
 Apeiron, Vol. 13, No. 1, January 2006 118 

© 2006 C. Roy Keys Inc. — http://redshift.vif.com 

The Sliding Rods Paradox 

José Luis Junquera Fernández-Díez 
C/Pablo Alcover 84 3º 
08017 BARCELONA 
SPAIN 606998826 
E-mail: jljunquera@elisava.es 

This paper sets out a kinematic analysis of the precession 
movements and explains a paradoxical situation in the theory 
of relativity. This study is made within the framework of 
special relativity and using a simple methodology, without 
reference to the POLT decomposition theorem. 
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1. Introduction 
All the issues raised in this paper are based on the study of one 
kinematic difficulty caused by the “phase difference” term vX/c2 in 
the 4th Lorentz Transformation Equation [1][7]. We apply the 
premises of special relativity to the vertical movement of a horizontal 
segment AB that remains parallel at all times to the X axis of an 
inertial reference frame S(X,Y;T). We will assume that S(X,Y;T) 
moves at a constant velocity (v,0) relative to the x axis of a reference 
frame s(x,y;t), keeping the xX and yY axes parallel, respectively (fig. 
1), so that the origins of the two systems coincide at the instant 
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t = T = 0. Throughout this paper we will refer to the two inertial 
frames “s” and “S,” assuming at all times that one is moving relative 
to the other under the kinematic conditions that we have just set out, 
even though we do not expressly mention this circumstance in each 
specific instance. 
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Fig 1: Horizontal segment AB moves vertically at a constant velocity U in 
S(X,Y;T). 

2. Slope deflection 
Taking X(A) = 0, the notation of the space-time co-ordinates in 
S(X,Y;T) for describing events corresponding to the arrival of the ends 
A(0,Y) and B(L,Y) of the segment AB at any height Y will be: 

Arrival of A at height Y in “S”: (0, Y; T(A)) 
Arrival of B at height Y in “S”: (L, Y; T(A))     (BS) 
Applying the Lorentz transformations in their homogeneous form, 

we obtain, in the system s(x,y;t): 
Arrival of A at height Y in “s”: (γvT(A),           Y;   γT(A)) 
Arrival of B at height Y in “s”:  (γ(L + vT(A)),  Y;  γ(T(A) + vL/c2)))  

 2 2/c c vγ = −  
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It is to be noted that the values of height Y for the ends A and B, 
observed from s(x,y;t), are not reached simultaneously: 
 ( ) ( )t A T Aγ=  

 2( ) ( ( ) )vLt B T A
c

γ= +  

These times coincide only where the reference frame “S” is not in 
motion relative to the reference “s.” Thus, segment AB is seen to be 
inclined in the reference frame s(x,y;t), since the right end B of the 
segment takes longer to reach any height y = Y than end A. 

If we substitute the inverse of the time transformation T = γ(t –
 vx/c2) in the expression Y = UT and we use the relation y = Y, we 
find that: 

 2( )vxy U t
c

γ= −  (yxt) 

which is the linear equation corresponding to the sloping straight line 
of the segment AB in the reference frame s(x,y;t). We note that this 
straight line rises in the vertical direction “y” at a constant velocity 
Uγ,  and that the slope m = –Uγv/c2 in respect of the “x” axis depends 
on the relative velocity v between the reference frames “s” and “S” 
and on the velocity U of vertical ascent in S(X,Y;T). Thus, for each 
pair of values for U and v we will have a different value for the slope 
m of the segment AB seen from s(x,y;t). 
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Fig 2: Deflection diagram of inclination: in s(x,y;t) the segment 
AB is inclined with a slope –Uγv/c2 and rises in s(x,y;t) at a 
constant velocity γU because the condition y = Uγ(t – vx/c2) is 
fulfilled. 

