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Maxwell accounted for the apparent elastic behavior of

the electromagnetic field through augmenting Ampere’s law

by the so-called displacement current much in the same

way that he treated the viscoelasticity of gases. Original

Maxwell constitutive relations for both electrodynamics and

fluid dynamics were not material invariant, while combin-

ing Faraday’s law and the Lorentz force makes the first of

Maxwell’s equation material invariant. Later on, Oldroyd

showed how to make a viscoelastic constitutive law mate-

rial invariant. The main assumption was that the proper

description of a constitutive law must be material invariant.

Assuming that the electromagnetic field is a material field,

we show here that if the upper convected Oldroyd derivative

(related to Lie derivative) is used, the displacement current

becomes material invariant.
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The new formulation ensures that the equation for conser-

vation of charge is also material invariant which vindicates

the choice of Oldroyd derivative over the standard convec-

tive derivative. A material invariant field model is by ne-

cessity Galilean invariant. We call the material field (the

manifestation of which are the equations of electrodynam-

ics the metacontinuum), in order to distinguish it form the

standard material continua.

Keywords: Maxwell’s Electrodynamics, Material Invari-

ance, Oldroyd-Lie derivative

Introduction

“... according to the general theory of relativity space is
endowed with physical qualities; in this sense, therefore,
there exists an ether. According to the general theory
of relativity space without ether is unthinkable; ... ”. A.
Einstein [1, p.23]

The first attempt to explain the propagation of light as a field
phenomenon was by Cauchy circa 1827 (see the account in [2])
who postulated the existence of an elastic continuum, through
which light propagates as shear waves. Unfortunately, Cauchy’s
model of an elastic aether contradicted the natural perception of
a particle moving through the field. As a result, it did not receive
much attention and development because the notion of an elas-
tic liquid was not available at that time. Subsequently came the
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contributions of Faraday and Ampere which led to the formu-
lation of the electromagnetic model. The crucial advancement
was achieved, however, when Maxwell [3] added the term ∂E

∂t
in

Ampere’s law and named it the “displacement current”. It was
very similar to the nonlocal term in the constitutive relation for
gases [4] (see, also [5] for insightful review on viscoelastic mod-
els). We observe that the electric field vector is a clear analog
of the stress vector in continuum mechanics. One can say that
Maxwell enshrined an elastic constitutive relation by adding the
displacement current to Ampere’s law (more on this analogy can
be found in [6, 7]). Indeed, the new term transformed the sys-
tem of equations established in electrostatics into a hyperbolic
system with characteristic speeds of wave propagation similar
to the speed of sound in gases. Maxwell identified the char-
acteristic speed with the speed of light and paved the way to
understanding electromagnetic wave phenomena.

The advantage of Maxwell’s system over the proposal of
Cauchy was its intimate relation to the empirically observed
laws, such as Faraday’s, Ampere’s and Biot-Savart’s while the
approach of Cauchy seemed unrelated to those fundamental ob-
servable laws. The most valuable achievement of the new for-
mulation was deemed to be the fact that it allows one to derive
the continuity equation for the charge as a corollary (see, e.g.,
[8], [9, Ch.7]).

The most puzzling aspect of Maxwell’s model was its ap-
parent lack of Galilean invariance. This was an indication that
the linear form of Maxwell’s electrodynamics was somehow di-
vorced from the basic principles of mechanics, and continuum
mechanics, in particular. Consequently, the continuity equation
for the charge density was not Galilean invariant either, and it
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is usually augmented by the term ρv (see [8, 9]).
Instead of trying to apply the principles of material invari-

ance, scientific thought took another approach which assumed
that Maxwell’s equations were untouchable and in order to jus-
tify the lack of Galilean invariance of these equations, the elec-
tromagnetic field was decreed to be a field that is not a material
continuum but something else. As a result, electrodynamics was
exempted from the requirement to comply with the Galileo’s
principle of relativity.

The difficulties in establishing the full Galilean invariance lie
in the fact that the constitutive relations proposed by Maxwell
are not material invariant neither in theory of gases, nor in elec-
trodynamics. The invariance in fluids was remedied by Oldroyd
[10] who enunciated the principle of material invariance of a con-
stitutive law. At the same time, the similar issue in electrody-
namics is yet to be resolved. Unfortunately, the solution adopted
in the beginning of the Twentieth century was more like wishful
thinking rather than scientific approach. Because the Maxwell
equations did not look at first sight as material invariant, the
electromagnetic field was just exempted from the requirement to
behave as a material continuum. Thus, science ended up with a
concept of some kind of ghost field which was allowed to be ma-
terial when harmonic oscillations are considered (“luminiferous
aether”), and was deemed non-material when the invariance in
a moving frame is at issue. It seems important to derive a mate-
rial invariant formulation of the second of Maxwell’s equations
which will make the electromagnetic field a bona fide material
field with rheology paralleling that of elastic liquids. The present
paper is devoted to achieving this purpose.
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1. Invariance of Electrodynamics in Moving Frames

The easiest way out of the perceived non-invariance of the
electrodynamics was to enshrine a new principle, namely, that
electrodynamics is Lorentz invariant, rather than Galilean in-
variant. It was discovered that some vestiges from the missing
convective terms can be restored in the coordinate transforma-
tion, provided that time is no longer considered as an absolute
parameter. Instead it was stipulated that time in the mov-
ing frame (parametrized by x′ = (x − vt)/γ) transforms like
t′ = (t− vx)/γ, where γ is the Lorentz contraction factor. Such
a transformation leaves the form of the linear wave equations
for the potentials (Lorenz gauge) unchanged in a moving frame.
This brought into view the idea of invariance in space-time (see
the account in [11]) which is a different concept than the mate-
rial invariance in three dimensions.

