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Three previous papers in this series introduce and discuss the 
Scale Expanding Cosmos (SEC) theory. This paper proposes a 
connection between the theory’s discrete, stepwise, 
cosmological scale expansion and quantum mechanics. Very 
high frequency, small amplitude, temporal excitation in the 
metrical coefficients of the Minkowski spacetime is modelled 
in general relativity. DeBroglie type matter-waves are shown 
to result from motion of spatially confined metrics oscillating 
at the Compton frequency. The momentum “guiding function” 
of Bohm and de Broglie naturally follows from the geodesic 
equations of general relativity. A clear physical explanation to 
the double-slit interference experiment is given. Setting part of 
the Ricci scalar equal to zero gives a wave equation from 
which the Schrödinger equation is derived. This possible link 
between general relativity theory and quantum theory explains 
the particle-wave duality and suggests that quantum 
mechanical wave functions are amplitude and phase 
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modulations of very high frequency oscillations in general 
relativity’s metrical coefficients. 

Keywords: Quantum Ontology, Quantum Mechanics vs. 
General Relativity, Oscillating spacetime metrics, Particle-
wave Duality, Double-slit experiment 

1. Introduction. 
Three previous papers in this journal have presented properties of a 
new cosmological model, the Scale Expanding Cosmos (SEC). The 
first paper showed that the SEC model resolves several cosmological 
puzzles and agrees better with observational data. The second paper 
investigated cosmic drag predicted by the SEC theory and suggested 
ways of confirming this new phenomenon. The third paper dealt with 
gravitation in the SEC showing that the gravitational potential is 
modified by the scale expansion and rolls off at the Hubble distance. 
It also appears that the modified gravitational potential might prevent 
the formation of black holes. In this paper I show that the discrete 
scale expansion mode of the SEC theory might provide an ontological 
explanation to quantum mechanics.  

Anyone first encountering quantum theory is puzzled by the fact 
that no ontological explanation to the quantum world is given. This 
article shows that quantum mechanics follows naturally if the metrical 
coefficients (metrics) of spacetime oscillate at very high frequencies. 
It appears that this could explain the particle-wave duality and help 
resolve other quantum theoretical puzzles, for example the double slit 
experiment.  

It is shown that oscillating metrics treated in General Relativity 
(GR) naturally leads to Quantum Mechanics (QM) if particles always 
were accompanied by oscillation of the spacetime metrics at the 
Compton frequency. In this view the quantum mechanical wave 
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functions are modulations of this Compton “carrier” oscillation of the 
spacetime metrics. I derive the de Broglie matter-wave, the de 
Broglie/Bohm “pilot wave” momentum relation, and the Schrödinger 
equation from the GR line element assuming that the metrics 
oscillate. A detailed physical explanation for the double slit particle 
interference is also given. 

2. The SEC expansion mode. 
In my first paper in this series (Masreliez, 2004a) the SEC theory was 
introduced as a way of achieving cosmological expansion without 
cosmological aging. Scale expansion implies that all epochs are 
equivalent and provides a direction of time via cosmic drag, which 
over time diminishes relative motion. Equations of motion are not 
time-symmetrical in the SEC.  

GR occupies a prominent position in modern cosmology and any 
new cosmos theory ignoring GR would be unacceptable. Yet, the 
universe is what it is and we should not expect that it necessarily 
confirms to science at our present level of understanding. This is an 
ancient dilemma; we are always constrained by the level of 
contemporary science, even if we suspect it to be inadequate. But, we 
have no choice; cosmology without science is metaphysics.  

In my opinion Parmenides’ conclusion that existence rules out 
non-existence is crucial to any theory of the universe, because it is 
inconceivable the anything ever could emerge from non-existence. 
We must conclude that existence is eternal and accept that the 
universe as a whole does not age.  

If we try to use GR to model eternal scale expansion, all epochs 
ought to be equivalent and be modeled by the same line element. 
However, we find that epochs with identical expanding line elements 
cannot be connected via continuous variable transformation. This is 
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disappointing since line elements related by continuous variable 
transformation are physically equivalent in GR. Thus, by GR different 
epochs would not be physically equivalent in the SEC. Since there 
seems to be no reason why a certain cosmological scale should take 
preference, it appears that GR may fall short, at least when it comes to 
modeling cosmological scale expansion. 

However, if we allow discrete scale transformation in addition to 
continuous variable transformation it would be possible to model the 
SEC using GR, since the GR is “blind” to discrete scale increments. 
This suggests a novel expansion mode whereby continuous scale 
expansion is complemented by discrete scale adjustment. One might 
visualize this process is a piecewise continuously expanding 
cosmological scale at all levels from galaxies to elementary particles, 
with everything participating in the expansion, repeatedly and 
incrementally “jumping into” slightly larger scales at very high 
frequencies. This process of incremental scale expansion could be 
what we perceive as the progression of time.  

In this paper I will show that this incremental nature of the scale 
expansion would explain why the world is “quantum mechanical” and 
provide the missing link between GR and QM. To further illustrate 
the expansion process, let us investigate the SEC expansion mode at a 
certain fixed frequency and assume the following steps: 

1. Starting at a scale exp(t/T) the scale expands continuously 
from t to t+∆t. 

2. At t+∆t the scale is exp(∆t/T)·exp(t/T) and the GR equations 
are identical to those of scale exp(t/T) since GR is blind to 
discrete scale increments. 

