Quaternions, Maxwell Equations and Lorentz Transformations

M. Acevedo M., J. López-Bonilla and M. Sánchez-Meraz Sección de Estudios de Posgrado e Investigación Escuela Superior de Ingenieria Mecánica y Eléctrica Instituto Politécnico Nacional Edif..Z-4, 3er Piso, Col.Lindavista, 07738 México DF E-mails: jlopezb@ipn.mx

In this work: a).-We show that the invariance of the Maxwell equations under duality rotations brings into scene to the complex vector ($c \vec{B}+i \vec{E}$), whose components allow to construct a quaternionic equation for the electromagnetic field in vacuo. b).-For any analytic function f of the complex variable z, it is possible to prove that is a Debye potential for itself, which permits to reformulate the corresponding Cauchy-Riemann relations. Here we show that the Fueter conditions- when z is a quaternion- also accept a similar reformulation and a very compact quaternionic expression. c).We exhibit how the rotations in three and four dimensions can be described through a complex matrix relation or equivalently by a quaternionic formula.

1. Quaternionic version of the Maxwell equations.

The Maxwell equations in the source-free case:

$$
\begin{array}{cr}
\vec{\nabla} \bullet \vec{B}=0, & \vec{\nabla} \bullet \vec{E}=0, \\
\vec{\nabla} \times \vec{B}=\frac{1}{c^{2}} \frac{\partial \overrightarrow{\mathrm{E}}}{d t}, & \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}, \tag{1}
\end{array}
$$

are invariant under the duality rotations [1,2]:

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\mathrm{E}}^{\prime}=\stackrel{\rightharpoonup}{\mathrm{E}} \operatorname{Cos} \alpha+c \stackrel{\rightharpoonup}{\mathrm{~B}} \operatorname{Sin} \alpha, \quad c \vec{B}^{\prime}=-\stackrel{\rightharpoonup}{\mathrm{E}} \operatorname{Sin} \alpha+c \stackrel{\rightharpoonup}{\mathrm{~B}} \operatorname{Cos} \alpha, \tag{2}
\end{equation*}
$$

in the sense that the fields also satisfy (1) ; the Noether theorem [3-9] shows [10] that this invariance of the Maxwell equations implies the continuity equation:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{\epsilon_{0}}{2} E^{2}+\frac{1}{2 \mu_{0}} B^{2}\right)+\vec{\nabla} \cdot\left(\frac{1}{\mu_{0}} \vec{E} \times \bar{B}\right)=0, \tag{3}
\end{equation*}
$$

for the electromagnetic energy.If relations (2) are rewritten into the form:

$$
\begin{equation*}
c \vec{B}^{\prime}+i \stackrel{\rightharpoonup}{E}^{\prime}=e^{i \alpha}(c \stackrel{\rightharpoonup}{B}+i \stackrel{\rightharpoonup}{E}), \tag{4}
\end{equation*}
$$

the participation of the complex vector [10-13]:

$$
\begin{equation*}
\vec{F}=c \stackrel{\rightharpoonup}{B}+i \stackrel{\rightharpoonup}{E} \tag{5}
\end{equation*}
$$

follows, and expressions (1) become:

$$
\begin{equation*}
\vec{\nabla} \bullet \vec{F}=0, \quad \frac{1}{c} \frac{\partial \vec{F}}{\partial t}-i \stackrel{\rightharpoonup}{\nabla} \times \vec{F}=0 \tag{6}
\end{equation*}
$$

Now we show that the Maxwell equations adopt a very compact structure if we employ quaternions [10,14-23]. In fact, with we construct the quaternionic vector :

$$
\begin{equation*}
\boldsymbol{F}=\boldsymbol{I} F_{X}+\boldsymbol{J} F_{Y}+\boldsymbol{K} F_{Z}, \tag{7}
\end{equation*}
$$

and the quaternonic operator [24-26]:

$$
\begin{equation*}
\nabla=\frac{i}{c} \frac{\partial}{\partial t}+\boldsymbol{I} \frac{\partial}{\partial x}+\boldsymbol{J} \frac{\partial}{\partial y}+\boldsymbol{K} \frac{\partial}{\partial \mathbf{z}} \tag{8}
\end{equation*}
$$

so that the Maxwell equations (1) are carried to the following quaternionic version:

$$
\begin{equation*}
\nabla F=0 \tag{9}
\end{equation*}
$$

Conway [27] - Silberstein [28] introduced quaternions as a notation in the special theory of relativity; Silberstein [24]-Lanczos [25,29] were the first authors to deduce (9) (this quaternionic expression reminds us of the Weyl equation of massless $1 / 2$ spin particles).

