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The stability of the vacuum for QED in the temporal gauge 
will be examined.  It is generally assumed that the vacuum 
state is the quantum state with the lowest energy.  However, it 
is easy to show that this is not true in general but depends on 
the nature of the Hamiltonian that describes the system.  It will 
be shown that this assumption does not hold for a system 
consisting of a fermion field coupled to a quantized 
electromagnetic field in the temporal gauge.  

I. Introduction. 
In this article we will examine the problem of the stability of the 
vacuum in quantum field theory.  If Ω  is a normalized state vector 

and Ĥ  is the Hamiltonian then the energy is given by, 

 ( ) ˆE HΩ = Ω Ω  (1.1) 

The question we want to examine is whether or not there exists a 
lower bound to the energy of a quantum state.  That is, does there 
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exist a normalized state vector vacΩ , usually considered to the be 
the vacuum state, where, 

 ( ) ( ) 0 for all normalized state vectors vacE EΩ − Ω ≥ Ω  (1.2) 

The answer to this question obviously depends on the nature of the 
Hamiltonian.  For example consider the following Hamiltonian for a 
self-interacting scalar field, 

 0
ˆ ˆ ˆ

IH H H= +  (1.3) 

where, 

 ( )22 2 2
0

1ˆ ˆ ˆˆ
2

H m dπ ϕ ϕ= + ∇ +∫ x  and 3ˆ ˆIH dω ϕ= ∫ x  (1.4) 

In the above expression ( )π̂ x  and ( )ϕ̂ x  are the usual field operators, 

m is the mass, 0Ĥ  is the interaction free Hamiltonian, ˆ
IH  is the 

interaction, and ω  is a positive coupling constant.  Note that 
throughout this discussion we will use 1c= == .  Also vectors are 
indicated by bold text. In addition, for sections I and II we will 
suppress the time dependence because are analyzing the quantum 
systems at a given instant of time.  Later, in Section III, where we 
consider the time evolution of a state, we will work in the 
Schrödinger picture and assign time dependence to the state vector. 

Now is there a lower bound to the energy for this system?  Does 
there exist a state vacΩ  for which the relationship (1.2) is valid?  For 
the moment let us first consider the above question for the case where 
π̂  and ϕ̂  are not operators but classical quantities, i.e., real numbers.  
In this case it is evident that 0

ˆ 0H ≥  for any combination of π̂  and 

ϕ̂ .  However the interaction term ˆ
IH  will be negative if ϕ̂  is 



 Apeiron, Vol. 13, No. 2, April 2006 242 

© 2006 C. Roy Keys Inc. — http://redshift.vif.com 

negative.  As ϕ̂  increases in magnitude ˆ
IH  will dominate the 

expressions and it is evident that there is no lower bound to the 
energy.  So much for the classical case. 

Now let us consider the quantized system.  The system is 
quantized by having the field operators obey the commutation 
relationships, 

( ) ( ) ( )3ˆ ˆ, iϕ π δ= −⎡ ⎤⎣ ⎦x y y x ; ( ) ( )ˆ ˆ, 0ϕ ϕ =⎡ ⎤⎣ ⎦x y ; ( ) ( )ˆ ˆ, 0π π =⎡ ⎤⎣ ⎦x y  (1.5) 

Based on the above discussion we would strongly suspect that there is 
no lower bound to the energy of the quantized system.  We will now 
prove that this is case as follows.  If Ω  is a normalized state vector 
then it is always possible to produce another state vector by operating 
on Ω  with the field operators [1].  Let ′Ω  be defined by, 

 ˆiFe−′Ω = Ω  (1.6) 

where, 
 ˆ ˆF dπχ= ∫ x  (1.7) 

and where ( )xχ G  is a real valued function.  Due to the fact that π̂  is 

real (so that †ˆ ˆπ π= ) we have †ˆ ˆF F=  so that the state dual to ′Ω  is, 

 ˆiFe′Ω = Ω  (1.8) 

