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In the Scale Expanding Cosmos (SEC) the gravitational 
potential is modified by the cosmological scale expansion. The 
range of the gravitational field rolls off close to the Hubble 
distance and the presence of matter modifies the gravitational 
vacuum field, which evaluated in the cosmological reference 
frame contains negative energy that should equal the 
gravitating mass energy mc2. A freely falling particle never 
reaches the event-horizon, which could prevent the formation 
of black holes. Although the results presented in this paper are 
tentative, two definite conclusions may be made in the SEC 
model: 1. The event-horizon is a true singularity. 2. Any 
spherically symmetric solution (other than the cosmological 
line element) of the Einstein’s equations necessarily must 
modify the vacuum energy-momentum tensor generating 
negative field energy.  

Key words: Locally curved spacetime, Gravitational roll-off, 
Gravitational field energy, Black hole avoidance 
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1. Introduction. 
The first paper in this series introduced the Scale Expanding Cosmos 
(SEC) theory showing that it resolves cosmological puzzles and that 
the theory’s predictions agree with several observational programs 
including the supernova Ia observations and the Pioneer anomaly. 
The second paper discussed cosmic drag, a new property of the SEC, 
showing how it would explain galaxy formation, and the recently 
discovered discrepancies between optical observations and the 
planetary ephemerides.  

This paper investigates how the gravitational potential is modified 
in the SEC by a “roll-off” function that diminishes the range of 
gravitation. This gravitational roll-off could generate negative field 
energy equal to –mc2. It also appears that the formation of black holes 
is prevented in the SEC. 

2. Schwarzschild’s solution in the SEC. 

The standard Schwarzschild solution may be derived from the line 
element: 

 ( ) ( ) ( )2 2 2 2 2 2 2sinds n r dt l r dr r d dθ θ ϕ = ⋅ − ⋅ − ⋅ +   (2.1) 

The two functions n(r) and l(r), corresponding to Schwarzschild’s 
exterior solution, are familiar: 
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This solution is obtained with the assumption that the energy-
momentum tensor for vacuum disappears, i.e. that all its components 
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equal zero. In the SEC the corresponding scale expanding line 
element is: 

 ( ) ( ) ( ){ }2 2 / 2 2 2 2 2 2sint Tds e n r dt l r dr r d dθ θ ϕ = ⋅ − ⋅ − ⋅ +   (2.3) 

However, here the energy-momentum tensor for vacuum does not 
disappear; it equals the Cosmic Energy tensor of the SEC: 
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 (2.4) 

K = Einstein’s constant = 8πG/c4 or 8πG since c = 1. 
Setting n(r) = exp(N(r)), l(r) = exp(L(r)) and denoting partial 

derivatives with lower indices, the GR equations for the line element 
(2.3) with Cosmic Energy Tensor (2.4) become: 
Temporal G0

0 component: 
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 (2.5) 

Radial G1
1 component: 
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 (2.6) 

Angular G2
2 and G3

3 components: 
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The exponential factor exp(2t/T) removes the factor exp(-2t/T) that 
results from raising one index in Gµν.  

To investigate whether any solution pair n and l that satisfies both 
(2.5) and (2.6) also satisfies the angular relations (2.7), relation (2.6) 
may be differentiated to obtain Nrr. After repeated application of (2.5) 
and (2.6), the angular relation (2.7) becomes: 
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 (2.8) 

Any pair of functions n(r) and l(r) that exactly satisfies the two 
equations (2.5) and (2.6) will not satisfy the third equation (2.7) (not 
counting the trivial n = l = 1). There is no simultaneous solution to all 
three equations. Therefore, any pair of functions n(r) and l(r) 
necessarily modifies the energy-momentum tensor.  

Thus, the presence of matter modifies the SEC energy-
momentum tensor for vacuum and induces gravitational field 
energy. 

Although the analysis of these equations by no means is complete, 
a few interesting observations may be made at this time. Let’s assume 
that the two metric functions are selected so that:  

 ( ) ( ) ( )01
1

r
n r f r

l r r
= = −  (2.9) 
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This choice is made since it eliminates the large term (e-L-1)/r2 in (2.5) 
and (2.6) leaving small rest terms of order 1/T2. Also, in section 4 I 
will show that this choice yields gravitational field energy that equals -
mc2. 

Substituting (2.9) into (2.5)-(2.7): 
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In the far field we have: 
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− ≈  (2.13) 

Equations (2.5)-(2.7) become: 
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The solutions to these equations are: 
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There is no solution common to all three GR equations. A possible 
approach to selecting “a best” roll-off function f(r) is presented in the 
next section. 

3. The SEC action integral 

The GR equations were derived by David Hilbert using the action: 

 4
H HI L dV R g dx= ⋅ = ⋅ − ⋅∫ ∫   (3.1) 

R is the Ricci scalar and L=R√−g the Lagrangian. 

