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The stability of the vacuum for QED in the temporal gauge
will be examined. It is generaly assumed that the vacuum
dtate is the quantum gtate with the lowest energy. However, it
is easy to show that thisis not true in general but depends on
the nature of the Hamiltonian that describes the system. It will
be shown that this assumption does not hold for a system
consisting of a fermion field coupled to a quantized
electromagnetic field in the tempora gauge.

l. Introduction.
In this article we will examine the problem of the stability of the
vacuum in quantum field theory. If |Q) is a normalized state vector
and H isthe Hamiltonian then the energy is given by,
E(|Q))=(alH|2) (L1)
The question we want to examine is whether or not there exiss a
lower bound to the energy of a quantum state. That is, does there
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exist a normalized state vector |, ), usually considered to the be
the vacuum gtate, where,

E(|Q))- E(|Qy.)) >0 for all normalized state vectors |Q) (1.2)

The answer to this question obviously depends on the nature of the
Hamiltonian. For example consider the following Hamiltonian for a
self-interacting scalar field,

H=H,+H, (1.3)

where,
ﬁozéj(ﬁ2+|v(2>|2+m2([>2)dx ad H, =of@'dx  (14)

In the above expression 7 (x) and ¢(x) arethe usual field operators,

m is the mass, I—A|0 is the interaction free Hamiltonian, I—AII is the

interaction, and @ is a postive coupling consant. Note that
throughout this discussion we will use 7=c=1. Al vectors are
indicated by bold text. In addition, for sections | and Il we will
suppress the time dependence because are analyzing the quantum
sysems a a given ingtant of time. Later, in Section Ill, where we
consder the time evolution of a sate, we will work in the
Schrédinger picture and assign time dependence to the Sate vector.
Now is there a lower bound to the energy for this sysem? Does

thereexist astate |Q,,.) for which the relationship (1.2) is valid? For

the moment let us first consider the above question for the case where
7 and ¢ are not operators but classical quartities, i.e., real numbers.

In this case it is evident that H, >0 for any combination of 7 and
@. However the interaction term H, will be negative if ¢ is
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negative. As ¢ increases in magnitude I—AII will dominate the

expressions and it is evident that there is no lower bound to the
energy. So much for the classical case.

Now let us consder the quantized sysem. The system is
quantized by having the field operators obey the commutation
relationships,

[9(x).7(y)|=16°(y-%); [¢(x).9(y)]=0; [#(x).Z(y)]=0 (15)

Based on the above discussion we would strongly suspect thet there is
no lower bound to the energy of the quantized system. We will now

prove that this is case as follows. If |Q) isanormalized state vector
then it is always possible to produce another state vector by operating

on |Q2) with the field operators[1]. Let |Q') be defined by,
) =e"|Q) (16)
where,
= = '[fz;(dx (1.7)
and where y(X) isarea valued function. Due to the fact that 7 is
red (sothat 7 = 7') wehave F = F' so that the tate dual to Q) is,
(@] =(q|éf (18)
From the above relationships we obtain (Q'|QY) =(Q|Q). So that
Q') is normalized since |Q) is normalized. The energy of |QY') is
then,
(A Q) =(0]e"He™ |Q) (1.9)
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To evaluate the above expresson we will use the following
relationships. If O, and O, are operatorsthen,

e*‘ﬁéléze’iﬁ _ (e*iﬁéle’iﬁ )(enﬁézefiﬁ ) (1.10)
From (1.5) we obtain,
[6(x).F|=iz(x); [#(x),F|=0 (1.12)

Also we will use the Baker-Campell-Hausdorff relationships [2]
which gate that,

~ A ~ A A A 1 A N N
0 oG — -
e%0,e —Oz+[01,02}+2[01,[01,OZH+.-- (112)
Using these relationships we obtain,
e”ﬁ(?)(x)(fﬁ =p(x)+ x(x); e”ﬁﬁ(x)e’iﬁ =z(x) (L13)
Usetheseresultsto obtain,

S TR YA ~ 2 ~ 2
e'"He'F == (7z2+V + +m?(p+ )dx
2I V(g ) +mf(+ 1) (1.14)

+ a).[((?) + ;()3 dx
Apply thisto equation (1.9) to obtain,

) 1 (296 Vy|Vaf
QH|Q) =(Q|H|Q)+=[(a Qxd

+a).[<Q|(3g?)2;(+3g?);(2+;(3)|Q>dx
It is evident that as |(x) — oo the above expression will be
dominated by the »° term. Therefore as y approaches negative
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infinity the energy of the state  (CY/| H 1) will also approach
negative infinity. Therefore there is no lower bound to the energy and
equation (1.2) does not hold for the Hamiltonian given by (1.3) and
(1.4).