3. The discrete scale increment exp(∆t/T) may therefore be 
ignored, which will restore the original line element in step 1. 
Another way to see this novel step would be to admit a 
discrete change in the pace of proper time ds => exp(∆t/T)·ds. 
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The scale increment appears on both sides of the line element 
and cancels out, restoring the original line element. 

 

 
 
This expansion loop is illustrated in Figure 1. Admittedly this is a 
very simplified picture since this expansion process might occur 
simultaneously at many different frequencies creating the vacuum 
zero point field.  

Below I will show that if particles are associated with oscillating 
metrics at the Compton frequency, QM follows naturally from the GR 
line element.  

3. The modulated line element and the matter-
wave. 
The SEC theory implies that there exists a cosmological reference 
frame and that the cosmological scale expansion at any epoch might 
be modeled in this frame by GR using the SEC line element: 
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 ( )2 2 / 2 2 2 2t Tds e dt dx dy dz= − − −  (3.1) 

We will investigate very high frequency modulation of the four 
metrical coefficients in this line element. In this treatment the 
exponential scale factor exp(2t/T) will be replaced by high frequency 
oscillation of the metrics.  

Consider the line element: 

 ( ) ( )22 2 2 2 2p tds e dt dx dy dz= − − −  (3.2) 

Assume a periodic modulating function,  

 p(t), (3.3) 
period modulation with angular velocity ω ~ 1 ptω , tp being period 
of modulation <<T. In particular with p(t)=C·cos(ω t)=Re{C exp(–
iωt)} where C = constant: 

 ( ){ }( )2 2 2 2 2exp Re 2 i tds Ce dt dx dy dzω−= − − −  (3.4) 

In the following I will omit the label Re( ). The use of a complex 
exponent is to be interpreted as the real part, for example i·exp(-iω t) 
means sin(ω t). This will be justified below. 

Motion of a spatially confined region with the line element (3.4) at 
a constant velocity v in the x direction may be modeled by the Lorentz 
transformation: 

 
( )
( )

( ) 12

' '

' '

1

x x vt

t t vx

v

γ

γ

γ
−

= −

= −

= −

 (3.5) 

The modulating part of the exponent in the metric then becomes: 
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( ' ')2 2i t i vx tCe Ceω γω− −→  (3.6) 

If the modulation is confined to spatial region (particle) the metric 
modulation exp(iγωνx’) is reminiscent of the quantum mechanical 
wave function of a single moving particle with wave number: 

 k vγω=  (3.7) 
Thus, motion of a locally confined spatial region with oscillating 

metrics has the effect of spatially modulating the phase of the 
excitation. 

It appears that this spatial modulation could be related to the 
quantum mechanical wave function.  

The relationship between the momentum and the wave number is: 
 p k mv= ==  (3.8) 
which from (3.7) implies m γω= = . This relation suggests that every 
particle is associated with a metric excitation frequency that 
corresponds to its energy as given by (3.8), i.e. the relativistic 
Compton frequency. Motion causes this oscillation to be “phase 
modulated” in the form of a spatial wave, exp(ikx) that modulates the 
Compton oscillation. This could be the de Broglie “matter-wave”. 
Thus, if Compton oscillation accompanies each particle as modeled 
by (3.4) this oscillation will in motion be modulated by a de Broglie 
type spatial matter-wave. In this interpretation the quantum 
mechanical matter-wave is a spatial wave pattern in the metrics of 
spacetime formed by a relativistic effect due to time dilation 
according to (3.6). The very high Compton frequency corresponding 
to the particle matter energy makes this small relativistic temporal 
effect significant even at relatively low velocities. With this 
interpretation the matter-wave is a purely relativistic phenomenon 
generated by motion. 
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To explore this possible connection between GR and QM a bit 
further, consider the line element: 

 ( )2 2 2 2 2exp 2 , , i tds C h x y z e dt dx dy dzγω−⎡ ⎤ ⎡ ⎤= ⋅ − − −⎣ ⎦ ⎣ ⎦  (3.9) 

C is a constant. Here a possibly complex valued wave function h(x,y,z) 
provides amplitude and phase modulation of the Compton oscillation. 
The geodesic equation of GR for motion in the x-direction becomes at 
low velocities: 

 

2
1 2 1
00 102 ( ) 2 small terms with the 

velocity squared.

d x dt dt dx
ds ds dsds

= −Γ − Γ +

 
The two Christoffel symbols corresponding to the line element 

(3.4) are: 
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i t i t
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C ih e

ϖ ϖ
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−
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=

 (3.10) 

Since all velocities are small we have: 

 ( )

( ) ( )
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exp

i t

i t

i t i t

dt C h e
ds
d x d dx dt d dx C h e
ds ds dt ds ds dt
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 (3.11) 

The geodesic equation becomes: 
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( ) ( )
2

2 2i t i t i t
x

d x dx dxCi he Ch e Ci he
dt dt dt

ϖ ϖ ϖϖ ϖ− − −+ = − +

 (3.12) 
-Setting terms modulated by  equal:

1 1 Im ;  Im=imaginary part

i t

x x
x

e
h hdxv i

dt h h

ϖ

ϖ ϖ
⎛ ⎞ ⎛ ⎞= = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

In general using (3.8): 

 Im h
h

ϖ ∇
= ⋅= =p v =  (3.13) 

 ( )
2

2 Re i td C h e
dt

ϖ−= − ⋅ ∆ ⋅
x  (3.14) 

If the function h(x,y,z), which modulates the Compton oscillation, 
is proportional to the quantum mechanical wave function ψ, relation 
(3.13) is the de Broglie/Bohm [Bohm, 1952] momentum relation, i.e. 
the “pilot guiding function”.  