Unitary complex quaternions generate [10, 22, 30-33] proper Lorentz transformations, consequently, we consider as a natural fact to use quaternions - as in eq.(9) - for the description of the Maxwell field.

2. The Fueter conditions as Debye expressions

If f is an analytic function of the complex variable $z=x+i y$, then it has the form $f(z)=u(x, y)+i v(x, y)$ with the fulfillment of the CauchyRiemann relations [34]:

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{10}
\end{equation*}
$$

which thereby imply the harmonic character of u and v because:

$$
\begin{equation*}
\nabla^{2} u=\nabla^{2} v=0, \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \tag{11}
\end{equation*}
$$

The conditions (10) allow to obtain two interesting differential identities for u and v, which have great similarity with the Debye expressions [2, 35-39] for the electromagnetic potentials, in fact:

$$
\begin{equation*}
u=\frac{\bar{r}}{r} \bullet \stackrel{\rightharpoonup}{\nabla}(r u)-[\stackrel{\rightharpoonup}{r} \times \stackrel{\rightharpoonup}{\nabla} u]_{3} \tag{12}
\end{equation*}
$$

where we have employed the known notation from vectorial analysis:

$$
\begin{gather*}
\vec{r}=x \hat{i}+y \hat{j}, \quad r=\sqrt{x^{2}+y^{2}} \\
{[\vec{r} \times \vec{\nabla} g]_{3} \equiv x \frac{\partial g}{\partial y}-y \frac{\partial g}{\partial x}, \quad \vec{\nabla}=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}} \tag{13}
\end{gather*}
$$

The function if is also analytic, then $i f(z)=-v+i u$ implies that (12) is correct with the changes $u \rightarrow-v$ and $v \rightarrow u$, that is:

$$
\begin{equation*}
v=\frac{\vec{r}}{r} \bullet \vec{\nabla}(r v)+[\vec{r} \times \overrightarrow{\nabla u}]_{3} \tag{14}
\end{equation*}
$$

The expressions (12) and (14) are a reformulation of the Cauchy-Riemann relations, these being a strong motivation for the existence of Debye generators in electromagnetic theory. The solution of the source-free Maxwell equations can be written [2,35-39] in terms of two real scalar generators (Debye potentials) $-\psi_{E}$ and ψ_{M} which satisfy the wave equation:

$$
\begin{equation*}
\square \psi_{E}=\square \psi_{M}=0, \quad \square=\frac{\partial^{2}}{c^{2} \partial t^{2}}-\nabla^{2} \tag{15}
\end{equation*}
$$

in according to:

$$
\begin{equation*}
\phi=-c \frac{\stackrel{\rightharpoonup}{r}}{r} \cdot \vec{\nabla}\left(r \psi_{E}\right), \quad \vec{A}=-\vec{r} \times \vec{\nabla} \psi_{M}+\vec{r} \frac{\partial \psi_{E}}{c \partial t} \tag{16}
\end{equation*}
$$

up to gauge transformations. We must note that the existence of and implicitly follows from results of several authors [40-43].

Now we shall obtain the generalization of (12) and (14) for the quaternionic case. Fueter[44] founded the theory of functions $\boldsymbol{G}(\boldsymbol{q})=\mathrm{u}_{0}+\boldsymbol{I} \mathrm{u}_{1}+\boldsymbol{J} \mathrm{u}_{2}+\boldsymbol{K} \mathrm{u}_{3}$, of a quaternionic variable $\boldsymbol{q}=\boldsymbol{x}_{0}+\mathbf{I y}_{1}+\mathbf{J y}_{2}+\mathbf{K y}_{3}$, and he imposed the following differential conditions on the , which correspond to the extension of the CauchyRiemann equations (10):