The Lorentz invariance can be viewed as a “poor man’s ma-
terial invariance” in the sense that the assumption of relativity
of time (with mandatory time dilation) is a palliative solution to
the problems of Maxwell’s system in moving frames: a heuristic
approach that can restore some terms of the convective deriva-
tives. It is important to always keep in mind, however, that even
though it works as a temporary fix for rigid frames that move
translatory, the Lorentz invariance has not been and is impos-
sible to generalize to the case of generally moving deformable
frames. In this sense, it can never serve as a reliable substitute
to the general principle of material invariance.

Indeed, when trying to work out the notion of Lorentz in-
variance for the field vectors E,B, it turned out that additional
terms (forces) need to be added in the equations [12, 13]. This is
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nowadays called “Lorentz Covariance”, however, as mentioned
in [14], the terminology involving “covariance” and/or “invari-
ance” is quite often very loose. In Faraday’s law it was the
electromotive force that acts upon a moving electrical charge in
a magnetic field. Currently, it is called Lorentz force, because it
was Lorentz who added it to Faraday’s law as an integral part
of the latter [18].

The fact that incorporating the Lorentz force in Faraday’s
law makes the latter material invariant was spotted by many au-
thors (see, e.g., the authoritative monographs [8, pg.212-213],[12,
13]). To see this, we replace the electric field by the sum E′ =
E + v×B, and render Faraday’s law as

−∇×E′ =
∂B

∂t
+∇× (v ×B) =

∂B

∂t
+ v · ∇B, (1)

because ∇ ·B = 0. Consequently, the prime is omitted without
fear of confusion. Then, it is clear that in Eq. (1) we have exactly
the convective derivative of B. A similar situation one faces
in Maxwell-Cattaneo model of waves in heat conduction. The
importance of material derivatives for that problem is discussed
in [19].

Now, if Maxwell-Ampere equation is to be valid in a moving
frame, then B′ = B − c−2v × E has to replace the magnetic
field [12, 13]. However, as pointed out in [20], one cannot have
both additions simultaneously and the authors of [20] went on
to derive different Galilean limits (see also the recent work [21]).
We note here that in order to be consistent, however, the current
has to be simultaneously augmented in the same equation by the
convected part of the current, i.e. j ′ = j +ρv = j ′+ ε0(∇·E)v.
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Then

c2∇×B′ − j ′

ε0
=
∂E

∂t
+∇×E + v(∇·E) =

∂E

∂t
+ v · ∇E. (2)

The fact that terms added to the different Maxwell equations
are different and, in fact mutually exclusive, speaks volumes
about the insufficiency of the palliative solution called ”Lorentz
Covariance”. As no surprise to any student of continuum me-
chanics, we found that the proper acknowledgment of all rele-
vant terms in a moving frame, yields to the standard convective
derivatives. Thus, after a full cycle through artificial devices as
non-absolute time, the need of convective derivatives is affirmed.

Replacing the partial time derivatives in Maxwell’s equations
by convective time derivatives, was done at end of the Nine-
teenth century by Hertz, who regarded his formulation as an
explanation of electromagnetic phenomena inside material bod-
ies (see [15, Ch.14]). The fact that the Maxwell-Hertz equations
are Galilean invariant (and in fact, material invariant) is usu-
ally overlooked in the literature. Apparently, this point was
originally raised in [16], as reported in [17], where the case for
Galilean invariance is forcefully argued.

The Hertz equations, Eqs. (1), (2), are still not the desired
set of equations because one cannot derive from them an in-
variant equation for the conservation of charge. The way out
of this situation is to exploit the above stated analogy between
the second of Maxwell’s equations and a constitutive law. The
simplest constitutive laws, such as Hooke’s law in elasticity, and
the Navier–Stokes law for viscous liquids, establish pointwise
connections between the stress tensor, and the tensor of strains,
or rate of strains. Such constitutive laws are local and the ma-
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terial invariance is trivially established by the transformation
rule. It is quite different a situation when a constitutive law
involves time derivatives (relaxation of stresses or retardation
of strains). It is beyond doubt that a partial time derivative
is insufficient. It is interesting to note that employing a mere
convective derivative works perfectly for momentum equations,
but is not enough to make a constitutive law material invariant
(see [10]).

2. Invariant Time Derivative of a Vector Density

Directional and other invariant derivatives of tensors are in-
vestigated in numerous mathematical and physical works but in
order to make the paper self-contained and to clarify the physical
meaning, we present here the pertinent derivations and highlight
the concept of material invariance.