The above example was somewhat trivial and was introduced to
illugtrate the fact that we cannot simply assume that a lower bound

exigs to the energy for a quantum system. This must be checked for
the Hamiltonian in question.

II. The QED Hamiltonian

Now let us agoply the results of the above section to the QED
Hamiltonian which describes the interaction between a quantized
fermion field and quantized electromagnetic field. It will be
convenient to work in the temporal gauge. In the temporal gauge the
gauge condition is given by the relationship A, =0 [3,4,5,6] where
A, isthe scalar component of the electric potential. The advantage of

the tempora gauge is due to the smplicity of the commutation
relationship between the electromagnetic field quantities which are
given below. In the coulomb gauge, for ingtance, these are more
complicated. Dueto thisfact the temporal gauge is particularly useful
in the treatments of QED which use the functional Schrodinger

equation [5,6]. The Hamiltonian H isgiven by [9],

H =I-AIOYD+HA01,\,I —Ij(x)-f&(x)dx (21
The quantities in the above expression are defined by,
=—j HooW (x)]dx; Hop=—ia-V+Am (22)
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N

Hom :%I(f}2+]§2)dx; ]AS(X)=V><A(X) (23)

3(x) =3[ (x).0 (x)] (24)
In the above expressions m is the fermion mass, o and S ae the
usual 4x4 meatrices, g is the electric charge, I—AIOYD is the Dirac
Hamiltonian, I—AIOYM is the Hamiltonian for the electromagnetic field,
and J(x) is the current operator. The fermion field operators are
w(x) and y'(x) and the field operators for the electromagnetic
field are A(x) and ﬁ(x) The electromagnetic field operators are
real so that AT(X) =£&(x) and ]::T(X) =]:I(x).

The field operators obey the following relationships[4,5],

A,

[A(x),E'(y)]=-16,8°(x-) -
[A(x). A (v)]=[ E (x).E'(y)]=0
{‘/};(X)"/}b (y)} =5,0(x-y)
(0.5 (v)} = {9 ()9 (¥)} =0

where “a@ and “b” are spinor indices. In addition, all commutators
between the electromagnetic field operators and fermion field
operators are zero, i.e.,

[A(x),!ﬁ()’ﬂ = [E(X),V;(Y)J =[A(x),l/7()’)] = [E(X),‘/}T (Y)] =0(27)

Next define,

(2.6)
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é(x)=V-]§l(x)—ﬁ(x) (2.8)
where the current operator p(x) is defined by,
p(x) =3[ (x).5(x)] (29)

All physically acceptable state vectors |Q) must satisfy the gauss's
law condraint [5],

G(x)|Q)=0 (2.10)

Now we warnt to determine if there is a lower bound to the energy
for the QED Hamiltonian. |sthe relationship (1.2) true for this case?
Proceeding along the lines of the discussion in the previous section let
us assume for the moment that the quantities in the expression for the
Hamiltonian are not operators but classical quartities, i.e.,, complex
numbers in the case of the fermion field and real numbers in the case
of the electromagnetic field. Thisis, of course, not a mathematically
correct way to analyze the problem but is ssimply used to guide our
intuition and to motivate further sudy. The interaction term consisgts
of a fermion current multiplying an electric potential. It is evident
that this term can make an arbitrarily large negative contribution to
the energy. Therefore it is possible that there may not be a lower
bound to the energy a this, initia, level of analysis. This suggests
that it would be of value to examine the situation in more detail. We
will do this using the techniques of the last section.