From the above relationships we obtain ′ ′Ω Ω = Ω Ω .  So that 
′Ω  is normalized since Ω  is normalized.  The energy of ′Ω  is 

then, 

 ˆ ˆˆ ˆiF iFH e He+ −′ ′Ω Ω = Ω Ω  (1.9) 
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To evaluate the above expression we will use the following 
relationships.  If 1Ô  and 2Ô  are operators then,  

 ( )( )ˆ ˆ ˆ ˆ ˆ ˆ
1 2 1 2

ˆ ˆ ˆ ˆiF iF iF iF iF iFe O O e e O e e O e+ − + − + −=  (1.10) 

From (1.5) we obtain, 

 ( ) ( )ˆˆ , F iϕ χ⎡ ⎤ =⎣ ⎦x x ;   ( ) ˆˆ , 0x Fπ⎡ ⎤ =⎣ ⎦
G  (1.11) 

Also we will use the Baker-Campell-Hausdorff relationships [2] 
which state that, 

 1 1
ˆ ˆ

2 2 1 2 1 1 2
1ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,
2

O Oe O e O O O O O O+ − ⎡ ⎤⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦⎣ ⎦ …  (1.12) 

Using these relationships we obtain, 

 ( ) ( ) ( )ˆ ˆˆ ˆiF iFe eϕ ϕ χ+ − = +x x x ;  ( ) ( )ˆ ˆiF iFe eπ π+ − =x x  (1.13) 

Use these results to obtain, 

 
( ) ( )( )

( )

2ˆ ˆ 22 2

3

1ˆ ˆ ˆˆ
2

ˆ                    

iF iFe He m d

d

π ϕ χ ϕ χ

ω ϕ χ

+ − = + ∇ + + +

+ +

∫

∫

x

x
 (1.14) 

Apply this to equation (1.9) to obtain, 

( )
( )

2

2 2

2 2 3

ˆ21ˆ ˆ
2 ˆ2

ˆ ˆ                     3 3

H H d
m

d

ϕ χ χ

ϕχ χ

ω ϕ χ ϕχ χ

⎛ ⎞∇ ⋅∇ + ∇
⎜ ⎟′ ′Ω Ω = Ω Ω + Ω Ω
⎜ ⎟+ +⎝ ⎠

+ Ω + + Ω

∫

∫

x

x

 (1.15) 

It is evident that as ( )χ →∞x  the above expression will be 

dominated by the 3χ  term.  Therefore as χ  approaches negative 
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infinity the energy of the state  Ĥ′ ′Ω Ω  will also approach 
negative infinity.  Therefore there is no lower bound to the energy and 
equation (1.2) does not hold for the Hamiltonian given by (1.3) and 
(1.4). 

The above example was somewhat trivial and was introduced to 
illustrate the fact that we cannot simply assume that a lower bound 
exists to the energy for a quantum system.  This must be checked for 
the Hamiltonian in question. 

II. The QED Hamiltonian 
Now let us apply the results of the above section to the QED 
Hamiltonian which describes the interaction between a quantized 
fermion field and quantized electromagnetic field.  It will be 
convenient to work in the temporal gauge.  In the temporal gauge the 
gauge condition is given by the relationship 0 0A =  [3,4,5,6] where 

0A  is the scalar component of the electric potential.  The advantage of 
the temporal gauge is due to the simplicity of the commutation 
relationship between the electromagnetic field quantities which are 
given below.  In the coulomb gauge, for instance, these are more 
complicated.  Due to this fact the temporal gauge is particularly useful 
in the treatments of QED which use the functional Schrödinger 
equation [5,6].  The Hamiltonian Ĥ  is given by [5], 

 ( ) ( )0, 0,
ˆˆ ˆ ˆ ˆ

D MH H H d= + − ⋅∫ J x A x x  (2.1) 

The quantities in the above expression are defined by, 

 ( ) ( )†
0, 0,

1ˆ ˆ ˆ,
2D DH H dψ ψ⎡ ⎤= ⎣ ⎦∫ x x x ;  0,DH i mβ= − ⋅∇ +α  (2.2) 
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 ( )2 2
0,

