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The design of electromagnetic systems using methods of 
optimization have been carried out with deterministic 
methods.  However, these methods are not efficient, because 
the object functions obtained from electromagnetic 
optimization problems are often highly non-linear, stiff, multi-
extreme and non-differential.  The lack of a single method 
available to deal with multidimensional problems, including 
those with several goals to optimize, has generated the need to 
use numerical processes for optimization.  This paper presents 
a method of global optimization based on genetic algorithms.  
The Genetic Algorithms are a versatile tool, which can be 
applied as a global optimization method to problems of 
electromagnetic engineering, because they are easy to 
implement to non-differentiable functions and discrete search 
spaces. It is also shown how, in some cases, genetic 
algorithms have been applied with success in electromagnetic 
problems, such as antenna design, far-field prediction, 
absorber coatings design, etc. 
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Introduction 
For three decades, many mathematical programming methods have 
been developed to solve optimization problems. However, until now, 
there has not been a single totally efficient and robust method to cover 
all optimization problems that arise in the different engineering fields.  
Most engineering application design problems involve the choice of 
design variable values that better describe the behavior of a system. 
At the same time, those results should cover the requirements and 
specifications imposed by the norms for that system. This last 
condition leads to predicting what the entrance parameter values 
should be whose design results comply with the norms and also 
present good performance, which describes the inverse problem. 

Generally, in design problems the variables are discreet from the 
mathematical point of view. However, most mathematical 
optimization applications are focused and developed for continuous 
variables. Presently, there are many research articles about 
optimization methods; the typical ones are based on calculus, 
numerical methods, and random methods. The calculus based 
methods have been intensely studied and are subdivided in two main 
classes: 1) the direct search methods find a local maximum moving 
on a function over the relative local gradient directions and 2) the 
indirect methods usually find the local ends solving a set of non-linear 
equations, resultant of equaling the gradient from the object function 
to zero, i.e., by means of multidimensional generalization of the 
notion of the function’s extreme points from elementary calculus give 
a smooth function without restrictions to find a possible maximum 
which is to be restricted to those points whose slope is zero in all 
directions. Both methods have been improved and extended, however 
they lack robustness for two main reasons: 1) they have a local focus, 
since they seek the maximum in the analyzed point neighborhoods; 2) 
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they depend on the existence of their derivative, which many spaces 
of practical parameters respect little the notion of having derivatives 
and smoothness. The real world has many discontinuities and noisy 
spaces, which is why it is not surprising that the methods depending 
upon the restrictive requirements of continuity and existence of a 
derivative are unsuitable for all, but a very limited problem domain. A 
number of schemes have been applied in many forms and sizes. The 
idea is quite direct inside a finite search space or a discrete infinite 
search space, where the algorithms can locate the object function 
values in each space point one at a time. The simplicity of this kind of 
algorithm is very attractive when the numbers of possibilities are very 
small. Nevertheless, these outlines are often inefficient, since they do 
not complete the requirements of robustness in big or highly 
dimensional spaces, making it quite a hard task to find the optimal 
values. Given the shortcomings of the calculus based techniques and 
the numerical ones the random methods have increased their 
popularity. 

The methods of random search are known as evolutionary 
algorithms. The evolutionary techniques are parallel and globally 
robust optimization methods. They are based on the principles of 
natural selection of Darwin [5] and the genetic theory of the natural 
selection of R.A. Fisher [7]. The application of evolutionary 
techniques as abstractions of the natural evolution has been broadly 
proven [3]. In general, all recursive approaches based on population, 
which use selection and random variation to generate new solutions, 
can be seen as evolutionary techniques. Indeed, the study of non-
linear problems using mathematical programming methods that can 
handle global optimization problems effectively is of considerable 
interest.  Genetic Algorithms is one such method which has been a 
subject of discussion by [21], [22], [23] and [24] 
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The genetic algorithm is an example of a search procedure that 
uses random selection for optimization of a function by means of the 
parameters space coding. The genetic algorithms were developed by 
Holland [10] and the most popular references are perhaps Goldberg 
[8] and a more recent one by Bäck [1]. The genetic algorithms have 
been proven successful for robust searches in complex spaces. Some 
papers and dissertations, like [3], state the validity of the technique in 
applications of optimization and robust search, crediting the genetic 
algorithms as efficient and effective in the approach for the search.  
For these reasons Genetic Algorithms are broadly used in daily 
activities, as much in scientific applications as in business and 
engineering circles. It is necessary to emphasize that genetic 
algorithms are not limited to the search space (relative aspects to the 
continuity and derivatives existence among other properties). Besides, 
genetic algorithms are simple and extremely capable in their task of 
searching for the objective improvement. 