Consider a 3D space and a fixed system of coordinates, {xi},
in it. The fixed coordinate system can be assumed to be Carte-
sian without loosing the generality. Together with the fixed co-
ordinate system, consider a generally curvilinear moving coordi-
nate system, {x̄i}, that is embedded in the material continuum
occupying the geometrical space in the sense that coordinate
lines of the moving system consist always of the same material
particles. Then the transformation xj = f j(x̄i; t) presents the
law of motion of a material particle, parameterized by the co-
ordinate x̄i. Assume that at time t, the two coordinate systems
coincide. Then at time t + ∆t, the law of motion gives the in-
finitesimal transformation xj = x̄j +vj∆t, which can be resolved
for the material coordinates:

x̄i = xi − vi(xj)∆t, (3)
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where vi is the contravariant velocity vector.

∂x̄i

∂xj
= δi

j −∆t
∂vi

∂xj
+ o(∆t),

∂xj

∂x̄i
= δj

i + ∆t
∂vj

∂xi
+ o(∆t),

Let A represent some mechanical quantity, e.g. stress vector,
electric field, temperature flux, etc. For all these mechanical
characteristics, the actual observable is the following integral
(see, e.g. [25]) ∫

D

Ad3x =

∫
D̄

Adx̄, (4)

where D is the region occupied by the material parcel in the
initial moment t, and D̄ is the region occupied by the same
material points in the moment t+ dt (the deformed parcel).

The principle of material invariance requires that this inte-
gral be invariant under coordinate transformation, which means
that the vector A is a tensor density (or what is called “relative
tensor”). In component form, the integral in the left-hand side
can be rewritten as∫

D

A
kdx1dx2dx3 ≡

∫
D̄

∂x̄k

∂xj
JAjdx̄1dx̄2dx̄3,

where J is the Jacobian of the coordinate transformation,

J =

∣∣∣∣∂xi

∂x̄j

∣∣∣∣ = 1 + ∆t
∂v̄i

∂xi
+ o (∆t) , (5)

and A
k are the contravariant components of A. Being reminded

that D is an arbitrary region, one finds the transformation rule
for a vector density in contravariant components

Ā
k

= J
∂x̄k

∂xl
A

l, (6)
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where a summation is understood if an index appears once as a
superscript and once as a subscript.

Material invariance (see [10]) requires that in constitutive
laws, the total time variance of a tensor density,

dA
j

dt
= lim

∆t→0

Ā
j
(x̄k; t+ ∆t)− A

j(xk; t)

∆t
,

is used. Taylor series with Eq. (3) acknowledged, yields

Ā
j
(x̄k; t+ ∆t) = Ā

j
(xk; t) + ∆t

[
∂Ā

j

∂t
+ vl∂Ā

j

∂x̄l

]
+ o(∆t)

= Ā
j
(xk; t) + ∆t

[
∂Aj

∂t
+ vl∂A

j

∂xl

]
+ o(∆t),

where the fact is also acknowledged that at the moment t, vec-
tors A and Ā and their gradients coincide.

Now, the contravariant components A
k transform according

to the rule from Eq. (6), which gives

Ā
j
(xk; t) =

(
1 +

∂vi

∂xi
∆t

) (
A

j(xk)− ∂vk

∂xm
A

m(xk)∆t

)
(7)

= A
j(xk) +

∂vi

∂xi
A

j(xk)∆t− ∂vk

∂xm
A

m(xk)∆t+ o(∆t).

After making use of Eq.(5) and neglecting the higher order
terms in (∆t), Eq. (7) yields

dA
j

dt
def
= lim

∆t→∞

Ā
j
(xk)− A

j(xk)

∆t
=
∂Aj

∂t
+ LvA

j

=
∂Aj

∂t
+ vk ∂A

j

∂xk
− ∂vj

∂xm
A

m +
∂vi

∂xi
A

j (8)
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where Lv is the Lie derivative along the vector field vi (see [26]
for a mixed tensor density of arbitrary rank). The first term
in the invariant derivative (the partial time derivative) accounts
for the changes of the components as functions of time, and the
second term (the Lie derivative) represents the changes due to
the fact that the coordinate system and the associated basis are
also changing with time (being “convected” with the velocity
field). In abstract vector notations valid in any coordinate sys-
tem, the upper convected derivative of a vector density has the
form

dA

dt
=
∂A

∂t
+ v · ∇A−A · ∇v + (∇ · v)A. (9)

For a pointed exposition of different issues connected with in-
variant derivatives, we refer the reader to the recent article [27]
and the literature cited therein. What Oldroyd did, actually
amounted to taking the directional derivative of a contravari-
ant tensor density along the contravariant velocity vector of the
material point at which the constitutive relation was written,
which is a generalization of the advective part of the usual ma-
terial derivative.