Start by assuming that there exists a normalized state |Q,) which

satisfies Gauss's law and for which the divergence of the current
expectation value is non-zero, that is,

V(I (x)|€,) = 0 in some region of space. (2.12)
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Before proceeding we must ask the question “how do we know that a
sate |Q,) can be found where the above condition holds?’. The

answer is that if quantum mechanics is a correct model of the real
world then there must exis many states where the above condition
holds because in the real world there are many examples where the
divergence of the current is non-zero over some region of space. For
example in classical physics one can envision a point charge moving
at some velocity. For this case the divergence of the classical current
is obviously non-zero. The quantum mechanics approximation to this
is awave packet confined to some small region of space and moving
with some velocity. In this case the divergence of the current
expectation value will be non-zero. Next define some new dtate as
follows,

,)=€e"¢|Q,) (2.12)
where the operator C isdefined by,
é=j]§l(x)-V;((x)dx (2.13)
and where y(x) is an arbitrary real valued function. Note that the
dual gateis,
(Q,] = ()] e = (] e (2.14)
where we have used C"=C since E(x) and y(x) are both real.

From this we have that (Q,|Q,)=(Q,|Q,) =1 where we use the
relationship,

eei® =1 (2.15)
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Now is |Q2,) avalid state, i.e., doesit satisfy (2.10)? Based onthe

commutator relationships (2.5) and (2.7) we see that the operator C
commutes with  both ﬁ(x) and  p(x). Therefore

5(x)|Q,)=e"°G(x)|Q,)=0 = that |Q,) satisfies (2.10) since
|©,) has been assumed to satisfy G(x)|Q,)=0

Next we want to evaluate the energy of the state |Q2,). To do this
use (2.1) and (1.1) to obtain,
E(|QZ>)=<QZ||:|0,D|QZ> < 2|HOM|Q 2|,[J (X)dX|QZ>

(2.16)

Consider firgt the term (Q,|H,, |Q,). To evaluate this use the fact
that E(x), and thereby C, commutes with the fermion field
operators y(x) and y'(x). Use this fact along with (2.15) to
obtain,

(9, Hoo[2,) = (| Hop [2) (2.17)
Next consider the term (Q,|H,,, |Q,) . From (2.5) we obtain,
[A(x).C|=-iVx(x) (219
Usethisresult to obtain,

[ﬁ(x),é]=Vx[&(x),é]=—iVxV;((x)=O (219
Therefore C commutes with I—AIOYM S0 thet,

<Qz| HAO,M |Qz> = <Ql| HAO,M |Ql> (2.20)
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Now for lagt term in (2.16) use the fact that C commutes with J (x)
to obtain,
(9, [3(x)-A(x)dx|Q,) = (@[3 (x)- (€A (x) &™) dx|2,) (2:20)

To evaluate the above expression further use the Baker-Campell-
Hausdorff relationships (1.12) along with (2.5) and (2.18) to obtain,

+'CA( )e” —A( )=V (x) (222
Usethisresult in (2.21) to obtain,
(| [I(x)- A (x)dx|2,) = (| [ 3 (x)-(A(x) - Vr(x)) ax] ) (2.23)

Use the aboveresultsin (2.16) to yield,
E(|Qz>)=<Ql|(|:|oo+|:|0M —jj X A x dx)|Ql>
+'[ l|J |Q V;( )dx

Next use (2.1) and (1.1) in the above and integrate the last term by
parts, assuming reasonable boundary conditions (i.e. let y(x) -0 as

(2.24)

|x| = ), to obtain,
E(|Q, j;( (x)|Q)dx  (2.25)

Next subtract the energy of the vacuum state, E(| we) ) from both
sidesto obtain,

E(102)) - E(|2) =(E(l4)- E(IQvac>))

(2.26)
—'[;( V |Q >dx
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Now in the above expresson the  quantities

(E(|0)-E(|Quw))) and (©,|J(x)|€) are independent of
x(x). Recall that we have picked the quantum state |Q,) so that
V-{Q,|J(x)|Q,) is nonzero. Based on this we can aways find a
z(x) 0 that (E(|Q,))-E(|Q))) is a negative number. For

example, let y(x)=AV-(Q,|J(x)|Q,) where 2 is a congtarnt.
Then (2.26) becomes,

E(IQZ>)—E(Iﬂvac>)=(E(lﬂl>)—E(Iﬂvac>))
~2f(V(@i(x)] @) dx

Now, since V-(Q,|J(x)|Q,) is nonzero, the integral must be
positive 0 that as A — the quantity
(E(|92))-E(|Qu))) > Therefore the energy of the state

|Q,) is less than that of the vacuum state |Q,,.) by an arbitrarily

large amount. Therefore there is no lower bound to the energy of a
QED guantum gtate in the temporal gauge.

