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In this work: a).-We show that the invariance of the Maxwell 
equations under duality rotations brings into scene to the 

complex vector ( c B i E
→ →

+ ), whose components allow to 
construct a quaternionic equation for the electromagnetic field 
in vacuo. b).-For any analytic function f of the complex 
variable z, it is possible to prove that is a Debye potential for 
itself, which permits to reformulate the corresponding 
Cauchy-Riemann relations. Here we show that the Fueter 
conditions- when z is a quaternion- also accept a similar 
reformulation and a very compact quaternionic expression. c).- 
We exhibit how the rotations in three and four dimensions can 
be described through a complex matrix relation or 
equivalently by a quaternionic formula. 
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1. Quaternionic version of the Maxwell 
equations. 

The Maxwell equations in the source-free case: 

 
2

0,            0,
1 ,                ,

B E
BB E

c dt t

∇• = ∇• =

∂Ε ∂
∇× = ∇× = −

∂

G G G G
KKG G G G  (1) 

are invariant under the duality rotations [1,2]: 

 ' ,       c ' ,  Cos cBSin B ESin cBCosα α α αΕ = Ε + = − +
K K K KK K

 (2) 
in the sense that the fields also satisfy (1) ; the Noether theorem [3-9] 
shows [10] that this invariance of the Maxwell equations implies the 
continuity equation: 

 2 20

0 0

1 1 0,
2 2

E B E B
t μ μ
⎛ ⎞ ⎛ ⎞∈∂

+ +∇• × =⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

K K K
 (3) 

for the electromagnetic energy.If relations (2) are rewritten into the 
form: 

 ( )' ' ,icB iE e cB iEα+ = +
K K K K

 (4) 

the participation of the complex vector [10-13]: 
 F cB iE= +

K K K
 (5) 

follows, and expressions (1) become: 

 01,0 =×∇−
∂
∂

=•∇ Fi
t
F

c
F

GKKKK
           (6) 

 Now we show that the Maxwell equations adopt a very compact 
structure if we employ quaternions [10,14-23]. In fact, with we 
construct the quaternionic vector : 
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 ,ZYX FFF KJIF ++=  (7) 

and the quaternonic operator [24-26]: 

 
c
i

=∇ ,
z

KJI
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

yxt
 (8) 

so that the Maxwell equations (1) are carried to the following 
quaternionic version: 

 0,F =∇  (9) 
Conway [27] – Silberstein [28] introduced quaternions as a notation 
in the special theory of relativity; Silberstein [24]-Lanczos [25,29] 
were the first authors to deduce (9) (this quaternionic expression 
reminds us of the Weyl equation of massless ½ spin particles). 
 Unitary complex quaternions generate [10, 22, 30-33] proper 
Lorentz transformations, consequently, we consider as a natural fact 
to use quaternions – as in eq.(9) – for the description of the Maxwell 
field. 

2. The Fueter conditions as Debye 
expressions 

If f is an analytic function of the complex variable z=x+iy, then it has 
the form f(z)=u(x,y)+iv(x,y) with the fulfillment of the Cauchy-
Riemann relations [34]: 

 ,,
x
v

y
u

y
v

x
u

∂
∂

−=
∂
∂

∂
∂

=
∂
∂      (10) 

which thereby imply the harmonic character of u and v because: 

 ,022 =∇=∇ vu 2

2

2

2
2

yx ∂
∂

+
∂
∂

=∇  (11) 
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 The conditions (10) allow to obtain two interesting differential 
identities for u and v, which have great similarity with the Debye 
expressions [2, 35-39] for the electromagnetic potentials, in fact: 

 ( ) [ ] ,3 urru
r
ru ∇×−∇•=

KKKL
 (12) 

where we have employed the known notation from vectorial analysis: 

 ,,ˆˆ 22 yxrjyixr +=+=      K  

 [ ] ,ˆˆ,3 y
j

x
i

x
gy

y
gxgr

∂
∂

+
∂
∂

=∇
∂
∂

−
∂
∂

≡∇×
KKK         (13) 

The function if is also analytic, then if(z)=-v+iu implies that (12) is 
correct with the changes vu −→  and uv → , that is: 

 ( ) ,
3
⎥⎦
⎤

⎢⎣
⎡ ∇×+∇•=

→→→
→

urrv
r
rv  (14) 

 The expressions (12) and (14) are a reformulation of the 
Cauchy-Riemann relations, these being a strong motivation for the 
existence of Debye generators in electromagnetic theory. The solution 
of the source-free Maxwell equations can be written [2,35-39] in 
terms of two real scalar generators (Debye potentials) - Eψ and Mψ - 
which satisfy the wave equation: 