Following the established terminology [28], we can call Eq. (9)
“the upper convected” material derivative of vector A. Note
that if A was not a tensor density, but an absolute tensor, then
the last term in Eq. (9) would be absent (see, also [27]). As
shown in [10], there is a difference in the material derivatives of
a contravariant and a covariant tensor, and the choice was left
open to additional mechanical considerations. In fact, this is a
much deeper question, and goes beyond the scope of the present
letter. The issues connected with the choice between the upper
convected and lower convected derivative are still debated in
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the literature and the verdict seems to be that the choice has to
be decided by the particular application. The upper convected
Oldroyd derivative appears to be relevant in most of the cases.
This means that the contravariant stress tensor must be used
in the constitutive relationships. We refer the reader to [28] for
details.

For the purpose of present work, it suffices to adopt the ar-
gument from [25], namely, that the electric field behaves as a
contravariant tensor density. Whether the covariant formulation
should be preferred over the contravariant one, must be decided
after comparing the different formulations with the known prop-
erties of the electromagnetic field. As shown later in this work,
the upper convected formulation fits precisely within the model,
explaining the continuity equation for the charge in a moving
frame while it can be demonstrated that the lower convected
derivative cannot accomplish this result.

3. Material Invariant Maxwell-Lorentz Electrody-
namics

In compressible fluid mechanics, if one neglects the convec-
tive part of the acceleration (accounting for the material invari-
ance) one gets a similarly linearized system for the propagation
of acoustic waves that is not Galilean invariant. Leaving intact
the advective terms shows that the original system is Galilean
invariant and that the speed of sound does not depend on the
velocity of the moving frame. The constancy of the character-
istic speed (light or sound alike) means that there is a medium
independent of the emitter and receivers of the waves and once
emitted, the phase speed of waves cannot be changed. The only
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thing that can be changed is the frequency because the next in-
finitesimally close moment of time the emitter (and/or receiver)
change their positions with respect to the absolute medium.

Guided by this analogy, we find that the way to naturally for-
mulate an electrodynamics that is invariant under the change to
another laboratory frame, is to replace the partial time deriva-
tive of Maxwell’s displacement current with the material invari-
ant time derivative. We propose that the Maxwell-Ampere law
be formulated as follows:

µ0ε0
dE

dt
= ∇×B − µ0j. (10)

Note that we use standard nomenclature to denote D = ε0E
and H = 1

µ0
B (in the absence of internal magnetic moments in

the field) which is the natural assumption en vacuo. Respec-
tively, E is the electric field, and B is the magnetic induction.
The speed of light is then given by c = (ε0µ0)

− 1
2 .

Finally, the material invariant formulation of the equations
of electrodynamics reads,

∂B

∂t
+ v ·∇B = −∇×E, (11)

∂E

∂t
+ v ·∇E −E ·∇v + (∇ · v)E = c2∇×B − j

ε0
. (12)

∇ ·B = 0. (13)

Note, that in Eq. (11), the invariance is ensured by the usual ma-
terial derivative, while Eq. (12) involves the Oldroyd upper con-
vected derivative. A similar situation is observed in viscoelastic
fluids, where the momentum equations involve the usual mate-
rial derivative, while the rheology is based on the upper con-
vected derivative.
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The formulation proposed here is also instrumental in deriv-
ing a material invariant continuity equation for the charge. To
see this we take the divergence of Eq. (12), and after the can-
cellation of similar terms (not possible in the case of the lower
convected derivative), we get

∇ · [Et + v · ∇E −E · ∇v + (∇ · v)E]

= (∇ ·E)t + v · ∇(∇ ·E) +∇v : ∇E −∇E : ∇v

−E · (∇ · v) + E · (∇ · v) + (∇ · v)(∇ ·E)

= (∇ ·E)t + v · ∇(∇ ·E) + (∇ · v)(∇ ·E)

= (∇ ·E)t +∇ · [(∇ ·E)(∇ · v)] = ε0
−1 [ρt +∇ · (ρv)] ,

where the last equality is obtained after the expression for charge
density, ρ = ε0∇·E, is substituted. Consequently, this gives the
following equation for the charge density

∂ρ

∂t
+∇ · (j + ρv) = 0, (14)

which is the accepted form of the continuity equation in a mov-
ing (laboratory) frame [9, 8]. While a naive approach to mate-
rial invariance would have been to take just the usual material
derivative, in doing so one would not obtain the proper equa-
tion of conservation of charge. Taking the full fledged invariant
derivative is the only way to make the full system of electrody-
namics material invariant.

It is clear that without the last term in Eq. (14), one can-
not explain any electromagnetic phenomena in a moving frame.
The main difference here is that we do not arbitrarily add the
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convective term. Rather, it appears as an integral part of the
model, just in the same way as the Lorentz force does.

In closing this section we mention that Eqs. (11), (12), (14)
are all Galilean invariant in the sense that when changing to
a frame moving with a constant velocity, V , the form of the
equations remains unchanged. Indeed, in a moving frame one
can introduce the new variables x̂ = x − V t, v̂ = v − V , ̂ =
j+ρV , and if ∇̂ is the nabla vector, and Ê and B̂ are the electric
field and magnetic induction in the new coordinates, then the
governing system has exactly the same form as Eqs. (11), (12),
(14), namely

∂B̂

∂t
+ v̂ · ∇̂B̂ = ∇̂ × Ê,

∂Ê

∂t
+ v̂ · ∇̂Ê − Ê · ∇̂v̂ + (∇̂ · v̂)Ê = c2∇̂ × B̂ − ̂

ε0
∂ρ

∂t
+ ∇̂ · (̂ + ρv̂) = 0.

