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The phenomenon of the constant light velocity could be 
explained classically using the concept of the diffusion of 
selforganized structures of Brownian particles. In this 
contribution the length of both arms of the Michelson-Morley 
instrument is constant. The Fitzgerald-Lorentz transformations 
were used to describe the contraction of the waves of 
Brownian particles (diffusion of waves in the direction of the 
motion) and the extension of these waves (diffusion of waves 
against the direction of the motion). The Fitzgerald-Lorentz 
transformation was used to recalculate the periods of these 
diffusing waves from the moving frame to the observer frame. 
The product of these wavelengths and frequencies λ´ ν´ of 
diffusing selforganized Brownian particles gives c. 
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Diffusion action of chemical waves 
G.F. Fitzgerald (in 1889) and H.A. Lorentz (in 1892) independently 
suggested how to solve the dilemma of the Michelson-Morley 
experiment. They came with a suggestion that the part of the 
apparatus which carried the two way wave-train of light became 
contracted in such a way that it compensated the extra time required 
for the light to travel along the paths. Lorentz and Fitzgerald 
estimated that the molecules of every solid substance might compress 
in the direction of motion and expressed this idea in the mathematical 
equations now known as Lorentz-Fitzgerald (LF) transformations. In 
1905, A. Einstein adopted the Lorentz-Fitzgerald transformation in 
his approach where the LF transformation is required not only for the 
length contraction but also for the dilation of time. 

This old idea will be used in this contribution for the description of 
diffusing waves of selforganized Brownian particles from moving 
source and reflecting from a moving mirror. The length of both legs 
of the M-M instrument is constant in this contribution. However, the 
diffusing waves of Brownian particles are contracted in the direction 
of the motion and extended against the motion of the source. It is 
proposed to use the LF transformation in order to modify the ordinary 
Doppler effect into the relativistic Doppler effect.  

In order to start with this analogy, it is necessary to summarize 
some experimental evidences collected during the intensive studies of 
chemical waves. There is a strong tendency for systems far from 
equilibrium to create spontaneously selforganized dissipative 
structures. They can be seen not only within the biological systems 
but also in physical and chemical world of inorganic substances [1]. 
Colloidal chemists have frequently observed macroscopic spatial 
patterns during the past one hundred years. Liesegang [2] observed 
2D formation of patterns of inorganic substances in the presence of 
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gelatin termed as Liesegang rings (LR). The discovery of the 
Belousov-Zhabotinsky (BZ) oscillation reaction catalyzed intensive 
research of these oscillation reactions [3]. 

It was found that during the evolution of successive waves the 
product of instantaneous propagation speed u and the wavelength λ 
converge to a constant value [4,5,6]. This product uλ depends on the 
type and the concentration of the polymer used in the case of 
Liesegang rings. There was a tendency to characterize the diffusing 
front by a characteristic particle mass m that is needed for the 
estimation of the diffusion action of chemical waves. The product of 
the characteristic mass m, propagation speed u and the wavelength λ 
was termed as the diffusion action [7].  

This approach for the characterization of the LR formation was 
followed repeatedly several times since then [8]. More than one 
hundred different combinations of cations and anions were employed 
for the LR formation. Because of the difficulties in the estimation of 
mass of diffusing particles (reaction between the molecules of outer 
and inner electrolytes, irreversible formation of clusters) the 
calculated values of the diffusion action of the order ~ 10-34 Js could 
not be tuned to a certain constant value. Therefore, this concept was 
considered as very trivial [9]. On the other hand, several theoretical 
physicists contributed to this topic [10,11,12,13,14,15,16,17], too. 
Several decades long experimental and theoretical research can be 
condensed into the following equation: 
 K m u hκ λ =  (1) 
where K is the diffusivity factor, κ is the tortuosity factor, m is the 
particle mass, λ is the wavelength, u is the propagation speed, h is a 
characteristic constant of the diffusion action. The parameter K – 
diffusivity factor—describes the geometrical arrangement of the 
experiment. For one-dimensional space (thin glass tubes) K = 1, for 
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two-dimensional space (thin layer in a Petri dish) K = 2, in case of the 
three-dimensional experiment the value K depends on the space angle 
available for the diffusion of Brownian particles from their source. If 
the whole space is available for the propagation of the chemical 
waves, then K = 4p. Many studies of the dispersion relations were 
performed in gels, membranes, resin beads, glasses in order to prevent 
hydrodynamic disturbances from the reacting media. These media 
help to localize the propagating bands; on the other hand they modify 
the diffusion path of ions. The diffusion field in these restricted 
environments changes by a tortuosity factor κ that characterizes the 
diffusivity in porous media. 