[ll. Interaction with Classical fields

In the previous section we have shown that if there exists a state |, )
that satisfies (2.11) then there exists astate | Q2,) whose energy is less

that that of |Q,) by an arbitrarily large amount. This suggests the

possibility that it would be possible to extract an arbitrarily large
amount of energy from a quantum state through the interaction with
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an external field. It will be shown in this section that this is
theoretically possible. We will work this problem in the Schrodinger
picture in which the field operators do not depend on time and the

time dependence of the state vector |Q(t)) isgiven by,

i@: H|Q(t)) (3.1)

In the absence of externa interactions the energy of a quantum
date remains congtant. In order to change the energy we must allow
the field operatorsto interact with external sources or fields. Thisis
done by adding an interaction term to the Hamiltonian. Let thisterm
be,

I:Iint=—jS(x,t).A(x)dx—jj(x)-R(x,t)dX (3.2
In the above expression S(x,t) isaclassical field that interacts with
the quantized electromegnetic field and R(x,t) is a separate classical
field that interacts with the fermion current operator. It should not be
assumed that the classical fields S(x,t) and R(x,t) correspond to

physical fields that actually exist. For the purposes of this discussion
these fields are fictitious. They have been introduced for the purposes
of perturbing the Hamiltonian in order to change the energy of some

initial state. It will be shown that for properly applied fields S(x,t)

and R(x,t) an arbitrarily large amount of energy can be extracted

from some initial gate. Therefore even though these fields do not
correspond to actual physical objects we believe that the following
results are mathematically interesting. The reason we pick these
fields is because for particular values of the interaction we obtain an
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exact solution to the Schrodinger equation. This is demongtrated in
the following discussion.

When the interaction is included the Schrédinger equation
becomes,

i 6‘Q(t)> _ H"T

Q(t)) (3.3

where,

I-AIT =H+ I-AIint =H —jS(x,t)~;&(x)dx—jj(x)R(x,t)dx (34)
Now we will solve (3.3) for the following interaction,

R(x,t)=0fort<t; R(x,t)=-g(t)Vy(x)fort, <t<t,;
R(x,t)=0fort>t,
and,

S(x,t)=0fort<t;; S(x,t)=g(t)Vy(x)fort <t<t,;
S(x,t)=0fort>t,
where the double dots represent the second derivative with respect to
time. In addition to the above g(t) saisfies the following
relationship at time t,,
g(t,)=0and g(t,)=-1 (35

According to the above expressions the interaction is turned on at
time t, and turned off at time t>t,. During this time energy is
exchanged between the quantized fermion-electromagnetic field and
the classical fields S(x,t) and R(x,t). At someinitial time t, <t,

the state vector is given by |Q(t)). We are interested in determining
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the state vector ‘Q(tf )> a some final time t, >t,. Based on the

above remarks the state vector ‘Q(t)> satisfies,
ia\Q(t» .

~—=H Q(t)) fort<t, (36)
ia‘gét(t> ij #(x)- ( Jox ‘Q(t» fort, <t<t,(3.7)
) =H|Q(t)) fort>t, (398)

Since these equations are first order differential equations the
boundary conditionsat t, and t, are,

Q(t+e)) = |t —¢)) and [Q(t, +¢)) = |Q(t,~¢)) (39)
The solutionto (3.6) is,
jQ(t)=e" V(L)) for t<t, (3.10)
It is shown in Appendix A that the solutionto (3.7) is,
|Q(t)) = 9% P e MW () fort, 2 t2t,  (3.10)

where the operator D isdefined by,
D =.[;&(x)-V;((x) dx (312
and
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t

W(t)=j{ I|V;(| dx+g(t I|V;(| dx [dt’ (3.13)

7]

The solutionto (3.8) is,
‘Q(tf )> —e "% |q(t,)) wheret, >t, (3.14)
Use the boundary conditions (3.9) in the above to obtain,
[t )) = g g o)) (315)
Use (3.5) inthe aboveto obtain,

‘Q(tf )> _ efiﬁ(tf tz)e i ghite) Q, (tz )> (3.16)
where |Q, (t,)) isdefined by,
|, (t,)) =€ A () (3.17)

|, (t,)) isthe state vector that the initial state |Q(t; )) would evolve
into, by the time t, , in the absence of the interactions. Use (3.16) in
(1.2) to show thet the energy of thestate‘Q t, > IS,

E(‘Q(tf )>)=<Qo(t )| €A™ |, (t,)) (3.18)
From the discussion Ieading upto equar[ion (2 25) we obtain,