Consequently, the inclination m observed from “s” will vary and 
create an effect of rotation or “precession” in respect of the axes of 
the reference frame s(x,y;t), if: 

dU/dt is not equal to 0 
dv/dt is not equal to 0 

so that if the moving reference frame S(X,Y;T) or the horizontal 
segment rising vertically in S(X,Y;T) are accelerated, the observer in 
the reference frame s(x,y;t) will observe the segment rising and at the 
same time changing its orientation in the plane xy in accordance with 
a specific value of angular velocity wp. 
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3. Thomas precession 
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Fig 3: Thomas precession: we assume that the horizontal 
segment AB moves vertically with constant acceleration E 
and velocity U in S(X,Y;T). At instant T = 0 we find that 
U = Y = 0. 

In the specific case in which the horizontal segment rises with 
constant vertical acceleration E and therefore dU/dt is not equal to 
zero, it is relatively simple to calculate the angular velocity of 
precession [6]. If we assume that at instant T = 0 we have that 
U = Y = 0, then we can apply the formulation of uniformly 
accelerated movement Y = ET 2/2 and U = ET to obtain: 

 
2

UTY =   

Replacing T with its relativistic transformation T = γ(t – vx/c2) and 
Y with Y = y, we have that y = Uγ(t – vx/c2)/2. The coefficient by 
which x is multiplied is the inclination of the segment AB in “s” and 
its value is m = –Uγv/2c2. If we calculate the time derivative dm/dt 
and the angle approaches the tangent, we find that the angular 
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velocity of precession is wp = dm/dt = –γv(dU/dt)/2c2. In turn, dU/dt 
= dU/dT/dt/dT = E/γ(1 + vUx/c2) and we have: 

 22( )p
x

vEw
c vU

= −
+

 (w) 

with: Ux horizontal component of the velocity of the segment AB in 
S(X,Y;T) 

As we know that the horizontal segment AB has no horizontal 
motion in “S”, Ux(AB) = 0: 

 2( )
2p
vEw AB
c

= −  (wAB) 

or in vector form ([2], [3], [4], [5], [6]): 

 2( )
2p

E vw AB
c
×

=  
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Fig 4: Thomas precession: the straight line containing segment AB in Fig. 3 
moves in s(x,y;t) like a boomerang: point I moves vertically at velocity γU/2 and the 
rest of the points of the line IAB turn clockwise relative to I with a precession 
velocity wp

AB = –vE/2c2. If the segment AB were to move in the direction of the X 
axis in “S,” its precession velocity wp in “s” would be different. 
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Therefore, whenever we have a horizontal segment, rod or vector 
AB with uniform acceleration perpendicular to the motion of an 
inertial reference frame that in turn moves with uniform velocity v 
relative to another inertial reference frame, we will find the precession 
effect [6] that we have just seen and that Llewellyn Hilleth Thomas 
described for the first time in 1926 [5]. 

4. The sliding rods paradox 
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Fig 5: Sliding rods paradox: we assume that: 1) horizontal segment 
AB rises in S(X,Y;T) with constant acceleration E and velocity U. 2) 
segment HJ rises in S(X,Y;T) with constant acceleration E, velocity U 
and horizontal component Ux. 

Returning to the case of the horizontal rod AB moving vertically in 
S with velocity U and acceleration E, if another horizontal rod HJ 
moves to the left along the horizontal segment AB without 
breaking contact with it at any time along its full length, it will 
move with a horizontal velocity component –Ux(HJ) in S(X,Y;T) 
(see Fig. 5) and will therefore turn in s(x,y;t) in accordance with 
(w) at an angular velocity of precession different from that of the 
rod AB (see Fig. 6): 
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 2( )
2( ( ))p

x

vEw HJ
c vU HJ

= −
−

 (wHJ) 

This is truly paradoxical, since in this case in s(x,y;t) we will 
necessarily observe that the rods AB and HJ lose contact with each 
other due to the fact that they turn in the plane of xy with a different 
angular velocity of precession value wp (see Fig. 6) according to the 
equations (wAB) and (wHJ). How can this be true if both rise in “S” 
at the same velocity U and therefore the slope in “s” of the two rods in 
both cases is m = –Uγv/2c2? 
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Fig 6: Sliding rods paradox: in s(x,y;t) the two rods AB and HJ in Fig. 5 turn 
at different precession velocities wp = –vE/2(c2-vUx) because they have 
different horizontal velocities Ux in “S”; on the other hand, inclination m = –
Uγv2/c2 is the same, since AB and HJ have the same vertical velocity U in “S.” 
This situation is obviously inconsistent. Furthermore, it is impossible for the two 
rods to be in contact in “S” and lose contact in “s.” 
For example, let us assume that the current circulating in a straight 