1ˆ ˆ ˆ
2MH d= +∫ E B x ;  ( ) ( )ˆˆ = ∇×B x A x  (2.3) 

 ( ) ( ) ( )†ˆ ˆ ˆ,
2
q ψ ψ⎡ ⎤= ⎣ ⎦J x x α x  (2.4) 

In the above expressions m is the fermion mass, α  and β  are the 
usual 4x4 matrices, q is the electric charge, 0,

ˆ
DH  is the Dirac 

Hamiltonian, 0,
ˆ

MH  is the Hamiltonian for the electromagnetic field, 

and ( )Ĵ x  is the current operator.  The fermion field operators are 

( )ψ̂ x  and ( )†ψ̂ x  and the field operators for the electromagnetic 

field are ( )Â x  and ( )Ê x .  The electromagnetic field operators are 

real so that ( ) ( )†ˆ ˆ=A x A x  and ( ) ( )†ˆ ˆ=E x E x .   
The field operators obey the following relationships [4,5], 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

3ˆ ˆ,

ˆ ˆ ˆ ˆ, , 0

i j
ij

i j i j

A E i

A A E E

δ δ⎡ ⎤ = − −⎣ ⎦
⎡ ⎤ ⎡ ⎤= =⎣ ⎦⎣ ⎦

x y x y

x y x y
 (2.5) 

and 

 
( ) ( ){ } ( )
( ) ( ){ } ( ) ( ){ }

†

† †

ˆ ˆ,

ˆ ˆ ˆ ˆ, , 0

a b ab

a b a b

ψ ψ δ δ

ψ ψ ψ ψ

= −

= =

x y x y

x y x y
 (2.6) 

where “a” and “b” are spinor indices.  In addition, all commutators 
between the electromagnetic field operators and fermion field 
operators are zero, i.e., 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† †ˆ ˆˆ ˆˆ ˆ ˆ ˆ, , , , 0ψ ψ ψ ψ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦A x y E x y A x y E x y (2.7) 

Next define, 
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 ( ) ( ) ( )ˆ ˆ ˆG ρ= ∇⋅ −x E x x  (2.8) 

where the current operator ( )ρ̂ x  is defined by, 

 ( ) ( ) ( )†ˆ ˆ ˆ,
2
qρ ψ ψ⎡ ⎤= ⎣ ⎦x x x  (2.9) 

All physically acceptable state vectors Ω  must satisfy the gauss’s 
law constraint [5], 
 ( )ˆ 0G Ω =x  (2.10) 

Now we want to determine if there is a lower bound to the energy 
for the QED Hamiltonian.  Is the relationship (1.2) true for this case?  
Proceeding along the lines of the discussion in the previous section let 
us assume for the moment that the quantities in the expression for the 
Hamiltonian are not operators but classical quantities, i.e., complex 
numbers in the case of the fermion field and real numbers in the case 
of the electromagnetic field.  This is, of course, not a mathematically 
correct way to analyze the problem but is simply used to guide our 
intuition and to motivate further study.  The interaction term consists 
of a fermion current multiplying an electric potential.  It is evident 
that this term can make an arbitrarily large negative contribution to 
the energy.  Therefore it is possible that there may not be a lower 
bound to the energy at this, initial, level of analysis.  This suggests 
that it would be of value to examine the situation in more detail.  We 
will do this using the techniques of the last section.  

Start by assuming that there exists a normalized state 1Ω  which 
satisfies Gauss’s law and for which the divergence of the current 
expectation value is non-zero, that is, 
 ( )1 1 0 in some region of space.∇⋅ Ω Ω ≠J x  (2.11) 
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Before proceeding we must ask the question “how do we know that a 
state 1Ω  can be found where the above condition holds?”.  The 
answer is that if quantum mechanics is a correct model of the real 
world then there must exist many states where the above condition 
holds because in the real world there are many examples where the 
divergence of the current is non-zero over some region of space.  For 
example in classical physics one can envision a point charge moving 
at some velocity.  For this case the divergence of the classical current 
is obviously non-zero.  The quantum mechanics approximation to this 
is a wave packet confined to some small region of space and moving 
with some velocity.  In this case the divergence of the current 
expectation value will be non-zero.  Next define some new state as 
follows, 