 
2

2
2 2 0,             E M c t

ψ ψ ∂
= = = −∇

∂
, , ,  (15) 

in according to: 

 
( )  ,         ,E

E M
rc r A r r
r c t

ψφ ψ ψ ∂
= − ∇ = − ×∇ +

∂

K JK JK K JK K
i

 (16) 
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up to gauge transformations. We must note that the existence of and 
implicitly follows from results of several authors [40-43]. 
 Now we shall obtain the generalization of (12) and (14) for the 
quaternionic case. Fueter[44] founded the theory of functions 
( ) o 1 2 3u u u uG q I J K= + + + , of a quaternionic variable 

0 1 2 3y y yq x I J K= + + + , and he imposed the following differential 
conditions on the , which correspond to the extension of the Cauchy-
Riemann equations (10): 

 

0 31 2

0 1 2 3

0 31 2

0 1 2 3

3 02 1

0 1 2 3

3 02 1

0 1 2 3

0   ,

0   ,

0   ,

0   .

u uu u
x y y y

u uu u
x y y y

u uu u
x y y y
u uu u
x y y y

∂ ∂∂ ∂
− − − =

∂ ∂ ∂ ∂
∂ ∂∂ ∂

+ + − =
∂ ∂ ∂ ∂

∂ ∂∂ ∂
− + + =

∂ ∂ ∂ ∂
∂ ∂∂ ∂

+ − + =
∂ ∂ ∂ ∂

 (17) 

 Imaeda [45] shows that (17) permits to establish a connection 
with the Maxwell equations, which leads to a new formulation of 
classical electrodynamics. If we introduce the operator (8): 

 ∇ =
0 1 2 3x y y y
∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂

I J K  (18) 

then (17) are equivalent to: 
 G=0∇ , (19) 
 It is remarkable the similarity between (9) and (19), of course we 
may see to (9) as a particular case of (19). 
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With the aid of (17) and taking as guide the relation (12), it is not 
difficult to deduce the Debye type expression: 

( ) ( )0 0 1 1 2 2 3 3 1 2 31 2 3
0

   

ru   ru y u y u y u r u r u r u   ,
r x

∂ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ∇ + + + + ×∇ + ×∇ + ×∇⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂

K JK K JK K JK K JK
i (20)

where 
� � � �

1 2 3 2 31
1 2 3 3 2

3 1 1 22 3
1 3 2 1

g gr iy jy ky  ,    i j k  ,  r g y y    ,
y y y y y

g g g gr g y y   ,    r g y y   .
y y y y

∂ ∂ ∂ ∂ ∂⎡ ⎤= + + ∇ = + + ×∇ ≡ −⎣ ⎦∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤×∇ ≡ − ×∇ ≡ −⎣ ⎦ ⎣ ⎦∂ ∂ ∂ ∂

K JK K JK� �

K JK K JK
(21)

 The function - ( ) 1 0 3 2u u u uG q I I J K= − − + - is also analytic, 
then in (20) we can make the changes 0 1u u→ , 1 0u u→− , 2 3u u→ −  
and 3 2u u→ , therefore: 

( ) ( )1 1 1 0 2 3 3 2 0 3 21 2 3
0

ru   ru y u y u y u r u r u r u   .
r x

∂ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ∇ + − − + − ×∇ − ×∇ + ×∇⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂

K JK K JK K JK K JK
i (22)

Similarly the analytic character of ( )-G q J and ( )-G q K leads to: 

( ) ( )

( ) ( )

2 2 1 3 2 0 3 1 3 0 11 2 3
0

3 3 1 2 2 1 3 0 2 1 01 2 3
0

    ,

    .

ru ru y u y u y u r u r u r u
r x

ru ru y u y u y u r u r u r u
r x

∂ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ∇ + − − + ×∇ − ×∇ − ×∇⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂

∂ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ∇ + − + − − ×∇ − ×∇ − ×∇⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂

K JK K JK K JK K JK
i

K JK K JK K JK K JK
i

(23)

 The relations (20), (22) and (23) represent a Debye type 
reformulation of the Fueter conditions (17), which are relations not 
explicitly found in the literature. 
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3. Quaternions, 3-rotations and Lorentz 
transformations 

In Minkowski space, any real matrix ( )4 4 jkL L× =
�

 with the property 
TL L I=
� � �

, that is: 

   ,jk jl klL L δ=  (24) 

allows to make a Lorentz transformation over an arbitrary event , via 
the expression [22,41]: 
 ' j jk kx L x=  (25) 

such that (24) implies the invariance ' 'j j j jx x x x= , this being: 

 '2 '2 '2 2 '2 2 2 2 2 2.x y z c t x y z c t+ + − = + + −  (26) 
If we define the complex 2x2 matrices:. 