horizontal conductor is equivalent to an electrically charged rod 
moving through the conductor. If the horizontal conductor accelerates 
vertically up the Y axis and remains parallel at all times to the X axis, 
the charge circulating through the conductor turns in the xy plane at a 
different precession velocity from the conductor containing the 
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charge, which is wholly unsustainable, since in that case the charged 
rod and the conductor carrying the charge would lose contact with 
each other. It seems clear that both the conductor and the charge that 
it carries must conserve the same direction at all times, and 
furthermore that the contact between them must be considered an 
“absolute” reality in any inertial system taken as the reference. 

Let us examine another example: 
A spaceship S(X,Y;T) moves at a constant velocity (v,0) in the 

positive direction of the x axis of a space station s(x,y;t), maintaining 
its orientation so that the axes x,y are always parallel to the X,Y axes 
respectively (see Fig. 7). Inside the spaceship S(X,Y;T) there is a lift 
moving vertically with velocity (0,U) and acceleration (0,E) in the 
positive direction of the Y axis of the spaceship. On the floor of the lift 
there is a worm, G, moving to the left at a constant velocity UG, so its 
velocity relative to the spaceship is (–UG,U). 

 
Fig. 7: Diagram of the “worm” paradox. The worm G 
behaves like a rod moving along another rod that is part 
of the floor of the lift. In this case, the sliding rods 
paradox is fulfilled. 

The lift (segment AB) and the worm G (segment HJ) are observed 
from s(x,y;t) to turn with different precession angular velocities. 
Consequently, once again we encounter a contradictory situation: the 
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worm loses contact with the floor of the lift in “s” since it has a 
different precession angular velocity. 

The difficulty here is caused by the term vX/c2 of the time 
transformation, which makes the precession velocity wp dependent 
upon the horizontal component Ux of the velocity in “S.” 

5. Conclusion 
We can calculate the frequency of the Thomas precession wp in 
s(x,y;t) and apply it to the two horizontal rods AB and HJ that 
remain in contact at all times throughout their full length, sliding 
along each other and moving vertically with the same vertical 
acceleration component E in the reference frame S(X,Y;T). We 
would expect the values of wp to be equal, so that, observed from 
the stationary reference frame s(x,y;t), the contact between the two 
rods would not be lost. However, this is not the case and we then 
come to a totally inconsistent situation (Section 4: the sliding rods 
paradox). 

This is caused by the term vX/c2 of the time transformation, which 
makes the precession velocity wp dependent on the component Ux. 
References 
[1] A. Einstein, “Zur Elektrodynamik bewegter Körper,” Annalen der Physik 17 

(1905) 891 (spanish version : “Sobre la electrodinámica de los cuerpos en 
movimiento,” en Cien años de Relatividad,” editorial Nivola, Madrid, 2005, 
traducción de A. Ruíz de Elvira). 

[2] Ives Pierseux, “The fine structure of special relativity and the Thomas 
precession,” Annales de la Foundation Louis de Broglie, Volume 29 Nº 1-2, 
2004. 

[3] L.H. Thomas “The motion of the spinning electron,” Nature, Nº 2945, Vol 
117, April 1926. 

[4] L.H. Thomas “The kinematic of the electron with an axis” , Phil. Mag. S.7., 
Nº 13, Jan 1927. 



 Apeiron, Vol. 13, No. 1, January 2006 128 

© 2006 C. Roy Keys Inc. — http://redshift.vif.com 

[5] “The Llewellyn Hilleth Thomas Papers,” Manuscript Collection 210 Special 
Collections Research Centre North Carolina State University Libraries. 

[6] Herbert Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 
1980 (Section 7.2, equation (7.39’)). 

[7] Ronald R. Hatch, “Clocks and the Equivalence Principle”; Foundations of 
Physics, November 2004. 