(15)

One of the consequences of Galilean invariance is that the
speed of propagation of small disturbances (speed of light) will
be the same in any inertial frame. Hence, there is no need to
impose the absolutivity of the speed of light as an additional pos-
tulate. As well known from fluid mechanics, the characteristic
speed of small disturbances (e.g., sound) is an absolute property
of the medium and does not change in a moving frame. Conse-
quently, the material invariant electrodynamics formulated here
resembles the modern formulation of Maxwell’s theory of elastic
liquids.
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4. Observable Manifestations of Absolute Contin-
uum

4.1. Material Invariance and Doppler Effect

The fact that the electrodynamics can be material invariant
does not necessarily contradict the principle of relativity. In
fact the material invariance upholds the principle of relativity
as stated by Galileo, namely that the laws of nature will be
perceived in the same way (i.e., described by the same equa-
tions) by the observers in two different inertial moving frames.
This is exactly what reveals the juxtaposition of the system
Eqs. (11), (12), (13) and the system Eqs.(15). Unfortunately,
in the last hundred years, relativity and “Lorentz invariance of
electrodynamics” became synonymous which is clearly wrong.
Lorentz contraction is something very real and physical, while
an abstract principle that electrodynamics must be Lorentz in-
variant is hardly justifiable. Yet, for many practical proposes,
the predictions of what is called now “theory of relativity” will
still be applicable, especially where just the mere space con-
traction is the important effect. However, there will be many
disagreements, of course, especially when accelerating charges
are considered. The first principal disagreement to pop up is
the Doppler effect. In a material invariant electrodynamics, the
only Doppler effect is the classic one. There is no place for the
concept of relativistic Doppler effect (whatever it might mean),
because the absolutivity of the speed of light is an inherent fea-
ture of the model, hence, no need for “relativistic addition” of
velocities when considering the propagation of waves. The scale
factors for the relativistic, Rd, and classic, Cd, Doppler effects
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can be written as [29]

Rd =

√
1 + v/c

1− v/c
, Cd =

√
1− v2/c2, → Rd = Cd+O(v2/c2).

What kind of Doppler effect (classic or relativistic) is present
in Nature can be easily found experimentally using interplane-
tary spaceships because their velocity can be inferred by the rate
of change of their spatial position, while, on the other hand, the
Doppler shift is independently measured. If the formula for the
relativistic Doppler effect is wrong, then discrepancies between
the two kind of measurements of the speed of a craft must arise
that are of order of v2/c2. The superb measurements performed
by Pioneer 10 and 11 space probes can be used to this end.
There is an apparent blue shift of the Doppler data if compared
with the velocity as computed from the trajectory. The magni-
tude of the blue shift is of order of 10−8 = O(v2/c2) where v is
the relative velocity of the craft with respect to Earth (see [30]
and the works cited therein). This discrepancy is believed now
to have been caused by some kind of unexpected acceleration.
The latter is called “anomalous” because no cause can be iden-
tified for it coming into being. In our opinion, it is premature
to implicate an acceleration or any other physical effect for the
discrepancy. First, the results have to be reexamined using the
classic Doppler formula instead of the relativistic one as used
in the mentioned works. In fact, this idea was voiced out in
[31] who actually computed the difference of predictions based
on relativistic and classical Doppler effects and showed that this
disagreement is numerically very close to the alleged “anomaly”.
The detailed investigation of this matter is not possible without
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having the raw data and for this reason it is not done in the
present paper. Yet, the fact that the order of magnitude is so
close to the difference between the two Doppler formulas should
be given the proper consideration by the people who are in pos-
session of the raw data.

4.2. Wave Equation of Electrodynamics

Another important consequence of considering the electro-
dynamics as the manifestation of a material metacontinuum is
that the validity of Ohm’s law can be extended en vacuo. Just
as stresses can cause strain in a liquid, the electric field can cause
an intrinsic kind of current in the material points of metacontin-
uum. Ohm’s law can be assumed to be valid en vacuo, namely

j = σε0E, (16)

where σ is understood as properly scaled conductivity of the
medium. Substituting this expression in Eq. (12) gives

c2∇×B =
∂E

∂t
+v·∇E−E ·∇v+(∇·v)E+σE ≈ ∂E

∂t
+σE, (17)

where the nonlinear terms are neglected in the last term. Here is
to be mentioned that it is since long time accepted that Ohm’s
law, Eq. (16) should be valid en vacuo too, see, e.g. the au-
thoritative monograph [32]. In the framework of the present pa-
per, this conjecture finds its natural explanation, and now the
Maxwell electrodynamics becomes fully analogous to Maxwell’s
theory of viscoelastic gases with σ assuming the meaning of vis-
cosity coefficient. In other words, Eq. (17) is the constitutive
law for a viscoelastic fluid, if the electric fields is considered as
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the stress vector in the medium. It is quite straightforward to
change if need be to a stress tensor description [33, part II] in
order to make the analogy between the electrodynamics and the
viscoelastic fluids clearer.

