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Einstein Equations for Tetrad 
Fields 
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Every metric tensor can be expressed by the inner product of 
tetrad fields. We prove that Einstein equations for these fields 
have the same form as the stress-energy tensor of 
electromagnetism. 
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It is agreed that gravitation can be best described by general relativity 
and that it cannot be explained by using fields as in electromagnetism 
or as in the case of any other interaction. Furthermore, it has been 
assumed that the metric tensor is the best mathematical argument to 
use to study on gravitation. Such opinions lead physicists to 
concentrate more on only the metric tensor and, hence, to change it 
according to circumstances. As a result, this method provides some 
important results about gravitation. However, it is also obvious that 
these results are not enough to understand gravitation as well as, 
perhaps, other interactions. 

In the present paper, instead of concentrating on the metric tensor, 
we shall focus on tetrad fields. Our first objective will be to find some 
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reasonable mathematical results with these fields.  The complete 
interpretation of the results will be out of the scope of this paper. 

Gravitation curves the space-time and this effect is related to the 
line element or invariant interval as  
 2ds g dx dxμ ν

μν=  

where gμν  is the metric tensor and its elements are some functions of 
the space-time. 

The metric tensor with tetrad fields is given by [1], [2]  
                    •gμν μ ν= e e                      (1) 

where μe  are basis vectors or tetrad fields, and these are some 
functions of the space-time also ( , 0,1,2,3μ ν = ). 

Similar to (1), the inverse metric tensor can be written as 
 •g μν μ ν= e e   

where μe  are basis vectors of the dual space or cotetrad fields. 
However, we will refer to these fields as inverse fields throughout this 
work.  

There are some useful features of and equations for the tetrad 
fields and inverse fields. First 
 g gμα μ

αν νδ=   

 • gμ α μ
αν νδ=e e  

 •μ μ
ν νδ=e e  (2) 

Other equations and all detailed calculations are given in the appendix 
section. 
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If the metric tensor is determined, it is well-known that it is 
demanding work to find the Einstein equations. The Christoffel 
symbols for the metric tensor (1) are 

 1 1• •
2 2

α α α
μν ν μ μ νΓ = =f e f e  

where α α α
ν ν ν= ∂ − ∂f e e .  

The Riemann tensor for the above Christoffel symbols is 

 1 1 1• • •
2 4 4

Rα α α α
μβν βν μ ν βμ β μν= ∂ + +f e f f f f . 

the Ricci tensor is  

 1• •
4

R α
μν ν μ ν αμ= +j e f f , 

and the Ricci scalar is 

 1• •
8

R β αβ
β αβ= +j e f f  

where 1
2

α α
ν αν α ν= ∂ = ∂ ∂j f e . 

Finally the Einstein Tensor can be expressed as 

 1 1• • •
4 4

G gα αβ α
μν ν αμ μν αβ α

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
f f f f j e . (3) 

The expression in square brackets is the same as the stress-energy 
tensor of electromagnetism except for the inner products. Despite this 
difference, the equations of motion of the tetrad fields have the same 
form as the Maxwell equations; that is  α

α ν ν∂ ∂ =e j . 
Several results can be obtained from (3). However, the most 

significant of these is that the Einstein equations for the tetrad fields 
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certainly give the electromagnetic stress-energy tensor. More 
precisely, the general relativity reveals that there are some inherent 
constraints for tetrad fields. This means there are also definite limits 
for the metric tensor. Since every metric tensor can be written in 
terms of tetrad fields, metric tensors cannot be chosen or adjusted 
arbitrarily. Instead, metric tensors must be found as inner products of 
tetrad fields after these fields are determined to be consistent with 

α
α ν ν∂ ∂ =e j . 

Appendix 
In this section detailed calculations and some useful equations are 

given for convenience, although some of these can be found from 
several sources and in different forms. 
Since • λ λ

α αδ=e e , the partial derivatives of μe  can be written as 
λ

ν ρ ρνλω∂ =e e , where νρλω  are some coefficients. Then 

 • •λ
ν ρ α ρνλ α ρναω ω∂ = =e e e e . 