The Genetic Algorithms 
The genetic algorithms (G.A.) are typically characterized by the 
following aspects: 
• The G.A. work with the base in the code of the variables group 

(artificial genetic strings) and not with the variables in 
themselves. 

• The G.A. work with a set of potential solutions (population) 
instead of trying to improve a single solution. 

• The G.A. do not use information obtained directly from the 
object function, of its derivatives, or of any other auxiliary 
knowledge of the same one. 

• The G.A. apply probabilistic transition rules, not deterministic 
rules. 
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The genetic algorithm process is quite simple; it only involves a 
copy string, partial string exchanges or a string mutation, all these in 
random form. 

The fundamental theorem of genetic algorithms 
A genetic algorithm is constructed by stochastic operators, and its 
robust search ability is based on the theorem depicted in [8], which 
states, "short schemata of low order with aptitude above average, 
exponentially increase its number by generations ", this is: 

 ( ) ( ) ( ) ( ) ( )f
m , 1 m , 1 O
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H H
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f l
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where m(H,t+1) and m(H,t) are the schemata number H  in the 
generation t+1 and t respectively, f(H) is the average aptitude value of 
the strings that is included on the schemata H, favg is the total 
population's average aptitude value, l  is the total string length, δ(H) is 
the schemata length from H, O(H) is the schemata order from H, pc is 
the crossover probability and pm is the mutation probability. 

Genetic Algorithm Operators 
As shown above, a basic genetic algorithm that can produce 
acceptable results in many practical problems is composed of three 
operators: 
• Reproduction 
• Crossover 
• Mutation 

The reproduction process goal is to allow the genetic information, 
stored in the good fitness artificial strings, survive the next generation. 
The typical case is where the population's string has assigned a value 
according to its aptitude in the object function. This value has the 
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probability of being chosen as the parent in the reproduction process 
of a new generation. 

The crossover is a process by which a string is divided into 
segments, which are exchanged with the segments corresponding to 
another string. With these process two new strings different to those 
that produced them are generated. It is necessary to clarify that the 
choice of strings crossed inside those that were chosen previously in 
the reproduction process is random. From the point of view of 
problem optimization, it is equal to the exploitation of an area of the 
parameters space. The following outline shows the crossover process: 

 

1 1crossover

2 2

     Before crossover           After crossover
  crossover point  
string A 101001 01 101001 00 string A
string A 111100 00 111100 01 string A

↓
′⎫ ⎧

⎯⎯⎯⎯→⎬ ⎨ ′⎭ ⎩

 

the strings 1A′and 2A′  are part of the new generation. 
As with biological systems the mutation is manifested with a small 

change in the genetic string of the individuals. In the case of artificial 
genetic strings, the mutation is equal to a change in the elementary 
portion (allele) of the individuals’ code. The mutation takes place 
with characteristics different to those that the individuals had at the 
beginning, characteristics that didn't possibly exist in the population. 
From the point of view of problem optimization, it is equal to a 
change of the search area in the parameters space. The above 
mentioned is illustrated with the following outline: 

 

} {mutation
1 1

 Before mutation         After mutation
                mutation point
string A 10100101 11100101 string A

↓

′⎯⎯⎯⎯→

 

the string 1A′  belongs to the new generation. 
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The genetic algorithms seek their goal recurrently (by generation), 
evaluating each individual's aptitude in the object function which is in 
fact the optimization approach. 

The Object Function 
Frequently design problems have to comply with norms or practical 
constraints that either optimize cost or design performance. In 
general, they should cover goals for good global performance. These 
goals do not always match, i.e., while one goal requires the maximum 
of a parameter, another goal requires the same parameter to be as 
small as possible. Optimization goals can be expressed in a more 
dependent mathematical relationship form of a parameter group or 
design variables of which these parameters in turn can be constraints 
to interval values. The mathematical expression that represents the 
optimization goal is commonly known as the "object function". 

The code and decode 
As indicated before, the essential characteristic of genetic algorithms 
is the coding of the variables that describe the problem. The common 
coding method is to transform the variables to specific length binary 
strings. For a problem depending on more than one variable the 
coding involves linking with each variable code. The code length 
depends on the rank of the variables and the precision required by the 
problem. 

If a design variable requires a precision Ac then the number of 
binary digits in the binary string can be estimated with the following 
equation: 

 2
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where XU and XL are the upper and lower bounds of the continuous 
variable X. It is advisable to adapt the precision to the problem, 
because the search process can be faulty when more precision by a 
longer string is required. 

The decoding is basically carried out for the evaluation of the 
population's individual in the object function and it is applied to the 
population's members. 