 ˆ
2 1

iCe−Ω = Ω  (2.12) 

where the operator Ĉ  is defined by, 

 ( ) ( )ˆ ˆC dχ= ⋅∇∫E x x x  (2.13) 

and where ( )χ x  is an arbitrary real valued function.  Note that the 
dual state is, 

 
†ˆ ˆ

2 1 1
iC iCe e+ +Ω = Ω = Ω  (2.14) 

where we have used †ˆ ˆC C=  since ( )Ê x  and ( )χ x  are both real.  

From this we have that 2 2 1 1 1Ω Ω = Ω Ω =  where we use the 
relationship,  

 ˆ ˆ 1iC iCe e+ − =  (2.15) 
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Now is 2Ω  a valid state, i.e., does it satisfy (2.10)?  Based on the 

commutator relationships (2.5) and (2.7) we see that the operator Ĉ  
commutes with both ( )Ê x  and ( )ρ̂ x .  Therefore 

( ) ( )ˆ
2 1

ˆ ˆ 0iCG e G−Ω = Ω =x x  so that 2Ω  satisfies (2.10) since 

1Ω  has been assumed to satisfy ( ) 1
ˆ 0G Ω =x . 

Next we want to evaluate the energy of the state 2Ω .  To do this 
use (2.1) and (1.1) to obtain, 

( ) ( ) ( )2 2 0, 2 2 0, 2 2 2
ˆˆ ˆ ˆ

D ME H H dΩ = Ω Ω + Ω Ω − Ω ⋅ Ω∫J x A x x
  (2.16) 

Consider first the term 2 0, 2
ˆ

DHΩ Ω .  To evaluate this use the fact 

that ( )Ê x , and thereby Ĉ , commutes with the fermion field 

operators ( )ψ̂ x  and ( )†ψ̂ x .  Use this fact along with (2.15) to 
obtain, 

 2 0, 2 1 0, 1
ˆ ˆ

D DH HΩ Ω = Ω Ω  (2.17) 

Next consider the term 2 0, 2
ˆ

MHΩ Ω .  From (2.5) we obtain, 

 ( ) ( )ˆ ˆ,C i χ⎡ ⎤ = − ∇⎣ ⎦A x x  (2.18) 

Use this result to obtain, 

 ( ) ( ) ( )ˆ ˆ ˆˆ , , 0C C i χ⎡ ⎤ ⎡ ⎤= ∇× = − ∇×∇ =⎣ ⎦ ⎣ ⎦Β x A x x  (2.19) 

Therefore Ĉ  commutes with 0,
ˆ

MH  so that, 

 2 0, 2 1 0, 1
ˆ ˆ

M MH HΩ Ω = Ω Ω  (2.20) 



 Apeiron, Vol. 13, No. 2, April 2006 249 

© 2006 C. Roy Keys Inc. — http://redshift.vif.com 

Now for last term in (2.16) use the fact that Ĉ  commutes with ( )Ĵ x  
to obtain, 

 ( ) ( ) ( ) ( )( )ˆ ˆ
2 2 1 1

ˆ ˆˆ ˆ iC iCd e e d+ −Ω ⋅ Ω = Ω ⋅ Ω∫ ∫J x A x x J x A x x (2.21) 

To evaluate the above expression further use the Baker-Campell-
Hausdorff relationships (1.12) along with (2.5) and (2.18) to obtain, 

 ( ) ( ) ( )ˆ ˆˆ ˆiC iCe e χ+ − = −∇A x A x x  (2.22) 

Use this result in (2.21) to obtain, 
 ( ) ( ) ( ) ( ) ( )( )2 2 1 1

ˆ ˆˆ ˆd dχΩ ⋅ Ω = Ω ⋅ −∇ Ω∫ ∫J x A x x J x A x x x (2.23) 