The coefficient of viscosity of metacontinuum is much smaller
than the elasticity coefficient, This means that for fast oscilla-
tory motions the medium behaves almost as an elastic body
with very small energy lost due to small viscosity. In the other
extreme, when slow quasi-stationary loading is considered, the
time derivative vanishes and the rheological law Eq. (17) repre-
sents a liquid with very large viscosity c2/σ. Summarizing the
above statements, one can say that metacontinuum behaves like
a jello.

If the nonlinear terms are neglected, one can eliminate the
electric field between Eq. (11) and Eq. (17) to obtain the follow-
ing wave equation for the magnetic field (after acknowledging
the fact that ∇ ·B = 0)

∂2B

∂t2
+ γ

∂B

∂t
= c2∆B, (18)

where γ = σc2 has the meaning of attenuation coefficient. The
wave equation, Eq. (18), contains attenuation term γ∂tB. For
γ small but finite, the attenuation term can have a profound
impact on the propagation of the electromagnetic waves at long
times or large distances. Note that γ cannot be estimated from
the ubiquitous Ohm law for currents in matter because the no-
tion of charge has to be first introduced in order to find the
coefficient of proportionality.

One effect of attenuation will be that the distant stars appear
dimmer than they would have appeared if γ = 0. Consequently,
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the distances estimated on the base of luminosity would appear
larger than they are in reality. As a result of the overestimated
distances, the density (and the mass, for that matter) of the
Universe would appear much smaller than the projected mass
based on the orbital speeds of stars and the galaxies. A way out
of this situation is to assume the presence of dark matter [34].
From the point of view of the present work, the discrepancy
between the estimates for the mass of the Universe with and
without attenuation can be used to evaluate the attenuation
factor γ. The details are very elaborate and go beyond the
scope of the present work, but there are no principal difficulties
in doing this. The relationship between the actual distance, d,
and the distance d∗ as perceived under assumption that γ = 0,
is as follows

d∗ = de
γd
c . (19)

The number d̄ = c
γ

has the dimension of a distance. The value

of d̄ must be very large because γ � 1 and c � 1. When
the actual distance d ≈ d̄, the perceived distance d∗ will be
approximately three times larger. This will make the apparent
density of matter in a cube of length d̄ to appear e3 times smaller
than its actual value. Using this relation one can estimate the
order of magnitude of d̄ (or which is the same, γ.)

4.3. Motion with respect to Background Radiation

Galileo stated the principle that velocity of material objects
can only be relative. First Poincare and then Einstein attempted
to extend the validity of this principle to electrodynamics. Ac-
cording to Poincare, no mechanical or electromagnetic experi-
ment can discriminate between a state of uniform motion and a
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state of rest. Although most of the physicists of the 20th and
21st Centuries are infatuated with this statement, it might not
be true if a material medium exists in which the electromagnetic
phenomena take place. In other words, there exist experiments
that can tell if the laboratory frame is moving with respect to
the absolute continuum.

As argued above, Maxwell electrodynamics was actually made
partially material invariant when the Lorentz force was added,
and with the final touches concerned with the displacement cur-
rent presented here, it is fully material invariant. This means
that there must be a way to discover if the laboratory frame is
moving with respect to the absolute medium. And this is to ex-
amine the Doppler shift of the background microwave radiation.
If there is a difference in the redshift of the Cosmic Background
Microwave Radiation (CBMR) in different directions, then the
local frame is moving with respect to the absolute continuum
where the CBMR propagates.

The discovery that there is anisotropy of the Doppler shift
of the frequency of the cosmic blackbody radiation was made as
early as in 1976 in [35] and confirmed in 1977 in [36]. Since then
it has been verified many times (see [37]). The anisotropy of the
Doppler shift was clearly observed to follow cosine rule with axis
pointed approximately towards constellation Leo. The velocity
corresponding to this anisotropy placed at 270 ± 60km/sec in
[35], and at 390 ± 60km/sec in [36]. In the viewpoint of the
present paper, this must be the velocity of Earth with respect
to the metacontinuum at rest. The authors used a quotation
from Peebles to call this relative motion “new aether drift”. It
is symptomatic about the deep roots of the official dogma about
“relativity” that the authors were forced to use Aesop’s language
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instead of stating that these results clearly and unequivocally
reject the principle of relativity as enshrined by Poincare and
popularized by Einstein.

The proper conclusion of the cited works on the anisotropy
of the background radiation is that there is a way to tell if the
observer is in a moving frame or in a frame at rest.

It is easy to understand why Galileo’s principle of relativ-
ity is correct for point particles and incorrect for fields, such as
electromagnetic field. A particle (at least in Galilean-Newtonian
physics) does not have structure, while a wave has spatial struc-
ture and the changes in this spatial structure, e.g. Doppler shift
provides the necessary information about the underlying meta-
continuum, including an information about the state of motion
of the laboratory frame.