Selection Strategies 
At first the genetic algorithms generate random strings for the 
solution population. The following generation is developed by 
applying the genetic operators: reproduction, crossover and mutation. 
The new generation is evolved based on each individual's 
probabilities assigned by its object function fitness; i.e., for poor 
object function fitness values there are few probabilities for surviving 
the next generation. In this way, the generations are engendered with 
the strings or individuals that improve the function objective fitness 
value. Those that do not cover these conditions disappear completely. 

The reproduction is in essence a selection process. The good 
known selection outlines are: the proportional schema, or group one. 
The process of proportional selection assigns a reproduction range 
according to the fitness value to each individual. In the group 
selection process, the population is divided into groups according to 
their fitness value; where each group member will have the same 
reproduction value. 

For instance, the proportional selection could be expressed 
mathematically in the following way: 

 i
i

j

fP
f

=
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where Pi is the selection probability, fi is the aptitude of the i-th 
individual or string and Σfi  is the sum of the population's fitness. 
Another form is to use the reciprocal of the object function to obtain 
the gross fitness f, i.e.: 

 1f
FO

=  (4) 

where FO is the object function value for the i-th string. 
On the other hand, for the purpose of giving the most opportunity 

to the genetic algorithm of exploring the whole search space, the 
creation of the first generation should be as diverse as possible and 
should stay this way at least during the first generation. In a case 
where a string or individual has a high fitness value inside the initial 
generation, the individual could dominate the population. Scaling the 
fitness value is a form of avoiding dominance, individuals with more 
fitness are scaled down and those with smaller fitness are scaled up, 
this way the selection process can be more random. 

The fitness linear scaling requires a lineal relationship between the 
scaled fitness fi’ and the gross fitness f, i.e.: 
 if af b′= +  (5) 
the coefficients a and b can be chosen in several ways, however in all 
cases the scaled average fitness f’avg is required to be similar to the 
average gross fitness favg because the recurrent use of this selection 
process will assure average contributions by the population's 
members with at least one offspring for the next generation. 

Genetic algorithm basic parameters 
The convergence of the genetic algorithms to an acceptable solution 
depends on its basic parameter values (reproduction, crossover, 
mutation, selection and population) which to find a relationship 
among them to maintain search robustness has been the subject of 
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diverse studies [4], [6] and [11]. These studies have focused on the 
relationship between the mutation values and convergence; to the 
relationship between the population's size and the crossover 
probability values, respectively; and to the relationship among good 
population's size, crossover probability and selection.  These studies 
have also focused on specific simplified problems, therefore not 
making it possible to use the results in practical problems. For the 
above-mentioned reasons it is necessary to carry out convergence 
tests with varying values, taking into account that the population's 
size, the mutation probability and the crossover probability are related 
for the determination of the best control parameters values. An 
appropriate approach [9] to begin a search is to consider population 
size between 30 and 50 individuals, a crossover probability of about 
0.6 and a smaller mutation probability of about 0.01. 

Applications 
The optimizations in electromagnetic problems often involve many 
parameters in which the parameters may be discrete. For instance, a 
low side-lobes optimization of elements non-equidistantly spaced on 
a long array antenna, when the excitation and phase have quantized 
values. Although the number of possibilities in the search space is 
finite an exhaustive search is not practical [12] and [13]. The radiation 
pattern generated by an array antenna [12], is given by: 

 ( )
1 1

2sin cos 2 cos
elN n

m l
n m

AF k d dφ φ φ
= =

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ∑  (6) 

where dl/2 is the distance from the element l  to the physical center of 
the array, dm is the space between the element m-1 and element m. 
The distance of the element m  to the center of the array is given by: 

( )1

1
2n

m lm
d d−

=
−∑  which assures element n  is nearest to the array 
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center than element n+1, and also that the minimum distance bigger 
than zero is considered. It is clear that the problem gets complicated 
when the number of array elements is increased. In this case the most 
appropriate optimization method is the Genetic Algorithms. 

Another case is the prediction of far field from near field 
measurements [14]. The mathematical pattern used in the prediction 
of far field involves great parameter quantity, such as complex 
excitation, position and orientation of the physical set of the elemental 
dipoles that generate the same pattern to the one obtained with 
measurements. In this optimization problem the parameters quantity 
grows in proportion with the number of elements considered (8 
parameters by element). For instance, if a set of four elemental 
dipoles is used to predict the far field of some electronic device, the 
search space will have 28 parameters and each one of these in an 
interval. For this particular case the object function proposed is: 

 ( ) ( )( )
1

F g f , 0
M

m m m m
m

s v r s
=

= − =∑  (7) 

where vm is the measured real value, fm(rm,S) is any amplitude or 
phase (calculated with the field expressions for elementary dipoles [2] 
of any electric or magnetic field component vector radiated by the 
group of equivalent dipoles, both values in the point rm); gm is a 
weight function which depends on the information kind (excitation 
and/or phase); S is a vector formed by the excitation, position and 
orientation dipole parameters. A way of finding S is by minimizing 
|F|. Since |F| is highly non-linear and it has too many local minima, it 
is only probable to find an global optimal with non-conventional 
optimization methods, such as the genetic algorithms. 