$$
\begin{align*}
& \frac{\partial u_{0}}{\partial x_{0}}-\frac{\partial u_{1}}{\partial y_{1}}-\frac{\partial u_{2}}{\partial y_{2}}-\frac{\partial u_{3}}{\partial y_{3}}=0, \\
& \frac{\partial u_{1}}{\partial x_{0}}+\frac{\partial u_{0}}{\partial y_{1}}+\frac{\partial u_{3}}{\partial y_{2}}-\frac{\partial u_{2}}{\partial y_{3}}=0, \tag{17}\\
& \frac{\partial u_{2}}{\partial x_{0}}-\frac{\partial u_{3}}{\partial y_{1}}+\frac{\partial u_{0}}{\partial y_{2}}+\frac{\partial u_{1}}{\partial y_{3}}=0 \quad, \\
& \frac{\partial u_{3}}{\partial x_{0}}+\frac{\partial u_{2}}{\partial y_{1}}-\frac{\partial u_{1}}{\partial y_{2}}+\frac{\partial u_{0}}{\partial y_{3}}=0 .
\end{align*}
$$

Imaeda [45] shows that (17) permits to establish a connection with the Maxwell equations, which leads to a new formulation of classical electrodynamics. If we introduce the operator (8):

$$
\begin{equation*}
\nabla=\frac{\partial}{\partial x_{0}}+\boldsymbol{I} \frac{\partial}{\partial y_{1}}+\boldsymbol{J} \frac{\partial}{\partial y_{2}}+\boldsymbol{K} \frac{\partial}{\partial y_{3}} \tag{18}
\end{equation*}
$$

then (17) are equivalent to:

$$
\begin{equation*}
\nabla G=0, \tag{19}
\end{equation*}
$$

It is remarkable the similarity between (9) and (19), of course we may see to (9) as a particular case of (19).

With the aid of (17) and taking as guide the relation (12), it is not difficult to deduce the Debye type expression:
$u_{0}=\frac{\vec{r}}{r} \cdot \stackrel{\rightharpoonup}{\nabla}\left(r u_{0}\right)+\frac{\partial}{\partial x_{0}}\left(y_{1} u_{1}+y_{2} u_{2}+y_{3} u_{3}\right)+\left[\vec{r} \times \bar{\nabla} u_{1}\right]_{1}+\left[\vec{r} \times \bar{\nabla} u_{2}\right]_{2}+\left[\vec{r} \times \bar{\nabla} u_{3}\right]_{3}$, (20)
where

$$
\begin{gather*}
\vec{r}=\hat{i} y_{1}+\hat{j} y_{2}+\hat{k} y_{3}, \quad \vec{\nabla}=\hat{i} \frac{\partial}{\partial y_{1}}+\hat{j} \frac{\partial}{\partial y_{2}}+\hat{k} \frac{\partial}{\partial y_{3}}, \quad[\vec{r} \times \vec{\nabla} g]_{1} \equiv y_{2} \frac{\partial g}{\partial y_{3}}-y_{3} \frac{\partial g}{\partial y_{2}} \tag{21}\\
{[\vec{r} \times \bar{\nabla} g]_{2} \equiv y_{3} \frac{\partial g}{\partial y_{1}}-y_{1} \frac{\partial g}{\partial y_{3}}, \quad[\stackrel{\rightharpoonup}{r} \times \vec{\nabla} g]_{3} \equiv y_{1} \frac{\partial g}{\partial y_{2}}-y_{2} \frac{\partial g}{\partial y_{1}}}
\end{gather*}
$$