Use the above results in (2.16) to yield, 

 
( ) ( ) ( )( )

( ) ( )
2 1 0, 0, 1

1 1

ˆˆ ˆ ˆ

ˆ                                  

D ME H H d

dχ

Ω = Ω + − ⋅ Ω

+ Ω Ω ⋅∇

∫
∫

J x A x x

J x x x
 (2.24) 

Next use (2.1) and (1.1) in the above and integrate the last term by 
parts, assuming reasonable boundary conditions (i.e. let ( ) 0χ →x  as 

→∞x ), to obtain, 

 ( ) ( ) ( ) ( )2 1 1 1
ˆE E dχΩ = Ω − ∇ ⋅ Ω Ω∫ x J x x  (2.25) 

Next subtract the energy of the vacuum state, ( )vacE Ω , from both 
sides to obtain, 

 
( ) ( ) ( ) ( )( )

( ) ( )
2 1

1 1
ˆ                                       

vac vacE E E E

dχ

Ω − Ω = Ω − Ω

− ∇ ⋅ Ω Ω∫ x J x x
 (2.26) 
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Now in the above expression the quantities 
( ) ( )( )1 vacE EΩ − Ω  and ( )1 1

ˆΩ ΩJ x  are independent of 

( )χ x .  Recall that we have picked the quantum state 1Ω  so that 

( )1 1
ˆ∇⋅ Ω ΩJ x  is nonzero.  Based on this we can always find a 

( )χ x  so that ( ) ( )( )2 vacE EΩ − Ω  is a negative number.  For 

example, let ( ) ( )1 1
ˆχ λ= ∇⋅ Ω Ωx J x  where λ  is a constant.  

Then (2.26) becomes, 

 
( ) ( ) ( ) ( )( )

( )( )
2 1

2

1 1
ˆ                                           

vac vacE E E E

dλ

Ω − Ω = Ω − Ω

− ∇⋅ Ω Ω∫ J x x
 (2.27) 

Now, since ( )1 1
ˆ∇⋅ Ω ΩJ x  is nonzero,  the integral must be 

positive so that as λ →∞  the quantity 
( ) ( )( )2 vacE EΩ − Ω → −∞ .  Therefore the energy of the state 

2Ω  is less than that of the vacuum state vacΩ  by an arbitrarily 
large amount.  Therefore there is no lower bound to the energy of a 
QED quantum state in the temporal gauge. 

III. Interaction with Classical fields 
In the previous section we have shown that if there exists a state 1Ω  

that satisfies (2.11) then there exists a state 2Ω  whose energy is less 

that that of 1Ω  by an arbitrarily large amount.  This suggests the 
possibility that it would be possible to extract an arbitrarily large 
amount of energy from a quantum state through the interaction with 
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an external field.  It will be shown in this section that this is 
theoretically possible.  We will work this problem in the Schrödinger 
picture in which the field operators do not depend on time and the 
time dependence of the state vector ( )tΩ  is given by, 

 
( ) ( )ˆt

i H t
t

∂ Ω
= Ω

∂
 (3.1) 

In the absence of external interactions the energy of a quantum 
state remains constant.  In order to change the energy we must allow 
the field operators to interact with external sources or fields.   This is 
done by adding an interaction term to the Hamiltonian.  Let this term 
be, 
 ( ) ( ) ( ) ( )int

ˆˆ ˆ, ,H t d t d= − ⋅ − ⋅∫ ∫S x A x x J x R x x  (3.2) 

In the above expression ( ), tS x  is a classical field that interacts with 

the quantized electromagnetic field and ( ), tR x  is a separate classical 
field that interacts with the fermion current operator.  It should not be 
assumed that the classical fields ( ), tS x  and ( ), tR x  correspond to 
physical fields that actually exist.  For the purposes of this discussion 
these fields are fictitious.  They have been introduced for the purposes 
of perturbing the Hamiltonian in order to change the energy of some 
initial state.  It will be shown that for properly applied fields ( ), tS x  

and ( ), tR x  an arbitrarily large amount of energy can be extracted 
from some initial state.  Therefore even though these fields do not 
correspond to actual physical objects we believe that the following 
results are mathematically interesting.  The reason we pick these 
fields is because for particular values of the interaction we obtain an 
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exact solution to the Schrödinger equation.  This is demonstrated in 
the following discussion. 