So 
 • •λ

ν ρ α ρνλ α ρναω ω∂ = =e e e e , 

 ( )• α
ν ρ α ν ρ∂ = ∂e e e e . (A.1) 

Similarly it can be shown that 

 ( )• α
ν ρ α ν ρ∂ = ∂e e e e . (A.2) 

Another important equation can be derived by starting from 
• •ν λ

ν ρ λ ρ∂ = ∂e e e e . Using (A.1) 

 ( )• • •ν ν λ
ν ρ λ ρ ν∂ = ∂e e e e e e  
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 ( )• • •ν λ ν
ν ρ λ ρ ν⎡ ⎤∂ = ∂⎣ ⎦e e e e e e  

 ( )• λ
ν ρ λ ρ ν∂ = ∂e e e e  

The dot product of the last equation with αe  is 

 ( )• • •λν ρ α λ ρ ν α∂ = ∂e e e e e e . 

Since • λ λ
α αδ=e e  

 • •ν ρ α α ρ ν∂ = ∂e e e e . (A.3) 

Similarly it can be found that 
 • •α α

ν ρ ρ ν∂ = ∂e e e e . (A.4) 

Another equation can be derived if the derivative of (2) is rewritten 
as 
 • •μ μ

α ν α ν∂ = − ∂e e e e . (A.5) 

Now we can start to calculate the Einstein equations. The 
Christoffel symbols are 

 

1 • • •
2

1 • • • .
2

g

g

α αβ
μν μ ν β μ β ν ν μ β

αβ
ν β μ β μ ν β ν μ

⎡ ⎤Γ = ∂ + ∂ + ∂⎣ ⎦

⎡ ⎤+ ∂ −∂ −∂⎣ ⎦

e e e e e e

e e e e e e  

Using (A.3), we get 

 ( )1 • •
2

gα αβ
μν μ β ν ν β μΓ = ∂ + ∂e e e e . (A.6) 

Symmetries and characteristics of the tetrad fields enable to derive 
some helpful identities. First using  (A.1) 
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 ( ) ( )( )1 • • • •
2

gα αβ ρ ρ
μν μ β ρ ν ν β ρ μΓ = ∂ + ∂e e e e e e e e . 

Similarly, (A.5) enables us to write 

 ( ) ( )( )1 • • • •
2

gα αβ ρ ρ
μν μ β ρ ν ν β ρ μΓ = − ∂ − ∂e e e e e e e e , 

 ( ) ( )( )1 • • • •
2

α ρ α ρ α
μν μ ρ ν ν ρ μΓ = − ∂ − ∂e e e e e e e e . 

Using (A.3) and (A.4), we can obtain 

 ( ) ( )( )1 • • • •
2

α α ρ α ρ
μν μ ρ ν ν ρ μΓ = − ∂ − ∂e e e e e e e e , 

 ( ) ( )( )1 • • • •
2

α α ρ α ρ
μν μ ρ ν ν ρ μΓ = ∂ + ∂e e e e e e e e .  

 Also, by using (A.3) and (A.4)  

 ( )1 • •
2

α α α
μν μ ν μ νΓ = ∂ + ∂e e e e  (A.7) 

and using (A.5) again 

 ( ) ( )1 1• • •
2 2

α α α α α
μν μ ν μ ν μ μ νΓ = ∂ −∂ = ∂ −∂e e e e e e e  

can be found. 
Although it can be proved easily that α α

ν ν∂ = −∂e e , for 
convenience let  
 α α α

ν ν ν= ∂ − ∂f e e . 

Then the Christoffel symbols are 

 1 •
2

α α
μν μ νΓ = f e . (A.8) 
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With similar calculations, α
μνΓ  can be found in the following form 

 1 •
2

α α
μν ν μΓ = f e . 