This shows that de Broglie’s and Bohm’s momentum relation 
follows directly from the geodesic equation of GR if the spacetime 
metrics of a particle oscillate at the Compton frequency. Thus, the 
previously mysterious guiding function finds its physical explanation 
if a particle always is accompanied (or sustained) by oscillation of the 
spacetime metrics at the Compton frequency.  

4. Deriving a metric wave equation from 
General Relativity. 

Einstein’s GR equations are: 

 1
2

G R g R K Tµν µν µν µν= − = ⋅  (4.1) 
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As usual Gµν is Einstein’s tensor, Rµν is the Ricci tensor, gµν the 
metric tensor. K is Einstein’s constant and Tµν is the energy-
momentum tensor. These ten equations reduce to four if the matrix 
gµν is diagonal. 

Consider the line element: 

 

( ) ( ) ( )
( ) ( )

( ) ( )

2 , ,2 2 2 2 2

2 , ,
00

2 , , ; 1, 2,3

0;

Ch x y z p t

Ch x y z p t

Ch x y z p t

ds e dt dx dy dz

g e

g e

g
µµ

µν

µ

µ ν

⋅

⋅

⋅

= − − −

=

= − =

= ≠

 (4.2) 

The Ricci tensor is as usual: 

 
, ,

, ,

lin quad

lin

quad

R R R

R

R

α α α β α β
µν µν α µα ν µν αβ µβ αν

α α
µν α µα ν

α β α β
µν αβ µβ αν

= Γ − Γ + Γ Γ − Γ Γ = +

= Γ − Γ

= Γ Γ − Γ Γ

 (4.3) 

Here the Christoffel symbols are: 

 ( ), , ,
1
2

g g g gα αβ
µν βµ ν βν µ µν βΓ = + −  (4.4) 

Einstein’s summation convention for repeated indices applies and 
all Christoffel symbols contain first derivatives of the metrical 
coefficients as indicated by the index following the comma.  

The first two terms in (4.3) are linear in the second derivatives of 
h(x,y,z)p(t) and will average to zero assuming that both p(t) and its 
time derivatives average to zero. However, the amplitude could be 
large if the frequency is high. The last two terms, which are quadratic 
in the derivatives of the metrics, typically do not average to zero. I 
will treat these two contributions separately.  
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The contributions from the two linear terms are: 

 
( )

1 2 3 1 2 3
00 00,1 00,2 00,3 01,0 02,0 03,0

3
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xx yy zz

R

h h h p h p

= Γ + Γ + Γ − Γ − Γ − Γ

= + + ⋅ − ⋅ ��
 (4.5) 

 
( )

0 2 3 0 2 3
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3
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R

h h h p h p

= Γ + Γ + Γ − Γ − Γ − Γ

= − + + ⋅ + ⋅ ��
 (4.6) 

 
( )

0 1 3 0 1 3
22 22,0 22,1 22,3 20,2 21,2 23,2

3
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xx zz yy

R

h h h p h p

= Γ + Γ + Γ − Γ − Γ − Γ

= − + + ⋅ + ⋅ ��
 (4.7) 

 
( )

0 1 2 0 1 2
33 33,0 33,1 33,2 30,3 31,3 32,3

3

lin

xx yy zz

R

h h h p h p

= Γ + Γ + Γ − Γ − Γ − Γ

= − + + ⋅ + ⋅ ��
 (4.8) 

The Ricci scalar based on the linear terms in (4.3) is given by: 

 ( )6lin lin
xx yy zzR g R h h h p h pµν

µν ⎡ ⎤= = ⋅ + + ⋅ − ⋅⎣ ⎦��  (4.9) 

In my third paper (Masreliez, 2004c) Hilbert’s action integral was 
modified to include the scale: 

 
( )

( )

2

2

SEC SEC

SEC

I S G K T g dV

S R K T g dV

= ⋅ − ⋅ − ⋅ =

− ⋅ + ⋅ − ⋅

∫
∫

 (4.10) 

Setting the variation of the scale S equal to zero implies R+K·TSEC=0. 
However, the amplitude of the oscillatory linear Ricci scalar is very 
much larger than the term TSEC since C·ω2>>1/T2, see below. 
Therefore, for all practical purposes: 

 0linR =  (4.12) 
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From (4.9): 

 ( ) 0xx yy zzh h h p h p+ + ⋅ − ⋅ =��  (4.13) 

Or: 

 
2

2
2 0; h p

t
∂ Φ

∇ Φ − = Φ = ⋅
∂

 (4.14) 

This is a standard wave equation with known solutions expressing 
resonating spatial metrics in response to the scale excitation.  
For example, if p(t)=cos(ωt) one possible solution is: 
 ( ) ( ) ( ) ( ), , cos cos cosx x y y z zh x y z C k x k y k zϕ ϕ ϕ= ⋅ ± + ± + ± + (4.15) 

 
2 2 2 2
x y zk k k ω+ + =   

This is a family of three-dimensional standing waves. Waves moving 
in the positive or negative direction at the speed of light are also 
solutions to (4.14). 