5. The Concept of a Wave-Particle

“Indeed, one of the most important of our funda-
mental assumptions must be that the ether not only
occupies all space between molecules, atoms or elec-
trons, but that it pervades all these particles. We
shall add the hypothesis that, though the particles
may move, the ether always remains at rest. We can
reconcile ourselves with this, at first sight, somewhat
startling idea, by thinking of the particles of matter
as of some local modification in the state of the ether.
These modifications may of course very well travel
onward while the volume-elements of the medium in
which they exist remain at rest.” H. A. Lorentz [18]

In our opinion, the only way to reconcile the absolute me-

c©2006 C. Roy Keys Inc. – http://redshift.vif.com



Apeiron, Vol. 13, No. 2, April 2006 151

dium (as testified by the absolute speed of propagation of shear
waves) and the relative motion of so-called particles is to un-
derstand the latter as phase patterns. Since the very notion of
a particle presumes a localization, we consider the localized de-
formation patterns of the metacontinuum to be the particles. It
is currently well known that in many continuous systems local-
ized waves behave as particles. These wave-particles are called
solitons. Soliton research has been the most rapidly growing sci-
entific field in the last couple of decades. We refer the reader to
the excellent review [38] and the extensive monographs on the
subject, e.g. [39]. The soliton presents an example of a moving
“modification of the state” of the absolute continuum. Solitons
can propagate while the material points of the metacontinuum
remain in the vicinity of their original positions. Solitons can
interact with each other upon their collisions and regain the orig-
inal form when they separate enough after the collision is over.
The quasi-particle behavior of solitons is now very well studied
and documented.

If we now call the localized waves “particles”, then the me-
dium in which they are propagating will appear as something
beyond the mere mechanics of the particle. For this reason we
use the coinage metacontinuum to designate the absolute me-
dium which is the carrier of all kind of waves and wave-particles
alike.

5.1. Localized Vortex Patterns in Metacontinuum

It is well known that the model of inviscid liquids admits
potential vortex solutions. The vortex flow is irrotational ex-
cept for the central point where a singularity is observed. In
fact when no interaction with the boundaries is presumed, the
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potential solutions exist even for the Navier-Stokes equations of
viscous liquids. The singularity cannot be removed in the model
of Newtonian liquids. Yet, point-vortex flow [40] is one of the
theoretically best studied solutions of classical hydrodynamics.
Lord Kelvin extended the idea of vortex structures to the al-
leged aether in an attempt to explain atoms. Our point of view
is that the vortices of the metacontinuum cannot account for all
observable phenomena associated with material particles. As
shown in [41] and [33, Part II], a fourth dimension is needed
in order to explain Schrödinger’s wave mechanics. At the same
time, the vortex is a perfect model of what is known as “electric
charge” because it possesses a topological charge (circulation).

To elucidate this concept we begin with the stationary case
in 2D when Eq. (18) reduces to a single scalar Laplace equation
for the third component of the magnetic field, say ψ = Bz,
namely

∆ψ = 0.

In the case of polar symmetry ψ = F (r), where r =
√
x2 + y2,

and then F (r) = ln (r) . For the velocity components, we have
the following expressions

vx =
y

r2
, vy = − x

r2
. (20)

The vector field generated by Eq. (20) is shown in Fig. 1(a). This
is the well known potential vortex in 2D fluid dynamics. (see,
e.g., [32, Ch.IX]). The topological charge of the vortex solution
is defined as the integral over a closed curve C

Γ =

∮
C

vds =

∮
C

[uxdx+ uydy],
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where ds is the elementary arc length along the curve C and the
quantity Γ is the circulation. If we consider now the vortex of
the metacontinuum as the electric charge, then the quantitative
value of its charge is given by the circulation Γ (the topological
charge). Thompson’s theorem (see [40, 32]) asserts that in an
inviscid liquid the circulation is conserved, i.e., Γ = const, which
gives in our model the conservation of charge.

Some deviation from Thompson’s theorem is expected be-
cause of the additional acceleration in the Maxwell rheological
law. However, the stationary propagating vortices should not
be affected by it.

5.2. Effect of Rectilinear Motion on Localized Phase Pat-
terns: Lorentz Contraction

The soliton-like vortex solution from the previous subsection
is a kind of torsional dislocation. The material points of the
metacontinuum may move continuously like in the above con-
sidered vortex, while the phase pattern is completely at rest.
If we consider now the patterns to be the particles, then we
must realize that the laws of motion for the center of a localized
pattern will appear on macro scale as the laws of motion for a
point-particle.

Should the above described “dislocation” be allowed to move,
it would not “plow” through the material points of the contin-
uum. Instead, it would propagate as a phase pattern, in much
the same way a wave propagates over the water surface. The
concept that the charge is a phase pattern removes the most
substantial objection against the elastic model of the electro-
magnetic field, namely, that it is too dense for the particles and
charges to move through. Also, no “ether wind” is supposed to
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trail a propagating dislocation. Such a dislocation does not in-
troduce a further disturbance in the metacontinuum apart from
the velocity field of the pattern itself.