The function $-\boldsymbol{G}(\boldsymbol{q}) \boldsymbol{I}=u_{1}-\boldsymbol{I} u_{0}-\boldsymbol{J} u_{3}+\boldsymbol{K} u_{2}$ - is also analytic, then in (20) we can make the changes $u_{0} \rightarrow u_{1}, u_{1} \rightarrow-u_{0}, u_{2} \rightarrow-u_{3}$ and $u_{3} \rightarrow u_{2}$, therefore:
$u_{1}=\frac{\vec{r}}{r} \cdot \bar{\nabla}\left(r u_{1}\right)+\frac{\partial}{\partial x_{0}}\left(-y_{1} u_{0}-y_{2} u_{3}+y_{3} u_{2}\right)-\left[\vec{r} \times \bar{\nabla} u_{0}\right]_{1}-\left[\vec{r} \times \bar{\nabla} u_{3}\right]_{2}+\left[\vec{r} \times \bar{\nabla} u_{2}\right]_{3}$
Similarly the analytic character of $-\mathbf{G}(\mathbf{q}) \mathbf{J}$ and $-\mathbf{G}(\mathbf{q}) \mathbf{K}$ leads to:
$u_{2}=\frac{\stackrel{\rightharpoonup}{r}}{r} \cdot \bar{\nabla}\left(r u_{2}\right)+\frac{\partial}{\partial x_{0}}\left(y_{1} u_{3}-y_{2} u_{0}-y_{3} u_{1}\right)+\left[\vec{r} \times \vec{\nabla} u_{3}\right]_{1}-\left[\vec{r} \times \bar{\nabla} u_{0}\right]_{2}-\left[\vec{r} \times \bar{\nabla} u_{1}\right]_{3}$,
$u_{3}=\frac{\stackrel{\rightharpoonup}{r}}{r} \cdot \vec{\nabla}\left(r u_{3}\right)+\frac{\partial}{\partial x_{0}}\left(-y_{1} u_{2}+y_{2} u_{1}-y_{3} u_{0}\right)-\left[\vec{r} \times \bar{\nabla} u_{2}\right]_{1}-\left[\vec{r} \times \bar{\nabla} u_{1}\right]_{2}-\left[\vec{r} \times \bar{\nabla} u_{0}\right]_{3}$.
The relations (20), (22) and (23) represent a Debye type reformulation of the Fueter conditions (17), which are relations not explicitly found in the literature.

3. Quaternions, 3-rotations and Lorentz transformations

 ${\underset{\sim}{L}}^{T} \underset{\sim}{t}=\underset{\sim}{I}$, that is:

$$
\begin{equation*}
L_{j k} L_{j l}=\delta_{k l} \tag{24}
\end{equation*}
$$

allows to make a Lorentz transformation over an arbitrary event , via the expression [22,41]:

$$
\begin{equation*}
x^{\prime}{ }_{j}=L_{j k} x_{k} \tag{25}
\end{equation*}
$$

such that (24) implies the invariance $x^{\prime}{ }_{j} x^{\prime}{ }_{j}=x_{j} x_{j}$, this being:

$$
\begin{equation*}
x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-c^{2} t^{\prime 2}=x^{2}+y^{2}+z^{2}-c^{2} t^{2} . \tag{26}
\end{equation*}
$$

If we define the complex 2 x 2 matrices:.

$$
\underset{\sim}{X}=\left(\begin{array}{cc}
x_{3}-i x_{4} & x_{1}-i x_{2} \tag{27}\\
x_{1}+i x_{2} & -x_{3}-i x_{4}
\end{array}\right), \underset{\sim}{U}=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right),
$$

with the properties:

$$
\operatorname{det} \underset{\sim}{X}=-x_{j} x_{j} \quad, \quad{\underset{\sim}{U}}^{\dagger}=\left(\begin{array}{cc}
\alpha^{*} & \gamma^{*} \tag{28}\\
\beta^{*} & \delta^{*}
\end{array}\right)
$$

then the construction of a Lorentz transformation $\underset{\sim}{L}$ can be accomplished through the relation [22,41]:

$$
\begin{equation*}
\underset{\sim}{X}{ }^{\prime}=\underset{\sim}{U} \underset{\sim}{X} \underset{\sim}{U}{ }^{\dagger}, \tag{29}
\end{equation*}
$$

with $\operatorname{det} \underset{\sim}{U}=1$ as required by (26). In other words, any four complex constants $\alpha, \beta, \gamma, \delta$ subject to the unimodular condition:

$$
\begin{equation*}
\alpha \delta-\beta \gamma=1 \tag{30}
\end{equation*}
$$

generate also a Lorentz's matrix. By comparison between (25) and (29) it results the following expressions [46] of Synge[41] -Rumer[47]- Aharoni[48]:

$$
\begin{array}{ll}
L_{11}=\frac{1}{2}\left(\alpha^{*} \delta+\beta \gamma^{*}\right)+c . c ., & L_{12}=\frac{i}{2}\left(\alpha^{*} \delta+\beta \gamma^{*}\right)+c . c . \\
L_{13}=\frac{1}{2}\left(\alpha^{*} \gamma-\beta^{*} \delta\right)+c . c ., & L_{14}=\frac{1}{2}\left(\alpha^{*} \gamma+\beta^{*} \delta\right)+c . c ., \\
L_{21}=\frac{i}{2}\left(\alpha \delta^{*}-\beta \gamma^{*}\right)+c . c ., & L_{22}=\frac{1}{2}\left(\alpha^{*} \delta-\beta^{*} \gamma\right)+c . c ., \\
L_{23}=\frac{i}{2}\left(\alpha \gamma^{*}+\beta^{*} \delta\right)+c . c ., & L_{24}=\frac{i}{2}\left(\alpha \gamma^{*}-\beta^{*} \delta\right)+c . c ., \\
L_{31}=\frac{1}{2}\left(\alpha^{*} \beta-\gamma^{*} \delta\right)+c . c ., & L_{32}=\frac{i}{2}\left(\alpha^{*} \beta-\gamma^{*} \delta\right)+c . c ., \\
L_{33}=\frac{1}{2}\left(\alpha \alpha^{*}-\beta \beta^{*}-\gamma \gamma^{*}+\delta \delta^{*}\right), & L_{34}=\frac{1}{2}\left(\alpha \alpha^{*}+\beta \beta^{*}-\gamma \gamma^{*}-\delta \delta^{*}\right), \\
L_{41}=\frac{1}{2}\left(\alpha^{*} \beta+\gamma^{*} \delta\right)+c . c ., & L_{42}=\frac{i}{2}\left(\alpha^{*} \beta+\gamma^{*} \delta\right)+c . c ., \\
L_{43}=\frac{1}{2}\left(\alpha \alpha^{*}-\beta \beta^{*}+\gamma \gamma^{*}-\delta \delta^{*}\right), & L_{44}=\frac{1}{2}\left(\alpha \alpha^{*}+\beta \beta^{*}+\gamma \gamma^{*}+\delta \delta^{*}\right), \tag{31}
\end{array}
$$

where c.c. means the complex conjugate of all the previous terms. It is evident that the matrices produce the same, thus they are said [32, 33, 49, 50] to constitute a two-valued representation of the Lorentz transformations.

On the other hand, we may follow Lanczos [10, 22] and introduce the quaternions [10,14-22]:

$$
\begin{equation*}
\mathbf{R}=c t+i(\mathbf{I} x+\mathbf{J} y+\mathbf{K} z), \quad \mathbf{A}=a_{4}+\mathbf{I} a_{1}+\mathbf{J} a_{2}+\mathbf{K} a_{3} \tag{32}
\end{equation*}
$$

together with the definitions:
© 2005 C. Roy Keys Inc. — http://redshift.vif.com

$$
\overline{\mathbf{A}}=a_{4}-\left(\mathbf{I} a_{1}+\mathbf{J} a_{2}+\mathbf{K} a_{3}\right), \quad \mathbf{A}^{*}=a_{4}^{*}+\mathbf{I} a_{1}^{*}+\mathbf{J} a_{2}^{*}+\mathbf{K} a_{3}^{*},(33)
$$

so that A generates a Lorentz's matrix via the quaternionic relation:

$$
\begin{equation*}
\mathbf{R}^{\prime}=\mathbf{A} \mathbf{R} \overline{\mathbf{A}}^{*} \tag{34}
\end{equation*}
$$

with A fulfilling the condition:

$$
\begin{equation*}
\mathbf{A} \overline{\mathbf{A}}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=1 \tag{35}
\end{equation*}
$$

For example, (35) is verified by:

$$
\begin{array}{ll}
a_{1}=-\frac{i}{2}(\gamma+\beta), & a_{2}=-\frac{1}{2}(\gamma-\beta) \tag{36}\\
a_{3}=\frac{i}{2}(\delta-\alpha), & a_{4}=-\frac{1}{2}(\delta+\alpha)
\end{array}
$$

and, if the complex numbers satisfy (30) then (34) and (36) imply (31). Another option is:

$$
\begin{array}{ll}
a_{1}=i Q\left(\lambda^{*} e^{\underline{P}}+\eta^{*} e^{-\underline{P}}\right), & a_{2}=Q\left(\lambda^{*} e^{\underline{P}}-\eta^{*} e^{-\underline{P}}\right), \\
a_{3}=i Q\left(e^{\underline{P}}-e^{-\underline{P}}\right), & a_{4}=-Q\left(e^{\underline{P}}+e^{-\underline{\underline{P}}}\right), \tag{37}\\
\underline{P}=\frac{1}{2}(M+i N), & Q=\frac{1}{2}\left|1-\lambda^{*} \eta^{*}\right|^{-1 / 2},
\end{array}
$$