The contribution to the Ricci scalar from the two last terms in 
relation (4.3) given by Rquad typically does not average to zero. These 
terms contain “real” positive or negative energy density. However, 
the linear and quadratic parts of the Ricci scalar can be treated 
separately due to their different characters.  

The wave solution h(x,y,z) of (4.14), which could be proportional 
to the quantum mechanical wave function ψ, may be interpreted as 
amplitude and phase modulation of a high frequency carrier 
oscillation p(t) in the metrics of spacetime.  

The remaining quadratic part Rquad of the Ricci tensor could 
generate a particle’s matter energy. The energy density expressed by 
terms in Rquad is proportional K-1·(C·ω)2. If the diameter of the particle 
were in the order of 1/ω the energy would be proportional to K-1·C2/ 
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ω. Setting this equal to a particle’s energy (hbar)·ω the oscillation 
amplitude becomes:  
 plC L ω⋅∼   (4.16) 

where Lpl is the Planck length. For the electron C is in the order of 10-

23 since ω=1012 /m and Lpl=1.6 ⋅10-35 m. Clearly C·ω2>>1/T2 with 
T=1026 m.  

Note that second derivatives of the modulating factor in the metric 
appear linearly in the linear wave equation (4.14). This justifies the 
use of a complex exponent to express amplitude and phase 
modulation and permits superposition of wave functions. 

5. The approach of Louis de Broglie and David 
Bohm. 
Over the years several attempts have been made to interpret QM. 
Louis de Broglie suggested at the Solvay conference in 1927 that a 
particle might be guided by a “pilot wave” directly related to the wave 
function. At this meeting Wolfgang Pauli challenged him to explain 
what happens to his pilot wave at scattering, which causes a single 
wave function to split up into a superposition of many different 
components. A single pilot wave corresponding to this superposed 
wave function cannot explain the different possible trajectories taken 
by the scattered particle. David Bohm, who independently revived de 
Broglie’s idea in the 1950s, countered this challenge by speculating 
that decoherence quickly occurs between the different branches of the 
scattered wave function and that the scattered particle selects only one 
of the possible branches leaving the other branches “empty”.  

The validity of this explanation is supported by our interpretation 
where scattered contributions to the wave function at difference 
energies are uncorrelated due to their different Compton frequencies. 
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The various possible trajectories appear as different solutions to the 
geodesic equation, one for each Compton frequency. After scattering, 
the particle will take one of several possible trajectories 
corresponding to its energy.  

David Bohm further developed de Broglie’s proposal in his hidden 
variable theory of 1952-1954 [Bohm, 1952 and 1954]. He was able to 
show that QM may be developed in a straightforward manner based 
on the assumption that there exists in Nature a “quantum potential” of 
the form:  

 
2 2

Quantum potential = -
2m

Q
Q

∇=  (5.1) 

The real valued function Q is related to the amplitude of the QM wave 
function by: 

 
/iU

Q eψ = ⋅
=

 (5.2) 

The phase function U is real valued and related to the momentum by: 

 U= ∇p  (5.3) 
From relation (4.14) we have: 

 
2 2 2

2 2
h p

m h m p
∇

∝
��= =  (5.4) 

This is (5.1) if h is real valued. Thus, according to GR oscillating 
metrics could generate a “quantum potential” of the form proposed by 
Bohm. This is an important observation, since Bohm demonstrates 
that QM can be derived based on the assumption that this quantum 
potential actually exists. However, in the past the source of the 
quantum potential has been a mystery and generally Bohm’s theory 
has not been well accepted.  
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More recent versions of Bohm’s theory championed by John Bell 
[Bell 1986], and others [for example Dürr, Goldstein and Zanghi 
1996, Holland 1993], show that a consistent quantum mechanical 
theory can be derived based on just two assumptions: 

There exists a function, ψ (of unspecified ontology), which 
satisfies Schrödinger’s wave equation and for small velocities, v<<c, 
the motion of particles satisfies the relation: 

 Im ψ
ψ

∇
⋅=p =  (5.5) 

This is (5.3) expressed in a different form. We have shown in 
(3.13) that (5.5) follows directly from the geodesic equation of GR 
assuming oscillating spacetime metrics and David Bohm and his 
followers have shown that (3.13) together with the Schrödinger 
equation may be used to construct a theory that in all respects is 
equivalent to classical QM.  

One puzzling aspect of Bohm’s theory is the non-local character of 
the momentum relation (5.5). Since it contains the ratio between two 
functions it could exert influence over vast distances even at very low 
amplitudes. In the past it was difficult to understand how this might 
be possible and how distant wave functions of negligible power could 
influence the local motion of particles. Bohm called this property 
“active information” [Bohm, 1993] proposing that (5.5) somehow 
informs each particle how to move without exerting any physical 
force. This mysterious long-range action might have discouraged 
more substantial support for Bohm’s theory since it appears rather 
speculative.  