In the recent summary of this topic [18] the evolution of the 
diffusion actions of Liesegang rings formation, Belousov-
Zhabotinsky waves and the cAMP (cyclic adenosine 3´,5 -́ 
monophosphate) waves were analyzed. The main trend for all three 
types of chemical waves is similar. During the evolution of successive 
chemical waves there is a strong tendency to self-organize their 
diffusion fields in such a way that the diffusion actions converge to a 
constant value of about 6.6 * 10–34 Js (stage 1). Diffusion actions of 
next waves fluctuate around this quantity of action for a long time in 
dependence on the capacity of the system (stage 2). When the stage 2 
is over the successive waves irreversibly decay towards chemical 
equilibrium (stage 3) until the creation of waves stops. 
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Figure 1 Evolution of diffusion actions of chemical waves 
 
The property of vast collections of Brownian particles to diffuse 

into their surroundings as local osmotic waves reveals that these 
waves have a strong tendency to selforganize their diffusion fields. 
This self-organization of the diffusion field can be done via the 
characteristic mass m, propagation speed u or the wavelength λ in 
such a way that their diffusion action tend to fluctuate around the 
characteristic value 6.6 * 10-34 Js. This behavior of chemical waves is 
schematically shown in Figure 1. 

Chemical waves consist of many discrete particles that coherently 
diffuse into their surrounding provided that a certain critical particle 
concentration is exceeded. These chemical waves behave in a similar 
way as photon waves. Nikiforov and Kharamenko [19] studied 
Maupertuis´ as well as Fermat´s principles and the Snell law validity 
for lead iodate and silver bichromate waves. Raman and Subba 
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Ramaiah [20] described the wave-interferences in Liesegang patterns. 
Oosawa et al. [21] investigated refraction, reflection, and frequency 
change of chemical waves propagating in a non-uniform BZ reaction 
medium. 

Recently, the Doppler effect of chemical waves was intensively 
studied [22, 23, 24]. The motion of the source leads to a modulation 
in amplitude, wavelength and frequency of the emitted waves. As a 
consequence of the Doppler effect, spiral waves in front of the spiral 
tip are compressed and spiral waves behind the spiral tip are dilated. It 
was found that the modulation of the nonlinear waves is uniquely 
determined by the temporal period of the source motion. These 
experimental evidences reveal the complex behavior of the Doppler 
effect of these nonlinear waves. The behavior of these chemical 
waves differs significantly from sound waves that are carried by the 
molecules of medium. Diffusing selforganized Brownian particles 
move from the source to the detector. The moving source and 
detectors act on those waves and contract or extend them in a different 
way in compare with sound waves. 

The vast collection of Brownian particles creates a local osmotic 
wave that penetrates into its surroundings and self-organizes its 
diffusion field in such a way that the value of its diffusion action 
fluctuates around the quantity of action. Properties of these waves of 
selforganized Brownian particles are compared with those stated by 
the Copenhagen interpretation of quantum mechanics (CIQM) and by 
the stochastic interpretation of quantum mechanics (SIQM) [25,26] in 
Table I. There is one main difference between these three concepts: 
no wave is associated with single Brownian particles. The wave is 
associated with the groups of Brownian particles when they exceed a 
certain critical concentration.  

For the case of diffusion of single Brownian particles through 
double slits [27] the structure on the detector is formed by the 
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interaction of Brownian particles with the spontaneously formed 
selforganized structure of photon field radiating from the cavity used 
for these experiments. The Brownian particle seems to be interacting 
with both slits via the formed selforganized structure of the cavity 
photon field. This interaction might explain the non-classical behavior 
of individual particles that adjusts its random trajectory according the 
geometrical arrangement of the experiment. 

 
Table I Comparison of CIQM, SIQM and the colloidal interpretation 
of QM 

 
 Copenhagen Interpretation of QM 
1 Individual photons are particles or waves, never the two 

simultaneously 
2 Double slit experiment with single particles: individual 

photons interfere with themselves, one cannot tell through 
which slit the photon passes 

 Stochastic Interpretation of QM 
1 Individual photons are real de Broglie´s waves associated with 

particles  
2 Double slit experiment with single particles: the real wave goes 

through both slits, the photon goes through one slit only 
 Colloidal interpretation of QM 
1 No wave is associated with single Brownian particles 
2 Wave is associated with the vast collection of Brownian 

particles, diffusion action of these waves fluctuate around the 
quantity of action 

3 Double slit experiment with single particles: individual 
Brownian particles diffuse through the spontaneously formed 
selforganized field of photons radiating from the cavity 
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Diffusion of selforganized Brownian particles 
from a moving source 
 