In [15], the optimization problem between the reflectivity and the 
thickness of wide-band microwave absorbent coatings is presented. 
The reflection coefficient of the absorbent material is given by: 
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for 0i > , ( ) ( ) ( )2i i ik f f f fπ μ ε= , 0 1R = − , and 

( ) ( )
LNR f R f= , where: NL is the layers number of thickness it , 

( )i fε  and ( )i fμ  are the permittivity and permeability of each 
layer, supported in a perfect electric conductive material. The process 
can be repeated on the group of representative frequencies inside the 
band B  to find the frequency of the absorbent media. The total 
absorbent media thickness is given by: 

1
LN

ii
t t

=
= ∑ . In order to 

minimize the maximum reflection on the band: 
 ( ){ }1020log max R ,|R f f B= ∈⎡ ⎤⎣ ⎦  (10) 

and the total thickness. It is clear that the goals are opposed while the 
maximum reflection minimization is achieved with a bigger thickness 
of the absorbent media; while also seeking to minimize that thickness. 
The technique used in this case found the trade off between the 
thickness of the absorbent media and the minimum reflections of the 
same material. 

In [16] the problem of extracting the intrinsic dielectric frequency 
properties dependent on the media is presented.  It is important to 
know the real and complex magnetic permeability, the real and 
complex electric permittivity, and the electric conductivity in circuits 
design when the operation frequency is in GHz. Under these 
conditions the dispersion losses are quite significant and their estimate 
is not a simple task. This document proposes a systematic method, 
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based on genetic algorithms, to recover the material dielectric 
properties from the measurements of S parameters. 

In [17] the design problem of electrically small auto-resonant 
antennas is presented. The parameter that best describes a small 
resonant antenna is the quality factor Q, which is defined as the 
relationship of the resonance frequency divided by the frequencies 
difference to which the radiated power falls to ½ of the power in 
resonance, i.e., for a smaller Q bigger antenna band width. The main 
problem in small antenna design is that its radiation resistance falls 
approaching zero according to decreases in the antenna size and its 
reactance approaches ±∞, depending on whether the antenna outside 
of resonance behaves as an inductance (loop) or as a capacitance 
(electric dipole). In this problem a genetic algorithm was used to find 
the wire configuration with both characteristics (capacitive reactance 
and inductive reactance) which are annulled in resonance. 

In [18], the Debye & Lorentzian dispersive media parameters that 
characterize a material are recovered starting with measurements. The 
parameters recovery requires a non-linear equation set solution, which 
becomes quite a hard task. The method proposed; at first, using the 
the equation (of the telegrapher) of a transmission line to build the 
parameters distributed matrix with measurements of a badge parallel 
covered with scattering material, one which in turn constitutes an 
electromagnetic means of traverse propagation; secondly, using 
genetic algorithms to find the means scattering by minimization 
means of the difference between the carried out measurements and 
the calculated parameters. 

Finally, in [19] the design problem of the geometric form 
absorbent coatings under such requirements as low reflection, small 
and lightweight volume is considered. In this case the genetic 
algorithms are applied to optimize the coating form and the full wave 
technique for form performance prediction. 
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Conclusions 
A quick revision to current literature will show that genetic 
algorithms have grown in popularity to solve optimization problems 
in diverse scientific research subjects. The electromagnetic area is not 
the exception; a clear reference about it may be [20]. In this paper the 
few selected examples report great optimization work simplification 
with quite acceptable results. However, in each case the genetic 
algorithm should be adapted to the treated problem. In certain cases it 
is necessary to combine this technique with others (like in [15]) and to 
check them with other methods of the same class (simulated 
annealing). Although genetic algorithms do not demand a previous or 
additional knowledge (derivatives) of the function being optimized, it 
is necessary that one has the sense that a global optimal exists. 
Another aspect necessary to take into account is the growing 
parameters space, i.e., the characteristics of the problem plus those of 
the genetic algorithm control, and for these, there is no method which 
provides its values in an exact way, it will always be necessary to 
carry out tests to determine which are the best values. The only 
inconvenience of this technique maybe the computation time required 
to find the solution to a problem depending on its complexity. In 
general, the genetic algorithms are an excellent option for the global 
robust search of an optimal value from non-linear and high 
dimensionality functions. 
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