However, with the present interpretation this “pilot wave” action 
finds its natural explanation; relation (5.5) expresses modulation of 
the spacetime metrics without carrying energy. A particle moves on a 
geodesic without being subjected to any external force. However, if 
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the local spacetime is curved relative to a stationary observer, the 
particle trajectory might be curved and regions of resonance might be 
preferred, see below. In this way the motion of a particle might be 
influenced without energy transfer, i.e. without any external force. 

6. The generalized geodesic. 
The proposition that the QM wave functions might be modulations of 
the metrics of spacetime and that the pilot function is the GR geodesic 
permit us the generalize the geodesic relation (3.13) in a 
straightforward manner using a more general line element: 

 ( ) ( ), , ,2 2 2 2 2exp 2 , , , i x y z tds C h x y z t e dt dx dy dz− Φ⎡ ⎤ ⎡ ⎤= ⋅ ⋅ − − −⎣ ⎦⎣ ⎦ (6.1) 

Proceeding as in Section 3 assuming velocities much lower than 
the speed of light we get the generalized geodesic: 

 Im h i h
hi h
t t

∇ − ∇Φ ⋅
=

∂ ∂Φ
+ ⋅

∂ ∂

v  (6.2) 

As an example, consider a particle moving with wave number k in 
a wave field h: 

 
( )

( ) ( )

, ,

where , ,  and , ,x y z

h h x y z
t

x y z k k k

γω
=

Φ = − ⋅ +

= =

k x

x k

 (6.3) 

Applying (6.2) we again get: 

 
γω

=
kv  (6.4) 

This is trivially true if k is constant. However, if the wave field 
interacts with the motion, k is not constant. In this case we could 
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transform the line element (5.1) into the particle’s instantaneous 
inertial frame at (xt,yt,zt) by applying the (inverse) Lorentz 
transformation. 

Let xt=x’+x” where x’ is a vector parallel to the velocity and x” is 
perpendicular to it. 
Define new variables: 

 
( )

( )
" ' '

' '

t

t t

γ

γ

= + + ⋅

= + ⋅

x x x v

v x
 (6.5) 

We then get the same form of the line element (6.1) but with 
transformed functions: 

 ( ) ( ) ( )" ' ' , " ' ' , " ' '

'
x y zh h x x v t y y v t z z v t

t

γ γ γ

ω

⎡ ⎤= + + + + + +⎣ ⎦
Φ = − ⋅ +k x"

 (6.5) 

The geodesic (5.2) evaluated at xt with differentiations with respect to 
x’ and t’ becomes: 

  

( )
( )

( )
2

2

Im
h hhv

i h h hh

γδ
γ ω ω

γ

⎡ ⎤ −∇ ⋅ ∇ ⋅⋅∇
= =⎢ ⎥∇ ⋅ + ⎛ ⎞⎣ ⎦ ∇ ⋅ + ⎜ ⎟

⎝ ⎠

v
v

v
 (6.6) 

This holds if h is real valued. By Lorentz transforming (6.3) into the 
particle’s instantaneous inertial rest frame we get (6.6) according to 
which the particle still has a velocity relative to the inertial frame. In 
classical physics this velocity would be zero; instead there might be 
acceleration between the inertial frame and the particle frame. The 
difference here is due to the geodesic (6.2) that deals with velocity 
rather than acceleration. How this should be interpreted is not 
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obvious. However, (6.6) might be seen as giving a velocity correction 
between consecutive discrete temporal frames. Perhaps the particle 
trajectory evolves according to (6.6) with time increments comparable 
to the period of the Compton frequency.  

The geodesic may then be evaluated from the iteration: 
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( ) ( )
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1 1

1
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= + ⋅∆

= + ∆

∇ = ∇

v
v

v
v v v
x x v

x

 (6.7) 

Relation (6.7) gives a velocity change induced by the wave function h 
that counteracts positive or negative motion in the direction of the 
gradient of the wave function striving to align a particle’s trajectory 
perpendicular to the gradient vector or at an extreme of h. The 
geodesic trajectory depends on the locally changing wave function 
relative to the moving particle permitting both feedback interactions 
by self-interference and response to external influences.  

7. The double slit interference experiment. 
Consider the double slit experiment in which a particle moves parallel 
to the x-axis toward a screen at x=0 with two narrow slits located at 
y=y0 and y= -y0. After passing the slits the particle strikes a second 
screen located at x = D, where an interference pattern develops even 
when particles arrive one at a time.  

According to the standard interpretation the particle somehow 
passes through both slits at the same time and “interferes with itself”. 
David Bohm and others have shown that an interference pattern 



 Apeiron, Vol. 12, No. 1, January 2005 107 

© 2005 C. Roy Keys Inc. — http://redshift.vif.com 

develops if the momentum relation (3.13) guides the particle, 
assuming that a wave function associated with the particle 
simultaneously passes through both slits. However, this does not 
explain the physical mechanism at work. This problem is addressed 
here. 