where M, N are arbitrary real numbers, and λ, η are any complex numbers such that $\lambda \eta \neq 1$. Eqs. (34) and (37) give us the following expressions [46] of Greenberg-Knauer [51] for $\underset{\sim}{L}$:

$$
\begin{array}{ll}
L_{11}=T e^{i N}\left(1+\lambda^{*} \eta\right)+c . c ., & L_{12}=i T e^{i N}\left(1-\lambda^{*} \eta\right)+c . c ., \\
L_{13}=T e^{i N}\left(\eta-\lambda^{*}\right)+c . c ., & L_{14}=-T e^{i N}\left(\eta+\lambda^{*}\right)+c . c ., \\
L_{21}=i T e^{-i N}\left(1+\lambda \eta^{*}\right)+c . c ., & L_{22}=-T e^{-i N}\left(\lambda \eta^{*}-1\right)+c . c ., \\
L_{23}=i T e^{-i N}\left(\eta^{*}-\lambda\right)+c . c ., & L_{24}=-i T e^{-i N}\left(\eta^{*}+\lambda\right)+c . c ., \\
L_{31}=T\left(\lambda e^{M}-\eta e^{-M}\right)+c . c ., & L_{32}=i T\left(\lambda e^{M}+\eta e^{-M}\right)+c . c ., \\
L_{33}=T\left[e^{M}\left(1-\lambda \lambda^{*}\right)+e^{-M}\left(1-\eta \eta^{*}\right)\right], & L_{34}=-T\left[e^{M}\left(1+\lambda \lambda^{*}\right)-e^{-M}\left(1+\eta \eta^{*}\right)\right], \\
L_{41}=-T\left(\lambda e^{M}+\eta e^{-M}\right)+c . c ., & L_{42}=-i T\left(\lambda e^{M}+\eta e^{-M}\right)+c . c ., \\
L_{43}=-T\left[e^{M}\left(1-\lambda \lambda^{*}\right)-e^{-M}\left(1-\eta \eta^{*}\right)\right], & L_{44}=T\left[e^{M}\left(1+\lambda \lambda^{*}\right)+e^{-M}\left(1+\eta \eta^{*}\right)\right],
\end{array}
$$

with $\mathrm{T}=\frac{1}{2}|1-\lambda \eta|^{-1}$ well behaved because $\lambda \eta \neq 1$. Sachs [52] obtained some special cases of (38). The refs. [50, 53] have important applications of (38) to the Newman-Penrose formalism [54, 55] in general relativity.

Now we consider that A is a real unitary quaternion with their four components a_{j} written in terms of two complex numbers α and β :

$$
\begin{gather*}
a_{1}=-\frac{i}{2}\left(\beta-\beta^{*}\right), \quad a_{2}=-\frac{1}{2}\left(\beta+\beta^{*}\right) \\
a_{3}=\frac{i}{2}\left(\alpha-\alpha^{*}\right), \quad a_{4}=-\frac{1}{2}\left(\alpha+\alpha^{*}\right) \tag{39}\\
\alpha \alpha^{*}+\beta \beta^{*}=1
\end{gather*}
$$

then (34) implies a rotation in the 3-space:

$$
\left(\begin{array}{l}
x^{\prime} \tag{40}\\
y^{\prime} \\
z^{\prime}
\end{array}\right) \equiv \underset{\sim}{R}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad t^{\prime}=t
$$

where $[47,56]$:

$$
\underset{\sim}{R}=\left(\begin{array}{ccc}
\frac{1}{2}\left(\alpha^{2}+\alpha^{* 2}-\beta^{2}-\beta^{* 2}\right) & -\frac{i}{2}\left(\alpha^{2}-\alpha^{* 2}+\beta^{2}-\beta^{* 2}\right) & -\left(\alpha \beta+\alpha^{*} \beta^{*}\right) \tag{41}\\
\frac{1}{2}\left(\alpha^{2}-\alpha^{* 2}-\beta^{2}+\beta^{* 2}\right) & \frac{1}{2}\left(\alpha^{2}+\alpha^{* 2}+\beta^{2}+\beta^{* 2}\right) & -i\left(\alpha \beta-\alpha^{*} \beta^{*}\right) \\
\alpha \beta^{*}+\alpha^{*} \beta & i\left(\alpha \beta^{*}-\alpha \beta^{*}\right) & \alpha \alpha^{*}-\beta \beta^{*}
\end{array}\right.
$$

is an orthogonal matrix (element of $\mathrm{O}(3)$) because:

$$
\begin{equation*}
\underset{\sim}{R}{\underset{\sim}{R}}^{T}=\underset{\sim}{I} \tag{42}
\end{equation*}
$$

The representation of an arbitrary rotation of three-space with the help of a real quaternion of length 1 was known by Euler and it was employed by him [10, 57].