The GR equations follow from this action by setting the variation of 
the metrical coefficients equal to zero. Taking into account the 
possibility of discrete scale increments I will consider the following 
action: 

 ( )2 4
SEC SECI S G K T g dx= ⋅ − ⋅ − ⋅∫  (3.2) 

S is the scale factor and G the trace of Einstein’s tensor. TSEC is the 
trace of the SEC Cosmic Energy Tensor. The product S2·TSEC does not 
depend on the metrics and may be considered constant when varying 
the metrical components. In the Standard Cosmological Model 
(SCM), based on the big bang, where the scale is constant and where 
there is no vacuum energy, this action coincides with the Hilbert 
action since the trace of Einstein’s tensor is the negative of the Ricci 
scalar G = -R.  
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The SEC action may be viewed as a generalization of the Hilbert 
action, which also takes into consideration discrete scale variation. 
The scale is regarded as an independent parameter, which changes in 
discrete increments during the piecewise continuous cosmological 
expansion. This means that the variation of the SEC action has two 
independent parts that both must equal zero: 

{ } ( ){ }2 4 2 4 0H SECI S G g dx S G K T g dxδ δ= ⋅ ⋅ − + ⋅ ∆ ⋅ − ⋅ − ⋅ =∫ ∫  (3.3) 

The first part is the Hilbert action and the second part implies: 

 0SECG K T− ⋅ =  (3.4) 
The increment ∆S2 models both discrete scale expansion and 

oscillatory scale modulation. This will have important consequences 
in the next paper in this series, where I propose that quantum 
mechanical wave functions correspond to modulation of the scale S. 
Relation (3.4) is trivially satisfied by the SEC (vacuum) line element, 
but in the presence of matter it will add a constraint to the 
gravitational vacuum field. This constraint can be used to find the 
“roll-off” function f(r) of the previous section.  

Applying relation (3.4), making use of the GR equations (2.5)-
(2.7) and relations (2.10)-(2.12), results in the following differential 
equation applicable in the far-field: 

 0 0
2 2 2

2 6 6
0 0N

SEC rr r

r r
G K T f f e

r r T T
−− ⋅ = → + + − =  (3.5) 

We get using (2.13): 
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Another form of this equation is: 

 2
2

6
0f f

T
∇ + =  (3.7) 

This familiar differential equation (Helmholtz’s equation) has a 
simple closed form solution: 

 
( )sin 6
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u T
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The action roll-off function fa looks like a compromise between 
(2.17), (2.18) and (2.19). These roll-off functions are shown in Figure 
1.  
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With the action roll-off function (3.8) the first order terms in the 
GR relations (2.5)-(2.7) are in the far field: 

 2 / 0 0
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3t T r
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− ≈  (3.9) 
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This is the best possible far field fit of the functions n and l, since 
(2.9) implies G1

1 = G0
0. (However, the same (lowest order) far field fit 

is also obtained with f = exp[–(r/T)2)]. As mentioned above the 
choice (2.9) is motivated by the elimination of the larger terms 
containing (r0/r3)f in (2.5) and (2.6). However, there is another 
motivation for the choice (2.9); with any “reasonable” roll-off 
function f the gravitational field energy of a spherically symmetric 
field generated by a central mass m equals –mc2.  

4. Gravitational field energy. 
The subject of gravitational field energy has been lively debated ever 
since Einstein’s introduction of GR in 1916. The energy-momentum 
tensor of GR specifies an energy density, which usually is considered 
to be the source for the spacetime field as given by Einstein’s tensor 
Gµν. It seems that this field should contain gravitational field energy. 
However, in GR it is always possible to find a local Minkowskian 
coordinate system in which the energy-momentum tensor disappears, 
which suggests that there is no absolute gravitational field energy; the 
energy density depends on the chosen coordinate system. This is 
puzzling, since the gravitational field ought to have negative energy. 
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This motivated Einstein and other investigators (for example Tolman, 
Landau/Lifshitz, Møller and Weinberg) to try to find ways of 
modeling gravitational field energy using “pseudo-tensors”, which are 
tensor-like objects that do not transform like tensors. Nowadays one 
realizes that these different pseudo-tensors all are related by gauge 
symmetry (Neto and Trajtenberg, 2000) and that energy density 
modelled by the pseudo-tensors may be nullified at any point by local 
variable transformation.  

On the other hand, other investigators, for example Lorenz in 1916 
and Levi-Civita in 1917, suggested that Einstein’s tensor implicitly 
defines gravitational field energy density. With this interpretation 
Einstein’s equations is an identity that simply says that the 
gravitational field energy density is such that it always matches the 
source energy field, but with opposite sign. Quoting Levi-Civita 
(Loinger, 2002): 

“The nature of ds2 is always such as to balance all mechanical 
actions; in fact the sum of the energy tensor and the inertial 
(spacetime) one identically vanishes.” 