When the particle passes through one of the two slits, it might 
become slightly deflected and move in the y-direction as well as the 
x-direction. The matter-wave it generates interferes with the double 
slit geometry. Assume that the particle after passing the screen has the 
wave vector (kx , ky) and that its matter-wave interferes with the two 
slits generating a standing wave pattern : 

 
( ) ( ){ }

( ) ( )

0 0

02 cos

x y x y

x y

i k x i k y y i k x i k y y

i k x k y
y

f C e e

C e k y

⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅ +

⋅ ⋅ + ⋅

= ⋅ + =

= ⋅ ⋅ ⋅ ⋅
 (7.1) 

Defining the wave vector by: 
 ;x x y yk v k vγ ω γ ω= ⋅ ⋅ = ⋅ ⋅  (7.2) 

Making the approximation: 
/y xv y v x≈ ⋅  

We have: 
 

 ( )/ 2 /y y xk v k y x y xγ ω π λ= ⋅ ⋅ = ⋅ = ⋅ ⋅  (7.3) 

λ is the wave length of the matter wave in the x-direction. 
So that: 
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(7.4) 
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This implies: 

 
( )

( )
0cos /x

x y

h k y y x

k x k y tγω

= ⋅ ⋅

Φ = − ⋅ + ⋅ +
 (7.5) 

The resonance pattern is fixed in space and is determined by the 
geometry of the two slits. It expresses a potential that is activated by 
the particle’s matter-wave, which resonates with varying amplitude in 
response to the particle’s position and velocity. The wave function h 
represents the amplitude modulation of the Compton excitation if the 
particle is present at (x, y).  

Following the procedure above by Lorentz transforming (7.5) into 
the instantaneous rest frame we get:  
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 (7.6) 

We have: 
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 (7.7)  

This holds true if kx is constant, i.e. if vx is constant. The geodesic 
(7.6) becomes: 
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 y x
xv v
y

δ δ= −   (7.9) 

The velocity correction for vx is much smaller than for vy if y<<x, 
which justifies the assumption that kx is constant. The particle’s 
direction changes as long as vy/vx differs from y/x, i.e. as long as the 
particle does not move on a straight line from the origin at x=y=0. 
Since the particle passes through one of the two slits it does not come 
from the origin and its direction will change to align itself with one of 
the resonance ridges of the wave function. Between these ridges 
where the wave function is zero we have: 
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 (7.10) 

Thus, the velocity in the y-direction becomes large where the wave 
function (7.4) is close to zero even if vy/vx is close to y/x and the 
particle avoids these regions.  

 [ ]
( )

0 0
22

0 0
2

Where y  we have for / / 2 :

tan ( / ) / ( / )

/

x

x x x y
y

x k y y x n

k y y x k y x v y x v
v

π π

δ
ω γ

⋅

<< ⋅ ⋅ ≠ + ⋅

⎡ ⎤− ⋅ − +⎣ ⎦≈
 (7.11) 

The direction changes rapidly close to the slits but slower with 
increasing distance, x, from the slits.  
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This explains the interference fringes around each (positive and 
negative) resonance crest of the wave function and provides a 
physical explanation to the double slit particle interference 
phenomenon. The particle interacts with its own matter-wave 
occupying regions where the matter-wave resonates with the 
geometry. Simulated trajectories based on (7.8) and (7.9) using the 
approach of (6.7) show that vy/vx converges rapidly to y/x, which 
means that the particle after an initial adjustment travels in a straight 
line from the origin. The direction y/x changes when the initial 
velocities vy change as shown in Figure 2. The particles prefer certain 
directions and form the fringe pattern on the screen. This gives a 
physical explanation for the double slit experiment. 

 

 



 Apeiron, Vol. 12, No. 1, January 2005 111 

© 2005 C. Roy Keys Inc. — http://redshift.vif.com 

Self-interference might also explain the stable states for electrons 
in an atom. Resonance defines regions (corresponding to different 
energy states) that confine the electrons. Motion in the radial direction 
is counteracted by the geodesic (6.6). The trajectories line up 
perpendicular to the radial gradient resulting in circular orbits. These 
regions are created when the matter-wave resonates with the 
geometry and with externally imposed energy potentials, for example 
the electrostatic field. The self-interfering matter-wave automatically 
confines the electron. Stable states are sustained by feedback since the 
electron’s motion defines the matter-wave, which resonates with the 
geometry and controls the motion. The electron moves on a geodesic, 
which explains why it does not radiate electromagnetic energy. 

8. Deriving the Schrödinger equation from GR 
assuming oscillating spacetime metrics 
Consider the modulated Minkowski line element: 
 ( ) ( )2 2 2 2 2exp 2 , , , i tds C x y z t e dt dx dy dzϖψ −⎡ ⎤⎣ ⎦= ⋅ ⋅ ⋅ − − −  (8.1) 

As before, setting the Ricci scalar corresponding to this line 
element equal to zero results in the linear wave equation (4.14) and 
justifies the use of the complex notations. I will assume that the 
temporal oscillation is associated with a particle, for example an 
electron, and that it is confined to a small spatial, region.  

Now assume that the phase of this oscillation depends on the 
location as modeled by a scalar energy potential V and that its 
Compton frequency might change slightly, which corresponds to 
changing the energy by E, which is assumed to be constant.  