The original derivation of the Lorentz-Fitzgerald transformation fails 
because it is based, like the Michelson-Morley experiment, on two 
way travel. This original transformation predicts the same length 
contraction of the leg of the Michelson-Morley instrument to both 
paths. It is possible to remove this weak part of the original Lorentz-
Fitzgerald transformation and to propose the contraction of the 
diffusing waves of Brownian particles in the direction of the motion 
of the source instead of the shrinkage of molecules of the legs. On the 
other side, the waves of selforganized Brownian particles diffusing 
against the motion are extended. The length of the instrument is 
constant and not dependent on the motion of the instrument. 
Therefore, the classical Lorentz-Fitzgerald transformations are used 
here for the contraction (extension) of wavelengths and for the 
extension (contraction) of frequencies of those waves. This 
modification leads from the ordinary Doppler effect to the relativistic 
Doppler effect. Doppler [28] presented his famous contribution in 
Prague in 1842. 

The product of the contracted wavelength and the extended 
frequency (based on the Lorentz-Fitzgerald transformations) in the 
direction of the motion of these waves of selforganized Brownian 
particles gives the constant value c. Similarly, the product of the 
extended wavelength and contracted frequency of those waves of 
selforganized Brownian particles against the motion of the source 
gives the same constant value c, too. In this concept, there are 
contracted or extended wavelengths instead of the “curved space” and 
extended or contracted periods of these waves instead of the “time 
dilation”. 
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When the waves of selforganized Brownian particles approach the 
interface of the detector, their wavelengths and frequencies are 
adjusted according to relative motion of the moving source and the 
detector. In the case when the velocity of both the source and the 
detector is the same, the wavelength and frequency of those waves are 
restored to the standard values λ0 ν0. On the side of the source, waves 
become contracted in the dependence of motion of the source. At the 
interface of the detector the wave is extended or contracted according 
to the relative motion. If the relative motion between the source and 
the detector is zero, then the same amount contracted by the source 
will be extended at the interface of the detector. This behavior of 
diffusing waves can be termed as the selforganization of the 1st kind. 
The motion of the source modifies the frequency of emitted waves. 
The wave packet of Brownian particles adjusts its wavelength and 
frequency in such a way that the product λ´ν´= c is kept constant. 

 

Selforganization of the 1st kind 
(Light propagation between moving objects) 
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Figure 2 Selforganization of the 1st kind 
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During the reflection of the wave composed from Brownian 
particles this wave will be extended or contracted in dependence on 
the motion of the detector. If the relative motion of both source and 
detector is zero, then the reflected wave from the detector will be 
extended in the same amount as the wave diffusing from the source 
was contracted but with an opposite sign. 

The product of the mass of Brownian particles m, their contracted 
(or extended) wavelength λ´ and the velocity c gives a diffusion 
action hrel that fluctuates around the quantity of action. If the relative 
motion of both the source and the detector is zero, then hrel = h. The 
propagation of waves of selforganized Brownian particles is described 
by Equation 2: 
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The positive sign of vrel describes approaching motion of the 
source and detector. The negative sign of vrel describes the receding 
motion of the source and the detector.  

The concept based on the diffusion of selforganized Brownian 
particles enables to suggest the selforganization of the 2nd kind, too. In 
this case the mass of Brownian particles decays (model of the tired 
light was firstly suggested by Zwicky29 in 1929) and secondary 
particles of smaller mass have been formed. This effect could be seen 
in the existence of background radiation [30] and in the so-called 
redshift quantization [31]. In the equation of the diffusion action the 
decreasing mass of Brownian particles is counterbalanced through the 
extension of wavelength and through the contraction of frequency. 
This reaction of the system enables to keep the constancy of the light 
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velocity and the value of the diffusion action close to the value of the 
quantity of action. Behavior of these waves becomes more 
complicated when the selforganization of the 1st kind and the 
selforganization of the 2nd kind interplay together. 

 

 
 

Figure 3 Selforganization of the 2nd kind 
 

Selforganization of the 2nd kind 
(Tired – light model) 
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Conclusions 
 
This analogy between Brownian particles and photons can be verified 
in the following observations: 

1. Brownian particles can be locked in traps. 
2. The periodic translational motion of the source modifies the 

waves in their wavelengths, frequencies, and amplitudes and 
forms unique diffusion patterns. 

3. The rotational motion of the source modifies the waves in their 
wavelengths, frequencies, and amplitudes and forms unique 
diffusion patterns. 

4. The selforganization of the 1st kind (frequency action – 
wavelength reaction) gives the constant product λ´ν´= c. 

5. The value of the diffusion action of waves between the source 
and the detector depends on their relative motion. If the 
relative motion is zero, then hrel = h. 

6. The selforganization of the 2nd kind (mass action – frequency 
and wavelength reaction) leads to the formation of the 
background radiation and the redshift quantization. 
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