This reminds us of Newton’s third law of action and reaction and 
d’Alembert’s principle. Also, we are familiar with this situation when 
gravitational forces and kinetic energy disappear in a freely falling 
particle’s reference system. This interpretation suggests that the 
energy-momentum tensor of GR in vacuum actually models 
gravitational field energy relative to the selected coordinates, and that 
little is gained by introducing various gravitational pseudo-tensors. 

In the SCM the energy-momentum tensor for vacuum disappears; 
there is no gravitational field energy in vacuum. This is consistent 
with that there is no cosmological reference frame in the SCM. Since 
energy is not invariant in GR, but depends on the choice of 
coordinates, the energy-momentum tensor for vacuum would depend 
on this choice unless it disappeared. For consistency the absence of a 
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reference frame implies that the energy-momentum tensor must 
disappear in vacuum.  

However, in the SEC theory, where there is a cosmological 
reference frame and a preferred line element – the SEC line element, 
the situation is different. It permits the definition of gravitational field 
energy by the following postulate: 

Gravitational vacuum field energy density is defined by the 
energy-momentum tensor evaluated in the cosmological reference 
frame. 

Accordingly, gravitational field energy density in vacuum may be 
defined by: 

 ( )0 1 2 3 1 0 1 2 3
0 1 2 3 0 1 2 3dE T T T T K G G G G−= − − − = − − −  (4.1) 

Again, this energy density is well-defined in the cosmological 
reference frame. The total field energy for a spherically symmetric 
field is then given by: 

 ( )2 0 1 2 3
0 1 2 3

0 0

4T dE E dV r T T T T g drπ
∞ ∞

= ⋅ = − − − − ⋅∫ ∫  (4.2) 

In the SEC universe this energy is always finite. 
From relations (2.5)-(2.7) we see that terms containing 1/T2 cancel 

in the two energy expressions above. Therefore, to simplify the 
writing I will introduce primed Einstein tensor components as 
follows: 
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We then have: 



 Apeiron, Vol. 11, No. 4, October 2004 41 

© 2004 C. Roy Keys Inc. — http://redshift.vif.com 

 ( )2 / 1 0 1 2 3
0 1 2 3' ' ' 't T

dE e K G G G G− −= − − −  (4.4) 

These primed tensor components coincide with the standard 
components that yield the solution (2.2) when T goes to infinity. 
These preliminaries permit the following observations. 

Observation 1:  
Under quite general assumptions the gravitational field energy  
equals –mc2. 
To show this, assume that the function f(r) in (2.9) satisfies: 

 ( ) ( ) ( ) ( )00 1; 0; lim 0; lim 0r r r rf f r f r f→∞ →= ∞ = ⋅ = ⋅ = (4.5) 

Setting: 
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We get: 
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The last equality follows from: 
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For the angular components: 
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Integrating by parts: 
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The gravitational field energy becomes: 
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 (4.9) 

In the SEC the epoch t = 0 may be chosen so that it always 
corresponds to present time, which means that the exponential scale 
factor may be ignored in the results so that E = E’. Therefore the field 
energy equals –mc2, which suggests that the gravitational field energy 
in general cancels the mass energy of the gravitating matter. This 
would be a pleasing result, since the total energy of the universe then 
would be zero. 

Observation 2: 
The total gravitational field potential from all matter in the universe 
is finite.  
The gravitational potential is the work of moving a (unity) test mass 
to infinity: 
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 (4.10) 

The contribution from all matter in the universe becomes: 
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x
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≈ − ⋅ ⋅ = − ⋅ ⋅∫ ∫  (4.11) 

If f=exp[-a(t/T)2]: 
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With the action roll-off function (3.8): 
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 (4.13) 

Define an average limit by: 

 
0

1
lim ( ) lim ( )

r

rF r F r dr
r→∞= ∫  (4.14) 

The total potential becomes: 

 lim ( )
2a a

GM
P P r

T
= = −  (4.15) 

Thus, the gravitational potential in the SEC is finite. This would 
resolve a longstanding puzzle since the time of Newton. The action 
roll-off is oscillatory but will satisfy conditions (4.5) if we apply the 
average limiting operation (4.14). For example: 
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5. The near field solution 
This section investigates the near field solution to the equations (2.5)-
(2.7) based on the assumptions: 

 ( ) ( )
0

1
0lim 0 and  is finiter r n r l r−

→ =  (5.1) 

Thus, I will assume that the temporal metric approaches zero at the 
event horizon. This means that very close to the event horizon using 
equations (2.5) and (2.6): 
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 (5.2) 
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e
r T