It is interesting to note that if we make $x_{4}=0, \gamma=-\beta^{*}, \delta=\alpha^{*}$ into (29), then we obtain (40) and (41), being $\underset{\sim}{U}$ an element of SU (2) because:

$$
\begin{align*}
\underset{\sim}{U}= & \left(\begin{array}{cc}
\alpha & \beta \\
-\beta^{*} & \alpha^{*}
\end{array}\right), \quad \underset{\sim}{\underset{\sim}{U}}{ }^{\dagger}=\underset{\sim}{I}, \tag{43}\\
& \operatorname{det} \underset{\sim}{U}=\alpha \alpha^{*}+\beta \beta^{*}=1 .
\end{align*}
$$

The unitary matrices $\pm \underset{\sim}{U}$ generate the same orthogonal matrix $\underset{\sim}{R}$, thus $\mathrm{SU}(2)$ is a two-valued representation of $\mathrm{O}(3)$ [32, 33, 56, 58-62]. On the other hand, (39) is equivalent to:

$$
\begin{equation*}
\alpha=a_{4}-i a_{3} \quad, \quad \beta=-a_{2}-i a_{1} \tag{44}
\end{equation*}
$$

so that takes the form:

$$
\begin{align*}
& \underset{\sim}{U}=a_{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-i a_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-i a_{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)-i a_{3}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \tag{45}\\
& =a_{4} \underset{\sim}{I}-i\left(a_{1} \sigma_{x}+a_{2} \sigma_{y}+a_{3} \sigma_{z}\right),
\end{align*}
$$

where $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are the known matrices of Pauli. If now we use the formal association [21]:

$$
\begin{equation*}
\underset{\sim}{I} \rightarrow 1, \quad-i \sigma_{x} \rightarrow \mathbf{I}, \quad-i \sigma_{y} \rightarrow \mathbf{J}, \quad-i \sigma_{z} \rightarrow \mathbf{K} \tag{46}
\end{equation*}
$$

it follows that $\underset{\sim}{U} \rightarrow \mathbf{A}$, which motivates the intimate relationship between complex $2 x 2$ unitary matrices and real $3 x 3$ orthogonal matrices generated by real quaternions of length 1.

Thus we have seen that (29) or (34) describe completely the rotations in three and four dimensions.