Assume further that the wave function ψ that modulates the metric 
coefficients has the following form: 
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 ( ) ( ) ( )( 1 / )/, ,, , , i V miEth x y z e ex y z t ϖ
ψ

+ ⋅− ∫= ⋅ ⋅
ds n= v  (8.2) 

ds is the path increment vector, n a unit vector and V=V(x,y,z). 
Carrying out the differentiations in (4.14) and separating terms: 
Terms not containing n: 
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Terms containing n: 
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Assuming that the velocity field is divergence free this becomes: 

 2(1 ) 0
V h V
m h m

∇ ∇
+ ⋅ + =⎡ ⎤ ⋅⎢ ⎥⎣ ⎦

n  (8.4a) 

Considering (8.3) we have if V<<m: 
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  (8.6) 

From (8.3), (8.5) and (8.6) we get the Schrödinger equation: 

( )
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2 0
2

where  

h V E h
m

m ϖ

− ∇ + − ⋅ =

=

=

=

 (8.7) 

This derivation may easily be generalized to the situation where h 
also depends on time. We then get the additional terms: 



 Apeiron, Vol. 12, No. 1, January 2005 113 

© 2005 C. Roy Keys Inc. — http://redshift.vif.com 

 

2

2

2

2 2

2
2

E h h hi i
t t t
h hi i

m t t

ϖ ϖ

ϖ

∂ ∂ ∂⎛ ⎞+ − ≈⎜ ⎟ ∂ ∂ ∂⎝ ⎠
∂ ∂⎛ ⎞− = −⎜ ⎟∂ ∂⎝ ⎠

=
= =

 (8.8) 

Moving this term to the right hand side of (8.7): 

 ( )
2

2

2
hh V E h i

m t
∂

− ∇ + − ⋅ =
∂

= =  (8.9) 

This is the time dependent Schrödinger equation.  
We saw that the vector n does not influence our derivation of the 

Schrödinger equation; it only depends on the location of the particle 
and its relativistic energy as given by its Compton frequency. This 
suggests that the Schrödinger equation models resonance conditions 
of the spacetime metrics that only depend on the location and 
Compton frequency of a particle, see further section 10.  

I will not analyze the imaginary part here since it is not needed to 
derive the Schrödinger equation.  

The development above demonstrates that the Schrödinger 
equation can be obtained directly from the GR line element (8.1) by 
setting the linear part of the Ricci scalar, which contains second 
derivatives of the metric, equal to zero. Lorentz transformation retains 
the form of the wave equation (4.14) facilitating transformation 
between inertial frames. Although the form of the Schrödinger 
equation generally will change with coordinate transformation, the 
line element representation (8.1) allows the corresponding wave 
equation to be derived in any coordinate system simply by setting the 
Ricci scalar equal to zero.  

The function h, which is a solution to the Schrödinger equation, 
models resonance conditions in the metrics of spacetime. This wave 
function depends on the surrounding geometry and on the applied 
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field potential V. When a particle moves, the wave field surrounding 
it creates resonance regions, which guide the particle via the 
generalized geodesic of section 6. If other particles also are present 
accompanied by their own wave fields, the resulting wave field is a 
superposition of all individual fields. However, since a particular 
particle’s wave function is modulated by its own very high frequency 
Compton excitation, the wave functions from other sources, for 
example from different particles with different excitation frequencies 
(motions), will not interfere with a particle’s motion.  

With this interpretation the Schrödinger equation models the 
passive response of spacetime to the presence of a particle at a certain 
location. The resonating wave field determines the resulting trajectory 
subject to energy and momentum constraints. External influences, for 
example the presence of other particles with their associated wave 
fields, might influence the motion if their Compton excitations match. 
In this way distant particles may interact via their wave functions. 
Furthermore, when the particle moves in a field potential its kinetic 
energy might change, which changes the resonance conditions of the 
metric field and as a result the trajectory might change via feedback 
action. This could influence the motion and confine the particle to 
resonating regions. The energy state determines the Compton 
frequency with its corresponding resonance field, which might 
confine the particle in a certain energy state by geodesic feedback. 

9. Schrödinger equation for the electromagnetic 
field. 
For completeness I will also derive the Schrödinger equation for the 
electromagnetic field, which is obtained by changing the scalar 
potential V to the electromagnetic field vector potential A and adding 
the electric field-potential Φ: 
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Proceeding as above using this modulation instead of (8.1), 
separating terms containing the vector n from those without this 
vector, we get: 

Terms without n: 
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This may be put into the form: 
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Where I have used: 

 
2 2

2e e e ei h i h i h h⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ − ∇ − ∇ − ∇ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

�
= = = =
A A A A  (9.4) 

The electromagnetic Schrödinger equation now follows directly: 
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The remaining terms containing n are: 

 2 2h ei
h

ϖ ⎧ ∇ ⎫⎡ ⎤⋅ + ∇ + ⋅⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
n n n

=
A  (9.6) 

If the velocity field is divergence-free: 
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 0h ei
h

⎧ ∇ ⎫⎡ ⎤ + ⋅ ⋅ =⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
n

=
A  (9.6a) 

10. The wave function for multiple particles. 
For a single particle I assumed that the metric modulation function h 
is proportional to the QM wave function. In a situation with many 
particles we might expect that the modulation of the spacetime 
metrics at a certain location will depend on the cumulative influences 
from all particles. Every particle is surrounded by its own carrier 
modulation field and generates a matter wave that depends on its 
velocity. Therefore, the net modulation at a certain location ought to 
depend on the relative positions as well as on the individual matter 
waves generated by the particle motions.  

