (3-2). 

The absolute angular velocity ( Rω  ) of the orbiting wheel (relative to 
an inside observer) is: 

 ( )
1

2 2 2
1 2 Rω ω ω+ = ±  (3-3-a). 

We also have 
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 ( )
1

2 2 2
1 2 Ra a a+ = ±  (3-3-b). 

To demonstrate the similarity, it is possible to reformulate Eq. (3-
3-a) as: 
 2 2 2 2

1 2 22Rω ω ω ω− = −  (3-4) 

Let α  be the angle between the resultant ( Rω ) and the component 1ω . 
With aid of some trigonometric relations and simple algebra, then:  
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and 
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The linear velocity Rv  is: 
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Fig. 3-1 The Gear System 

Where 1 1R Rv aω=  and 2 2R Rv a ω= . 
Eq. (3-4) becomes: 
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 ( ) ( )
1
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2 2 2 2

2 1 1 2
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μ
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 (3-7-b). 

There are two types of parameters; the first is related to units ( 1ω , 2ω  
, 1a , and 2a  ) and the second to the system ( Rω  and Ra ). With the aid 
of the trigonometric functions, one can represent the parameters of 
units in terms of system parameters as: 
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 , 

and 

 2 2

1
1

Ra a μ
μ

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 (3-8). 

This gear system is a macroscopic and classical system. 

4. The similarity and consequences 
It is clear that there are similarities in the structure of the equations 
between the following two sets: 

1. Eqs. (2-6) and (3-1). 
2. Eqs. (2-7) and (3-2). 
3. Eqs. (2-8-c) and (3-7-a). 
In addition to that, the left side in both equations ((2-8-c) and (3-
7-a)) refers to a spinning element (either the particle or the first 
wheel). 

The differences are: 1- that the first set of equations is for TWH, 
which is a relativistic phenomenon, whereas the second set of 
equations is for a gear which is a classical system. 2-A wave 
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phenomenon is described by the first set whereas the second describes 
angular motions. 3- From Eqs. (2-8-c) and (3-7-a), the two dispersive 
waves correspond to the two wheels, whereas the nondispersive wave 
corresponds to the system or gyroscope ( 1 2ωω ). 

Now, can one compare the particle to the gear model?  Probably 
that is possible, if we assume that ‘for a lab observer the system 
appears as a relativistic particle’. That means ‘the classical structure is  
virtual and unobservable, or hidden’. The concept of a hidden 
medium is not new. It has been proposed by Bohm and Vigier [5] as 
the level of physical reality much deeper than the quantum physical 
level. It was proposed in order to explain the probability (rather than 
the complex wave function) of quantum mechanics in same way as 
that of the classical approach. The probability appears as a result of 
our ignorance of the correct variables that are used in describing a 
system of large number of units. That concept of hidden structure 
became the base of the statistical consideration, and it has been 
adopted by de Broglie in his attempt of double solution theory as in 
"Hidden thermodynamics of the particles" [6]. 

However, the virtual classical realm differs from the ordinary 
classical realm. The classical realm is an observable existence due to 
its interaction with the detecting field (it is an approximated case, 
where the effect of the field is negligible), whereas the virtual 
classical realm is considered to be beyond observation (hidden). It is a 
purely geometrical consideration. It may be deduced from the 
behaviour of the observable particle (hypothetical system). It is a 
postulated existence but not an observed existence.  

In the present work there is no statistical consideration. The hidden 
structure concept may lead to ‘hidden mechanics’ of the particle. 

Within this consideration, the model can give explanations for the 
complex wave and spin phenomena. This part of the work is in 
preparation.  
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