−
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 (5.3) 

Thus: 

 -3
0r r l n≈ → =  (5.4) 

Very close to r = r0 the near field metrics become: 
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T

−
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 (5.6) 

In GR inner products are preserved under variable transformation. 
Consider the scalar product for the momentum:  

 2
0p p m g p pµ ν µ

µ µν= =  (5.7) 

Assuming radial motion we get with the line element (2.3): 
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 ( ) ( )2 22 2 / 0 1
0 0t Tm e n p l p = − +  

 (5.8) 

p0 is a constant of motion. Lowering the indices for (p0 )2 we get: 
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 (5.9) 

In the SCM we have from (2.2): 

 ( )1
0 0p r p=   (5.10) 

A particle may fall through the event horizon and be swallowed by a 
black hole. But, in the SEC we get from (5.5), (5.6) and (5.9): 

 ( ) ( )1 2 /
0 0 0 0t Tp r e p n r−= ⋅ =  (5.11) 

Particles on geodesics will not cross the event horizon as long as 
relations (2.5) and (2.6) hold. This suggests that black holes might not 
form in the SEC.  

The rest term of (2.8) gives sharply negative energy density close 
to the event horizon. Consider the two terms: 
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 (5.12) 

The gravitational field energy density from each of these terms is 
negative and its volume integral diverges when r approaches the 
event horizon r0. This might prevent gravitational collapse, a 
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conjecture that gains further support from the fact that the event 
horizon is a truly singular surface.  

Consider the Riemann curvature tensor: 

 , , , ,

1
2

R g g g gαβνµ αν βµ αµ βν βµ αν βν αµ = − + −    (5.13) 

Let the first term be g11,00 = 4g11/T2. With g11 = exp(2t/T)·l = exp(2t/T) 
·n-3 this term becomes infinite at r = r0. The other three terms are 
finite. Thus elements of the Riemann tensor are singular at the event 
horizon.  

Therefore, the SEC scale expansion could both limit the range of 
the gravitational potential in the far field and prevent the formation of 
black holes in the near field. However, these observations are not yet 
conclusive since there is no exact solution to the GR equations in the 
SEC. However, two definite statements may be made at this time:  

1. The event horizon at r = r0 is a true singularity in the SEC.  
2. Any spherically symmetric solution pair n and l (other than 

n = l = 1) necessarily must modify the vacuum energy-
momentum tensor generating negative field energy 

6.   Discussion and summary. 
If the line element that yields Schwarzschild’s solution in the SCM is 
modified by applying the exponential scale factor of the SEC theory 
and the SEC vacuum energy-momentum tensor is taken into account, 
Schwarzschild’s exterior solution is altered in very interesting ways. 
Instead of the traditional gravitational potential that decreases 
inversely proportional to the radial distance, a gravitational roll-off 
function appears, and in the far field the potential assumes the form: 

 ( ) ( )Gm
P r f r

r
= −   
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The roll-off function f(r) restricts the range of gravitation at a distance 
comparable to the Hubble distance.  

In the SEC no exact simultaneous solution to all GR equations 
exists, which means that any “solution” necessarily must modify the 
vacuum energy-momentum tensor, i.e., the presence of matter 
induces negative vacuum energy evaluated in the cosmological 
reference frame. The observations of section 4 suggest that the 
vacuum energy approximately (and probably exactly) equals –mc2, 
which means that positive matter energy is balanced by corresponding 
negative gravitational field energy. This is a desirable feature, since 
the total energy of the SEC universe then would be zero and the 
presence of matter would not change the vacuum energy-momentum 
tensor other than locally.  

In the SCM the gravitational potential from all matter in the 
universe is infinite, but in the SEC it is finite. The gravitational 
potential from all matter in the universe equals –GM/(2T), where T is 
the Hubble distance and M matter within this distance. This would 
resolve a longstanding conundrum since the time of Newton. 

At small radial distances approaching what in the SCM would be a 
black hole’s event horizon the vacuum energy in the SEC diverges 
sharply, which means that a falling particle may never reach the event 
horizon. This would prevent the formation of black holes; the event 
horizon is a true singularity. It is intriguing that a very small vacuum 
energy density with zero net gravitating energy, which is generated by 
the cosmological scale expansion, both might limit the far-field action 
of gravitation and prevent the formation of black holes in the near-
field.  

If the formation of black holes is prevented in the SEC something 
quite dramatic must happen at gravitational collapse, which in the 
SCM would lead to the formation of a black hole.  This could account 
for the AGNs and be the engine of quasars.  Prevention of black holes 
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might also explain the enigmatic gamma ray bursts, which could be 
generated in the sudden gravitational collapse of massive stars. 
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