Or using (A.4), (A.7) can be rewritten as 

( )1 •
2

α α
μν ν μ μ νΓ = ∂ + ∂e e e . 

When the Einstein Equations are calculated, one of these α
μνΓ  can be 

used. 
The Riemann tensor defined by 

 .Rα α α α λ α λ
μβν β νμ ν βμ βλ νμ νλ βμ= ∂ Γ −∂ Γ +Γ Γ −Γ Γ  

using the above  Christoffel symbols 

 ( ) ( )

1 1 1 1• • • •
2 2 2 2
1 1• • ,
4 4

Rα α α α α
μβν β ν μ ν β μ ν β μ β ν μ

α α
β ν μ μ ν ν β μ μ ν

= ∂ + ∂ − ∂ − ∂

+ ∂ +∂ − ∂ + ∂

f e f e f e f e

f e e f e e   

 

( ) ( )

( ) ( )( ) ( ) ( )( )

1 1• •
2 2

1 1• • • •
4 4

Rα α α
μβν β ν μ ν β μ

α λ α λ
β λ ν μ μ ν ν λ β μ μ ν

= ∂ − ∂

+ ∂ + ∂ − ∂ + ∂

f e f e

f e e e e f e e e e , 

 
( ) ( )

( )

1 1 1f • •
2 2 2

1 1• ,
2 2

Rα α α α
μβν β ν ν β μ ν β μ β μ μ β

α
β ν μ μ ν ν μ

⎛ ⎞= ∂ −∂ + ∂ − ∂ + ∂⎜ ⎟
⎝ ⎠

⎛ ⎞+ ∂ + ∂ − ∂⎜ ⎟
⎝ ⎠

f e f e e e

f e e e
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 ( )1 1 1f • • •
2 4 4

Rα α α α α
μβν β ν ν β μ ν βμ β μν= ∂ + ∂ + +f e f f f f . 

As a result of 0α α α
β ν ν β νβ∂ + ∂ + ∂ =f f f , the last Riemann tensor can 

be simplified. For this, write α α α α
β ν ν β νβ βν∂ + ∂ = −∂ = ∂f f f f . Thus, 

 1 1 1• • •
2 4 4

Rα α α α
μβν βν μ ν βμ β μν= ∂ + +f e f f f f . 

The Ricci tensor is 

 1 1 1• • •
2 4 4

Rα α α α
μβν βν μ ν βμ β μν= ∂ + +f e f f f f . 

Let 1
2

α α
ν αν α ν= ∂ = ∂ ∂j f e . Thus the Ricci tensor becomes  

 1• •
4

R α
μν ν μ ν αμ= +j e f f . 

 and the Ricci scalar is  

 1• •
8

R R gαβ β αβ
αβ β αβ= = +j e f f . 

Here  •αβ
αβf f  is multiplied by 1

2
 because of twofold summation. 

The Einstein tensor is defined as 1
2

G R g Rμν μν μν= − . Then, 

 1 1 1• • • •
4 2 8

G gα α αβ
μν ν μ ν αμ μν α αβ

⎡ ⎤= + − +⎢ ⎥⎣ ⎦
j e f f j e f f . 

The last expression can be simplified if we start with  
 • •μ β

μ β=j e j e . 
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As a result of  (2), • 4μ
μ =e e . So 

•
1

4

μ
μ =

e e
 and we can write 

 ( ) ( )•
• •

4

μ
μμ β

μ β=
e e

j e j e , 

 ( )( )1• • •
4

μ β μ
μ β μ=j e j e e e , 

 ( )1 •
4

β
μ β μ=j j e e . 

The dot product of the last equation with νe  yields 

 ( ) ( )1 1• • • •
4 4

gβ β
μ ν β μ ν β μν= =j e j e e e j e . 

Finally, the Einstein tensor becomes 

 1 1• • •
4 4

G gα αβ α
μν ν αμ μν αβ α

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
f f f f j e . 
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