When the interaction is included the Schrödinger equation 
becomes, 

 
( ) ( )ˆ

T

t
i H t

t
∂ Ω

= Ω
∂

 (3.3) 

where, 
 ( ) ( ) ( ) ( )int

ˆˆ ˆ ˆ ˆ ˆ, ,TH H H H t d t d= + = − ⋅ − ⋅∫ ∫S x A x x J x R x x  (3.4) 

Now we will solve (3.3) for the following interaction, 
 ( ) 1, 0 for t t t= <R x ; ( ) ( ) ( ) 1 2, for t g t t t tχ= − ∇ ≤ ≤R x x ; 

( ) 2, 0 for t tt = >R x  

and, 
 ( ) 1, 0 for t tt = <S x ; ( ) ( ) ( ) 1 2, for t g t t t tχ= ∇ ≤ ≤S x x�� ; 

( ) 2, 0 for t tt = >S x  

where the double dots represent the second derivative with respect to 
time.  In addition to the above ( )g t  satisfies the following 
relationship at time 2t , 

 ( )2 0g t =�  and ( )2 1g t = −  (3.5) 

According to the above expressions the interaction is turned on at 
time 1t  and turned off at time 2t t> .  During this time energy is 
exchanged between the quantized fermion-electromagnetic field and 
the classical fields ( ), tS x  and ( ), tR x .   At some initial time 1it t<  

the state vector is given by ( )itΩ .  We are interested in determining 
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the state vector ( )ftΩ  at some final time 2ft t> .  Based on the 

above remarks the state vector  ( )tΩ  satisfies, 

 
( ) ( ) 1

ˆ for t t
t

i H t
t

∂ Ω
= Ω <

∂
 (3.6) 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) 1 2

ˆˆ
 for 

ˆ

H g t dt
i t t t t

t g t d

χ

χ

⎛ ⎞− ∇ ⋅∂ Ω ⎜ ⎟= Ω ≤ ≤
⎜ ⎟∂ + ⋅∇⎝ ⎠

∫
∫

x A x x

J x x x

��
(3.7) 

 
( ) ( ) 2

ˆ for t t
t

i H t
t

∂ Ω
= Ω >

∂
 (3.8) 

Since these equations are first order differential equations the 
boundary conditions at 1t  and 2t  are, 

 ( ) ( )1 10
t t

ε
ε ε

→
Ω + = Ω −  and ( ) ( )2 20

t t
ε

ε ε
→

Ω + = Ω −  (3.9) 

The solution to (3.6) is, 

 ( ) ( ) ( )ˆ
1 for  iiH t t

it e t t t− −Ω = Ω <  (3.10) 

It is shown in Appendix A that the solution to (3.7) is, 

 ( ) ( ) ( ) ( ) ( ) ( )1
ˆ ˆ ˆ

1 2 1 for ig t C ig t D iw t iH t tt e e e e t t t t− −Ω = Ω ≥ ≥�  (3.11) 

where the operator D̂  is defined by, 

 ( ) ( )ˆD̂ dχ= ⋅∇∫A x x x  (3.12) 

and  
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 ( ) ( ) ( ) ( )
1

2
2 2

2

t

t

g t
w t d g t g t d dtχ χ

⎛ ⎞′
′ ′ ′= ∇ + ∇⎜ ⎟

⎜ ⎟
⎝ ⎠
∫ ∫ ∫x x
�

��  (3.13) 

The solution to (3.8) is, 

 ( ) ( ) ( )2
ˆ

2 2 where fiH t t
f ft e t t t− −Ω = Ω >  (3.14) 

Use the boundary conditions (3.9) in the above to obtain, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 22 2 2
ˆ ˆ ˆˆf iiH t t iH t tig t C ig t D iw t

f it e e e e e t− − − −Ω = Ω�  (3.15) 