 3 4 1 2

1 2 3 4

x ix x ix
X

x ix x ix
− −⎛ ⎞

= ⎜ ⎟+ − −⎝ ⎠�
,U

α β
γ δ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠�

, (27) 

with the properties: 

 
* *

†
* *

det     ,       U    ,j jX x x
α γ
β δ

⎛ ⎞
= − = ⎜ ⎟

⎝ ⎠� �
 (28) 

then the construction of a Lorentz transformation L
�

 can be 
accomplished through the relation [22,41]: 
 †' U   ,X UX=

� �� �
 (29) 

with det 1U =
�

 as required by (26). In other words, any four complex 
constants , , ,α β γ δ  subject to the unimodular condition: 
 1αδ βγ− =  (30) 
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generate also a Lorentz’s matrix. By comparison between (25) and 
(29) it results the following expressions [46] of Synge[41] – 
Rumer[47]- Aharoni[48]: 

( ) ( )

( ) ( )

( ) ( )

( )

* * * *
11 12

* * * *
13 14

* * * *
21 22

* *
23

1 . .   ,              . .   ,
2 2
1 1. .   ,               . .   ,
2 2

1. .   ,              . .   ,
2 2

. .   ,   
2

iL c c L c c

L c c L c c

iL c c L c c

iL c c

α δ βγ α δ βγ

α γ β δ α γ β δ

αδ βγ α δ β γ

αγ β δ

= + + = + +

= − + = + +

= − + = − +

= + + ( )

( ) ( )

( ) ( )

( )

* *
24

* * * *
31 32

* * * * * * * *
33 34

* * * *
41 42

             . .   ,
2

1 . .   ,                . .   ,
2 2
1 1  ,        ,
2 2
1 . .   ,                
2 2

iL c c

iL c c L c c

L L

iL c c L

αγ β δ

α β γ δ α β γ δ

αα ββ γγ δδ αα ββ γγ δδ

α β γ δ α β γ

= − +

= − + = − +

= − − + = + − −

= + + = +( )

( ) ( )* * * * * * * *
43 44

. .   ,

1 1  ,        ,
2 2

c c

L L

δ

αα ββ γγ δδ αα ββ γγ δδ

+

= − + − = + + +

(31)

where c.c. means the complex conjugate of all the previous terms. It 
is evident that the matrices produce the same, thus they are said [32, 
33, 49, 50] to constitute a two-valued representation of the Lorentz 
transformations. 

On the other hand, we may follow Lanczos [10, 22] and introduce 
the quaternions [10,14-22]: 
 4 1 2 3( ) , ,ct i x y z a a a a= + + + + + +R I J K          A = I J K    (32) 

together with the definitions: 
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 ( ) * * * *
4 1 2 3 4 1 2 3, ,a a a a a a a a= + + = + +*A - I J K        A +I J K    (33) 

so that A generates a Lorentz’s matrix via the quaternionic relation: 
 =' *R ARA  (34) 
with A fulfilling the condition: 
 2 2 2 2

1 2 3 4 1a a a a+ + + =AA=   .  (35) 

For example, (35) is verified by: 

 
( ) ( )

( ) ( )

1 2

3 4

1 ,
2 2

1 ,
2 2

ia a

ia a

γ β γ β

δ α δ α

= − + = − −

= − = − +

  ,        

  ,           
 (36) 

and, if the complex numbers satisfy (30) then (34) and (36) imply 
(31). Another option is: 

 

( ) ( )
( ) ( )
( )

* * * *
1 2

3 4

1
* * 21 1 1

2 2

P P P P

P P P P

a iQ e e a Q e e

a iQ e e a Q e e

P M iN Q

λ η λ η

λ η

− −

− −

−

= + = −

= − = − +

= + = −

   ,        ,

   ,                , 

    ,                 ,

 (37) 

where M,N are arbitrary real numbers, and λ η, are any complex 
numbers such that 1λη ≠ . Eqs. (34) and (37) give us the following 
expressions [46] of Greenberg-Knauer [51] for L

�
 : 
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( ) ( )
( ) ( )
( )