However, if similar particles move with different velocities they 
will have different Compton carrier frequencies due to the relativistic 
factor γ appearing in (3.6). This means that they cannot interfere. 
Therefore, similar particles at different velocities will move 
independently without interaction, except possibly via some random 
disturbance, which is characteristic for quantum motion. If multiple 
particles interference they must be in the same energy state with 
identical Compton carrier frequencies, for example a beam of 
photons, electrons or neutrons. In this situation the modulation 
function h simply depends on the various locations of the particles; 
the (magnitude of the) velocity may be suppressed since it is the same 
for all particles. This explains why the metric modulation function h 
(and the wave function of quantum mechanics) is a function of the 
configuration space of the particles. In other words, the use of a 
multidimensional wave function will only be of interest in situations 
where interference is possible. Since this implies identical carrier 
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frequencies, the configuration space (locations) for the particles 
suffice when modeling the metric excitation, i. e. the wave function.  

Thus, the multidimensional wave function of QM, which 
traditionally is perceived partly as a physical wave, partly as a 
probability distribution, expresses modulation of the metrics in 
response to the geometry and the shifting locations of particles. This 
provides a natural ontological explanation to the multidimensional 
QM wave function.  

11. The probability interpretation. 
Born’s interpretation, by which the squared magnitude of the wave 
function is a probability density, is central to the standard 
interpretation of QM. However, the fact that Bohm’s momentum 
relation is identical to the geodesic equation of GR suggests that the 
statistical interpretation of the wave function might be secondary. 
Bohm and Vigier [Bohm & Vigier, 1954], Belinfante [Belinfante, 
1973] and Valentini [Valentini, 1991]] have demonstrated that the 
probability interpretation for the wave function is a direct 
consequence of the Schrödinger equation and Bohm’s momentum 
relation (the geodesic) if one assumes that some additional excitation 
also is present. It is apparent from (3.14) that this is the case; 
excitation in the form of high frequency acceleration is always present 
if the metrics oscillate.  

Several authors have investigated the connection between the 
Schrödinger equation and stochastic processes that modulate particle 
motion subject to random disturbances. A recent example is the 
strictly mathematical treatment by Nelson [Nelson, 1982] who derives 
the Schrödinger equation from Brownian motion with three 
assumptions:  

1. Bohm’s momentum relation applies.  
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2. The energy is preserved. 
3. A diffusion constant v is defined by: 

Expectation of 2x x v t

v
m

µ ν µνδ∆ ∆ = ⋅ ⋅ ∆

=
=  

Thus, it appears that random motion induced by oscillating 
spacetime metrics, constrained by the GR geodesic and the 
uncertainty relation characterizes the quantum world. 

12. Summary  
General Relativity might be closely related to Quantum Mechanics if 
the metrics of spacetime oscillate. If a particle always is accompanied 
by oscillation of the spacetime metrics at the Compton frequency the 
de Broglie’s matter-wave arises as a relativistic effect when the 
particle moves. In addition, setting the linear part of the Ricci scalar 
equal to zero leads to the Schrödinger equation. 

In this interpretation the matter-wave is a purely relativistic effect 
created by moving oscillating metrics. The particle moves on the GR 
geodesic, which at low velocities is identical to the de Broglie/Bohm 
momentum relation.  

Furthermore, the quantum mechanical wave functions might be 
amplitude and phase modulations of high frequency oscillations in the 
spacetime metrics. If the QM wave functions are modulations of the 
spacetime metrics, they are not propagating waves in the ordinary 
sense but resonance conditions intimately depending on the local 
geometry and field potentials. This explains how particles suddenly 
can jump between energy levels when shifts between different 
resonance modes occur. Spacetime oscillations could resonate with 
the motion of electrons in atoms. The electron automatically finds one 
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of several possible regions of resonance and motion on a geodesic 
sustains this resonance.  

This also could explain the enigmatic double slit experiment. The 
geometry of the two slits in the screen creates a spacetime resonance 
pattern that guides the particle by self-interference. Changing the 
geometry instantly changes the interference pattern. After passing 
through either one of the two slits in the screen the particle is guided 
by its own resonating matter-wave as determined by the double slit 
geometry.  

The wave functions often are complex having both amplitude and 
phase. In the present interpretation this represents phase shift of the 
modulated “carrier” oscillation. Therefore, the complex nature of the 
QM wave functions has clear physical meaning.  

Particles might be created as oscillatory resonance modes in 
spacetime with their energies sustained by the cosmological scale 
expansion. Individual modulation of all four metrics would provide 
additional degrees of freedom beyond the four coordinates of GR and 
could explain the success of sting theory. 

Summarizing, if the metrics of spacetime oscillate, quantum 
mechanics may be derived directly from general relativity in a 
straightforward manner by setting the linear part of the Ricci scalar 
equal to zero. In this interpretation the quantum mechanical wave 
functions are amplitude and phase modulations of carrier oscillation 
at the Compton frequency associated with a particle and the de 
Broglie/Bohm pilot wave is the geodesic of general relativity. This 
connection with general relativity may be used to derive a generalized 
guiding function (the geodesic), which provides a simple and direct 
physical explantion to the previously enigmatic double-slit 
experiment. 
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