Use (3.5) in the above to obtain, 

 ( ) ( ) ( ) ( )2 2
ˆ ˆ

0 2
fiH t t iw tiC

ft e e e t− − −Ω = Ω  (3.16) 

where ( )0 2tΩ  is defined by, 

 ( ) ( ) ( )2
ˆ

0 2
iiH t t

it e t− −Ω = Ω  (3.17) 

( )0 2tΩ  is the state vector that the initial state ( )itΩ  would evolve 

into, by the time 2t , in the absence of the interactions.  Use (3.16) in 

(1.1) to show that the energy of the state ( )ftΩ  is, 

 ( )( ) ( ) ( )ˆ ˆ
0 2 0 2

ˆiC iC
fE t t e He t−Ω = Ω Ω  (3.18) 

From the discussion leading up to equation (2.25) we obtain, 

 ( )( ) ( )( ) ( ) ( ) ( ) ( )0 2 0 2 0 2
ˆ

fE t E t t t dχΩ = Ω − ∇⋅ Ω Ω∫ x J x x (3.19)

Now, as before, assume that we select an initial state ( )itΩ  so that 

( ) ( ) ( )0 2 0 2
ˆt t∇⋅ Ω ΩJ x  is non-zero.  Recall that ( )0 2tΩ  is the 
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state that ( )itΩ  evolves into in the absence of interactions.  

Therefore ( )( ) ( )( )0 2 iE t E tΩ = Ω  and ( )0 2tΩ  is independent of 

( )χ x .  The function ( )χ x  can take on any value without affecting 

( ) ( ) ( )0 2 0 2
ˆt t∇⋅ Ω ΩJ x .  Let ( ) ( ) ( ) ( )0 2 0 2

ˆt tχ λ= ∇⋅ Ω Ωx J x  
so that (3.19) becomes, 

 ( )( ) ( )( ) ( ) ( ) ( )( )2

0 2 0 2
ˆ

f iE t E t t t dλΩ = Ω − ∇⋅ Ω Ω∫ J x x (3.20) 

Define extEΔ  as the amount of energy extracted from the quantum 
state due to its interaction with the classical fields.  From the above 
equation, 

 ( ) ( ) ( )( )2

0 2 0 2
ˆ

extE t t dλΔ = ∇⋅ Ω Ω∫ J x x  (3.21) 

Obviously as λ →∞  then  extEΔ →∞ . 
In conclusion, it has been shown that we cannot assume that there 

exists a lower bound to the energy of a quantum state.  The existence 
of a lower bound depends on the Hamiltonian in question and cannot 
be assumed but must be verified by mathematical techniques.  When 
we examine the QED Hamiltonian consisting of a fermion field 
interacting with an electromagnetic field we find that is no lower 
bound to the energy.  If an initial state interacts with properly applied 
classical fields then it is possible to extract an arbitrarily large amount 
of energy from the initial state.  The classical fields that were applied 
in this article are mathematical objects that are not assumed to 
correspond to real physical objects.  A possible next step in this 
research would be to determine if these same results can be obtained 
through the interaction of real existing fields and to extend this 
analysis to other Hamiltonians. 
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Appendix A 
It will be shown that (3.11) is the solution to (3.7).  Take the time 
derivative of (3.7) and multiply by “i” to obtain, 

 ( ) ( ) ( )ˆ
a bi t gC w t

t
∂

Ω = − + Ω − Ω + Ω
∂

� �  (A.1) 

where, 

 ( ) ( ) ( )1
ˆˆ ˆ

1
ˆ iw t iH t tigC igD

a e gDe e e t− −Ω = Ω���  (A.2) 

and 

 ( ) ( ) ( )1
ˆˆ ˆ

1
ˆiw t iH t tigC igD

b e e e He t− −Ω = Ω�  (A.3) 

To evaluate (A.2) we will use the following relationships. 