E(‘Q(tf») )] x(x) (x)| 9 (1,)) dx (3.19)

Now, as before, assume that we select an initial state |Q(t,)) o that
V-(Qo(tz)‘j(x)‘ﬂo(tz» is non-zero. Recall thet ‘Qo(tz» is the
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state that |Q(t)) evolves into in the absence of interactions
Therefore E(Qq(t,))=E(Q(t)) and |Q,(t,)) is independent of
x(x). Thefunction y(x) can take on any value without affecting
V-(Qo(tz)‘j(x)‘ﬂo(tz». Let ;((x)=/1V.<Qo(t2)‘3(x)‘90(t2)>
S0 that (3.19) becomes,

c(l )~ £0t)-4](¥- (i) ) s 620

Define AE_, as the amount of energy extracted from the quantum

date due to its interaction with the classical fields. From the above
equation,

Ay, = A[ (V{90 (1,)] 3 (x)] 2 (1,))) dx (321)

Obviously as 1 — « then AE,, — o0

In conclusion, it has been shown that we cannot assume that there
exigts a lower bound to the energy of a quantum state. The existence
of alower bound depends on the Hamiltonian in question and cannot
be assumed but must be verified by mathematical techniques. When
we examine the QED Hamiltonian consiging of a fermion field
interacting with an electromagnetic field we find that is no lower
bound to the energy. If an initial state interacts with properly applied
classical fieldsthen it is possible to extract an arbitrarily large amount
of energy from the initial state. The classical fields that were applied
in this article are mathematical objects that are not assumed to
correspond to real physical objects. A possible next step in this
research would be to determine if these same results can be obtained
through the interaction of real exigting fields and to extend this
analysisto other Hamiltonians.
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Appendix A

It will be shown that (3.11) is the solution to (3.7). Take the time
derivative of (3.7) and multiply by “i” to obtain,

Zlom)=-(Crwlo@)-la)a) @A
where,
|Q,) =€ gDePe" e |q(t,)) (A2)
and
|Q,) = X Fe 4| (t,)) (A3

To evaluate (A.2) we will use the following relationships.

<D = ( é%De 'QC) g (A.4)
Use(2.5) and (1.12) to obtain,
dCDe ' = f)+ig[é, 6] =D-g[Va dx (A.5)
Usetheseresultsin (A.2) to yield,
|9,)=6(D-gf|vaf ax)|(t)) (A6)

Next evaluate (A.3). Use (1.12) and the commutation relationships to
obtain,
)

eigﬁﬁe*@:ﬁ+ig[6,ﬁ]—9—[6,[6,ﬁﬂ (A7)

N

_
_U>
I

|=[| AR |- Vadx=[[AHg,, | Vadk=—-C (A8)
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[6,[6, H ]] =—i[B,C]=-i[ [A-Vydx, [E-Vzdx |=~[|V] dx (A.9)
Therefore,
dPHe™® = H + gc“:+g—22 j V4| dx (A.10)
Usethisin (A.3) to obtain,

|Q > |gc[H +gC+—f|V;(| dxj |gD |W(t) SiH(t-t)

QL)) (A11)
To evauate this further use,
e = 1 +|g[é ]: H +g('[j~V;(dx) (A.12)
where we have used,
[é, H ] =i [J-Vdx (A.13)
C,

and the fact that [c [ H ﬂ — 0. Therefore,

|Qb>=[ﬁ +9([3-Vyax)+ gé+g72j|v;(|2 dx [|©Q(t)) (A.14)

Usethisalong with (A.11) and (A.6) in (A.1) to obtain,
< 2
A+g([3-vydx)+gC+ (v Zdj
.ol it
—(gé+W)—g([3—gI|V;(|2dx)

Rearrange terms and do some simple algebra to obtain,

o) (19
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(ﬁ +gjj-V;(dx—ng.V;(dx)

. 0
i—|Q(t)) = 2 (1)) (A.16)
. g ..
ot —(W—7J|V;(|2 dx—ggﬂv;dz dxj
Now let
<2
\N=%j|V;(|2 dx + ggj|v;(|2 dx (A.17)
to obtain

i%‘Q(t»:(ﬁ +g[J-Vydx-g[A-Vydk)jQ(t)) (A28

whichis(3.7) inthetext. Thiscompletesthe proof.
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