* *
11 12

* *
13 14

*
21 22

1 . .    ,                         1 . .    ,

. .    ,                          . .    ,

1 . .    ,                      

iN iN

iN iN

iN iN

L Te c c L iTe c c

L Te c c L Te c c

L iTe c c L Te

λ η λ η

η λ η λ

λη− −

= + + = − +

= − + = − + +

= + + = − ( )
( ) ( )

( ) ( )
( ) ( )

*

* *
23 24

31 32

* *
33 34

1 . . , 

. .    ,                       . .    ,   

. .  ,                       . .  ,

1 1   ,      1

iN iN

M M M M

M M M

c c

L iTe c c L iTe c c

L T e e c c L iT e e c c

L T e e L T e

λη

η λ η λ

λ η λ η

λλ ηη λλ

− −

− −

−

− +

= − + = − + +

= − + = + +

⎡ ⎤= − + − = − +⎣ ⎦ ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

* *

41 42

* * * *
43 44

1   ,

. .    ,                  . .    ,

1 1   ,   1 1   ,

M

M M M M

M M M M

e

L T e e c c L iT e e c c

L T e e L T e e

ηη

λ η λ η

λλ ηη λλ ηη

−

− −

− −

⎡ ⎤− +⎣ ⎦

= − + + = − + +

⎡ ⎤ ⎡ ⎤= − − − − = + + +⎣ ⎦ ⎣ ⎦

(38)

with 11T= 1
2

λη −−  well behaved because 1λη ≠ . Sachs [52] 

obtained some special cases of (38). The refs. [50, 53] have important 
applications of (38) to the Newman-Penrose formalism [54, 55] in 
general relativity. 

Now we consider that A is a real unitary quaternion with their four 
components ja  written in terms of two complex numbers α  andβ  : 

 

( ) ( )

( ) ( )

* *
1 2

* *
3 4

* *

1  ,        ,
2 2

1  ,           ,
2 2

1

ia a

ia a

β β β β

α α α α

αα ββ

= − − = − +

= − = − +

+ =

 (39) 

then (34) implies a rotation in the 3-space: 

 
'
'    ,    '    ,
'

x x
y R y t t
z z

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟≡ =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

�
 (40) 
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where [47,56]: 

( ) ( ) ( )

( ) ( ) ( )
( )

2 *2 2 *2 2 *2 2 *2 * *

2 *2 2 *2 2 *2 2 *2 * *

* * * * * *

1
2 2
1 1
2 2

i

R i

i

α α β β α α β β αβ α β

α α β β α α β β αβ α β

αβ α β αβ αβ αα ββ

⎛ ⎞+ − − − − + − − +⎜ ⎟
⎜ ⎟
⎜ ⎟= − − + + + + − −⎜ ⎟
⎜ ⎟

+ − −⎜ ⎟⎜ ⎟
⎝ ⎠

�
(41)

is an orthogonal matrix (element of O(3)) because: 
   .TRR I=

� � �
 (42) 

The representation of an arbitrary rotation of three-space with the 
help of a real quaternion of length 1 was known by Euler and it was 
employed by him [10, 57]. 

It is interesting to note that if we make * *
4 0, ,x γ β δ α= = − =  into 

(29), then we obtain (40) and (41), being U
�

 an element of SU (2) 
because: 

 
†

* *

* *

 ,   UU    ,

det 1   .

U I

U

α β
β α

αα ββ

⎛ ⎞
= =⎜ ⎟−⎝ ⎠

= + =

�� � �

�

 (43) 

The unitary matrices U±
�

generate the same orthogonal matrix R
�

, 
thus SU (2) is a two-valued representation of O(3) [32, 33, 56, 58-62]. 
On the other hand, (39) is equivalent to: 
 4 3 2 1  ,        .a ia a iaα β= − = − −  (44) 

so that takes the form: 
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( ),

,
10

01
0

0
01
10

10
01

321~4

3214
~

zyx aaaiIa

ia
i

i
iaiaaU

σσσ ++−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

 (45) 

where x y z, ,σ σ σ  are the known matrices of Pauli. If now we use the 
formal association [21]: 
 1 x y zI i i iσ σ σ→ − → − → − →   ,     I   ,     J   ,     K   

�
 (46) 

it follows that U → A
�

, which motivates the intimate relationship 
between complex 2x2 unitary matrices and real 3x3 orthogonal 
matrices generated by real quaternions of length 1. 

Thus we have seen that (29) or (34) describe completely the 
rotations in three and four dimensions. 
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