 ( )ˆ ˆ ˆ ˆˆ ˆ  igC igC igC igCe D e De e−=  (A.4) 

Use (2.5) and (1.12) to obtain, 

 ˆ ˆ 2ˆˆ ˆ ˆ ˆ,igC igCe De D ig C D D g dχ− ⎡ ⎤= + = − ∇⎣ ⎦ ∫ x  (A.5) 

Use these results in (A.2) to yield, 

 ( ) ( )2ˆ
a g D g d tχΩ = − ∇ Ω∫ x��  (A.6) 

Next evaluate (A.3).  Use (1.12) and the commutation relationships to 
obtain, 

 
2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,
2

igD igD ge He H ig D H D D H− ⎡ ⎤⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦⎣ ⎦
� � ��  (A.7) 

where, 

 0,
ˆ ˆ ˆˆ ˆ ˆ ˆ, , , MD H H d H d iCχ χ⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⋅∇ = ⋅∇ = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫A x A x  (A.8) 

and, 
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2ˆ ˆˆ ˆ ˆ ˆ ˆ, , , ,D D H i D C i d d dχ χ χ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ = − = − ⋅∇ ⋅∇ = − ∇⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ∫ ∫ ∫A x E x x (A.9) 

Therefore, 

 
2

ˆ ˆ 2ˆˆ ˆ
2

igD igD ge He H gC dχ− = + + ∇∫ x� � ��  (A.10) 

Use this in (A.3) to obtain, 

( ) ( ) ( )1

2
ˆˆ 2 ˆ

1
ˆˆ

2
iw t iH t tigC igD

b
ge H gC d e e e tχ − −⎛ ⎞

Ω = + + ∇ Ω⎜ ⎟
⎝ ⎠

∫ x ���  (A.11) 

To evaluate this further use, 

 ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ,igC igCe He H ig C H H g dχ− ⎡ ⎤= + = + ⋅∇⎣ ⎦ ∫ J x  (A.12) 

where we have used, 

 ˆ ˆ ˆ,C H i dχ⎡ ⎤ = − ⋅∇⎣ ⎦ ∫ J x  (A.13) 

and the fact that ˆ ˆ ˆ, , 0C C H⎡ ⎤⎡ ⎤ =⎣ ⎦⎣ ⎦ .  Therefore, 

 ( ) ( )
2

2ˆˆ ˆ
2b
gH g d gC d tχ χ

⎛ ⎞
Ω = + ⋅∇ + + ∇ Ω⎜ ⎟

⎝ ⎠
∫ ∫J x x

��  (A.14) 

Use this along with (A.11) and (A.6) in (A.1) to obtain, 

( )
( )

( ) ( )
( )

2
2

2

ˆˆ ˆ
2

ˆ ˆ

gH g d gC d
i t t

t
gC w g D g d

χ χ

χ

⎧ ⎫⎛ ⎞
+ ⋅∇ + + ∇⎪ ⎪⎜ ⎟∂ ⎪ ⎪⎝ ⎠Ω = Ω⎨ ⎬∂ ⎪ ⎪− + − − ∇⎪ ⎪⎩ ⎭

∫ ∫

∫

J x x

x

��

� � ��

 (A.15) 

Rearrange terms and do some simple algebra to obtain, 
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 ( )
( )

( )2
2 2

ˆˆ ˆ

2

H g d g d
i t tgt w d gg d

χ χ

χ χ

⎧ ⎫+ ⋅∇ − ⋅∇
⎪ ⎪∂ ⎪ ⎪Ω = Ω⎨ ⎬⎛ ⎞∂ − − ∇ − ∇⎪ ⎪⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∫ ∫

∫ ∫

J x A x

x x

��

�� ��
(A.16) 

Now let  

 
2

2 2

2
gw d gg dχ χ= ∇ + ∇∫ ∫x x
�� ��  (A.17) 

to obtain  

 ( ) ( ) ( )ˆˆ ˆi t H g d g d t
t

χ χ∂
Ω = + ⋅∇ − ⋅∇ Ω

∂ ∫ ∫J x A x��  (A.18) 

which is (3.7) in the text.  This completes the proof. 
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