References

[1] J. A. Wheeler, Geometrodynamics, Academic Press, NY (1962)
[2] G.F.Torres del Castillo, Rev. Mex. Fis. 43 (1997) 25
[3] E. Noether, Nachr. Ges. Wiss. Göttingen (1918) 235
[4] H. Weyl, Scripta Math. III 3 (1935) 201
[5] A. Trautman, Commun. Math. Phys. 6 (1967) 248
[6] C. Lanczos, Mathematical methods in solid state Physics and superfluid theory, Eds.R.C. Clark and G. H. Derik, Oliver \& Boyd: Edinburgh (1969)
[7] C. H. Kimberling, Am. Math. Mon. 79 (1972) 136
[8] C. Lanczos, Bull. Inst. Math. and Appl. 9 (1973) 253
[9] N. Byers, Emmy Noether's discovery of the deep connection between symmetries and conservation laws, Proc. Symp. Heritage E. Noether, Bar-Ilan Univ., Israel, Dec. (1996)
[10] C.Lanczos, The variational principles of mechanics, University of Toronto Press (1970)
[11] A. Sudbery, J. Phys. A19, No. 2 (1986) L33
[12] V.V. Dvoeglazov, Hadronic J. 16 (1993) 459
[13] H. Munera and O. Guzman, Mod. Phys. Lett.A12 (1997) 2089
[14] W.R. Hamilton, Phil. Mag. 25 (1844) 489
[15] W.R. Hamilton, Lectures on quaternions, Hudges \& Smith, Dublin (1853)
[16] P. G. Tait, An elementary treatise on quaternions, Oxford Univ. Press (1875)
[17] W. K. Clifford, Proc. London Math. Soc. 4 (1876) 381
[18] P.Weiss, Proc. R.Irish Acad. 46 (1941) 129
[19] R.J. Stephenson, Am.J. Phys. 34 (1966) 194
[20] A.M. Bork, Am. J. Phys. 34 (1966) 202
[21] J. Kronsbein, Am. J. Phys. 35(1967) 335
[22] J.L. Synge, Comm. Dublin Inst. Adv. Stud. Ser. A, No. 21 (1972)
[23] S.L. Altmann, Math. Mag. 62 (1989) 291
[24] L. Silberstein, Theory of relativity, Macmillan, London (1924)
[25] C. Lanczos, Zeits. Phys. 57 (1929) 447
[26] C.R. Moisil, Bull. Sci. Math. 55 (1931) 168
[27] A. W. Conway, Proc. R. Irish Acad. A29 (1911) 1
[28] L. Silberstein, Phil. Mag. 23 (1912) 790
[29] G. Marx, Lecture at the C. Lanczos Intal. Centenary Conf., Raleigh N.C. USA, Dec.(1993)
[30] P.A.M. Dirac, Proc. R. Irish Acad. A50 (1945) 261
[31] A.W. Conway, Proc. R. Soc. London A191 (1947) 137
[32] S.L. Altmann, Rotations, quaternions and double groups, Clarendon Press, Oxford (1986)
[33] K.N. Srinivasa Rao, The rotation and Lorentz groups and their representations for physicists, Wiley Eastern Limited-India (1988)
[34] R.V. Churchill, Complex Variable and applications, McGraw-Hill, NY(1960)
[35] W.B. Campbell and T. Morgan, Physica 53 (1971) 264
[36] C. G. Gray, Am. J. Phys. 46 (1978) 169
[37] A. C. T. Wu, Phys. Rev. D34 (1986) 3109
[38] G.F.Torres del Castillo, Rev. Mex. Fis. 35 (1989) 282
[39] G.F. Torres del Castillo, Rev. Mex. Fis. 38 (1992) 753
[40] R.Penrose, Proc. R. Soc. London A284 (1965) 159
[41] J.L.Synge, Relativity: the special theory, North-Holland, Amsterdan (1965)
[42] P.A.Hogan, J. Math. Phys. 28 (1987) 2089
[43] J.López-Bonilla, J.Morales, G.Ovando and J.J.Peña, Indian J.Phys. B74 (2000) 393
[44] R. Fueter, Comm. Math. Helv. 7 (1934-35) 307, 8 (1936-37) 371, 9 (193637)320 and 10 (1937-38) 327
[45] K. Imaeda, Nuovo Cim. B32 (1976) 138
[46] J. López Bonilla, J. Morales and G. Ovando, Bull. Allahabad Math. Soc. 17 (2002) 53
[47] Ju. Rumer, Spinorial analysis, Moscow (1936)
[48] J. Aharoni, The special theory of relativity, Clarendon Press, Oxford (1959)
[49] W. Rindler, Am. J. Phys. 35 (1967) 937
[50] M. Carmeli, Group theory and general relativity, McGraw-Hill, NY (1977)
[51] P.J. Greenberg and J.P. Knauer, Stud. Appl. Math. 53 (1974) 165
[52] R.K. Sachs, Proc. R. Soc. London A264 (1961) 309
[53] D. Kramer, H. Stephani, M. MacCallum and E. Herlt, Exact solutions of Einstein's field equations, Cambridge University Press (1980)
[54] E. T. Newman and R. Penrose, J. Math. Phys. 3 (1962) 566
[55] S. J. Campbell and J. Wainwright, Gen. Rel. Grav. 8 (1977) 987
[56] L. H. Ryder, Quantum field theory, Cambridge Univ. Press (1985)
[57] C: Lanczos, Am. Scientist 55 (1967) 129
[58] H. Weyl, The theory of groups and quantum mechanics, Dover, NY (1950)
[59] F. A. Kaempfer, Concepts in quantum mechanics, Academic Press, NY (1965)
[60] B.L. Van der Waerden, Group theory and quantum mechanics, SpringerVerlag (1974)
[61] D. Bohm, Perspectives in quantum mechanics, Academic Press, NY (1979)
[62] W. Greiner, Relativistic quantum mechanics, Springer-Verlag (1990)