Consider now a solution for v which is almost stationary
(slowly evolving) in a moving frame. Consider for definiteness
the frame moving in the y-direction with phase speed cy. Intro-
ducing a local spatial variable η = y − cyt and neglecting the
local time derivatives in the moving frame, one gets

∂ψ

∂t
= −cy

∂ψ

∂η
,

∂2ψ

∂t2
= c2y

∂2ψ

∂η2
. (21)

and the Laplace equation ∆ψ = 0 recasts to

∂2ψ

∂x2
+ (1− c2y)

∂2ψ

∂η2
= 0, ⇒ 1

z

∂

∂z

(
z
∂ψ

∂z

)
= 0, (22)

where z ≡
√
x2 + η2(1− c2y)

−1. The solution of Eq. (22) is once

again ψ = ln z.
The isolines of ψ are now ellipses that appear contracted

in the direction of motion by the Lorentz factor as shown in
Fig. 1(b).

Comparison of the two panels of Fig. 1 hints at an analogy
between the contraction of the localized wave to the Doppler
shortening of harmonic waves ahead of a moving source. Con-
sidering the localized wave as a quasi-particle (wave-particle)
we conclude that Lorentz Contraction is the Doppler Effect for
Wave-Particles.

In closing this section, we stress the point that the Galilean
invariance of motion inside the metacontinuum reflects its ab-
solute nature, but it does not precludes the wave-particles from
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Figure 1. Localized torsional dislocation in two dimensions for two different

phase velocities of propagation. Left panel: cx = 0, cy = 0. Right panel:

cx = 0, cy = 0.8

behaving in a more relativistic fashion because they are phase
patterns, or “quasi-particles”. This could be the resolution of
long the standing paradox pointed out by Einstein [42, p.21]
that one cannot rationally reconcile the absolute speed of light
with the apparent relativity of rectilinear motion.

Clearly, the wave-particles are subject to Lorentz contrac-
tion, and so are the interparticle forces as a result of the Doppler
effect of the waves which are transmitting the long-range inter-
actions. This means that a body of charged wave-particles held
together by the internal stresses of the metacontinuum (electro-
magnetic forces) would become shorter in the direction of motion
(better said: “direction of propagation”). This means that the
Doppler effect and the Lorentz contraction will cancel each other
in any interferometry experiment using a split beam and closed
light path. If one assumes the presence of an absolute contin-
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uum, then the only strict result from the Michelson and Morley
experiment must be the nil effect. In other words, the nil effect
of the Michelson and Morley experiment can be considered as a
strong indication of the existence of an absolute continuum for
which the point particles are in fact a coarse-grain description
of localized waves.

The above statement is about an idealized version of the
Michelson experiment in vacuum and without acknowledging
Earth’s rotation in the sense that not finding an effect corre-
sponding to 30km/sec (or higher) is considered in first approxi-
mation as nil effect and supports the assumption of an absolute
continuum whose particles (solitons) are contracted in the same
fashion as the wave length of a harmonic wave. A most in-
teresting discussion can be found in [22, 23] where the data of
Michelson, Morley and Miller is thoroughly reexamined and the
slight deviations from the nil effect are ingeniously interpreted
to be connected with the speed with respect to the absolute con-
tinuum. As a result the speed of Earth with respect to the abso-
lute medium is placed at 420± 30km/sec which is in very good
quantitative agreement with the CBMR analysis. The small dif-
ference are attributed in [22, 23] to gravitation effects which is
fully compatible with the theory of metacontinuum presented
here. It is only natural that gravitation can have effect on the
speed of light in the metacontinuum.‘

6. Conclusions

In the present paper, it is argued that the partial time deriva-
tive of the electric field representing Maxwell’s displacement cur-
rent can be replaced by a material invariant time derivative in
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the same vein as in Oldroyd’s [10] reformulation of the constitu-
tive relations for viscoelastic liquids. It is shown that together
with the Lorentz force in Faraday’s law, the new formulation is
material invariant. From this invariant formulation, the conti-
nuity equation for the conservation of electric charge is shown
to be also invariant.

The material invariance of electrodynamics suggests that
there is a material medium (called here the metacontinuum in
which electromagnetic processes take place. The rheology of the
medium is that of a viscoelastic liquid with the displacement
current representing the elastic part of the constitutive relation,
and Ohm’s law representing the viscous part. The material in-
variance of the model requires that the characteristic speed of
propagation of small disturbances (speed of light) is constant
which does not depend the velocity of the moving frame, i.e.,
there is no need to impose the absolutivity of the speed of light
as an additional principle. It is an innate feature of material
invariant electrodynamics.

The most important consequence of the material invariance
of the electrodynamics is that a principle of relativity holds in
the sense that the electromagnetic processes will appear in the
same form to two different observers in two different inertial
frames without the need of transforming the time variable. How-
ever, the Poincare formulation of the principle of relativity does
not hold because there exists a way to identify the rectilinear
motion of the moving frame.

It is proposed to consider the charges as localized waves (soli-
tons) of the field which explains why the absolute continuum
is not entrained by the moving particles; they are propagating
phase patterns.
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As a result, a consistent picture of electrodynamics emerges
that is based on the absolutivity of the material field which is
the carrier of the electromagnetic interactions and on the rela-
tivity of the motion of the centers of the wave-particles when
considered as point particles.
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