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The non-invariance of the Faraday induction law, revealed in 
[1] through calculation of an e.m.f. along a mathematical line, 
was further analyzed for integration over a conducting closed 
circuit within special relativity theory [2]. Now this problem is 
considered within the framework of covariant ether theories 
[3]. A physical meaning of the non-invariance of the Faraday 
induction law is revealed, and a possible experimental scheme 
for measuring an absolute velocity of Earth has been 
proposed. 
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1. Introduction 
It has been shown in ref. [1] that the mathematical expression for the 
Faraday induction law  

 ∫−=
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d rr

ε ,  (1) 
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does not follow from the Maxwell’s equation  

 ∫ ∫
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, (2) 

and, moreover, it is not Lorentz-invariant. At the same time, one can 
show that the Faraday induction law is always valid for any inertial 
observer under integration through a closed mathematical line. Hence, 
the revealed Lorentz non-invariance of the Faraday law signifies a 
violation of the Einstein relativity principle at the “mathematical” 
level [1]. However, the relativity principle was formulated not for 
mathematics, but for physics, which does not operate with 
“mathematical lines” in space. Therefore, a compatibility of the 
Faraday induction law and Einstein relativity principle must be 
analyzed for physical reality, i.e., for closed conducting circuits. This 
analysis [2] distinguished two general cases: 1- the internal 
electromagnetic fields from conduction electrons contribute an 
induced e.m.f.; 2- the internal fields do not give such a contribution. It 
has been shown that in case 1 the Einstein relativity principle remains 
valid, while the Faraday induction law is violated. Case 2 makes a 
conducting circuit similar to a mathematical line, where the Faraday 
law is always correct, while the Einstein relativity principle should be 
violated. A special physical problem, confirming this general 
conclusion, was indeed found [2]: relative motion of a parallel plate 
condenser to a conducting loop with the side lying inside the 
condenser. Here the same physical problem is analyzed within the 
framework of covariant ether theories (CETs). Section 2 represents a 
short review of CETs. Section 3 applies the ideas of CETs to the 
physical problem under consideration. Section 4 proposes a new 
experiment to measure the absolute velocity of Earth, and section 5 
contains some conclusions. 
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2. Covariant ether theories 
Covariant ether theories adopt the same general principles as special 
relativity (space-time homogeneity, space isotropy and causality 
principle), but replace the Einstein relativity principle with the general 
relativity principle [3]. This set of the most general physical principles 
allows the existence of a preferred (absolute) frame K0. Due to the 
isotropy of empty space, the geometry of space-time in K0 is pseudo-
Euclidean with a Galilean metric. Since the motion of an arbitrary 
inertial frame does not influence the geometry of empty space-time, it 
continues to be pseudo-Euclidean for any moving inertial observer. 
However, due to possible dependence of space and time intervals on 
absolute velocity, which is admitted in ether theories, the metric 
tensor g in moving frames is no longer Galilean. This means that 
physical space-time four-vectors in an arbitrary inertial frame must be 
linear functions of Minkowskian four-vectors Lx : 

 ( ) ( ) j
iji

xBx Lph = , (3) 

where the coefficients Bij do not depend on space-time coordinates of 
a moving inertial frame; they depend only on its absolute velocity v

r
. 

This kind of pseudo-Euclidean geometry has the so-called oblique-
angled metric. (Here Lx  obey the Lorentz transformation L: 

j
iji xLx LL '= ). 

In any analysis of space-time with an oblique-angled metric, an 
essential methodological feature has to be taken into account: namely, 
the true (physical) values differ, in general, from their magnitudes 
measured in experiment [3-5]. Hence, we have to separately derive 
the transformations for physical ( )

i
xph  and “measured” ( )ixex  space-

time four-vectors, taking into account that in the absolute frame K0 
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Then, assuming that physical four-vectors ( )
i

xph  obey some 

admissible transformation A: 

 ( ) ( ) j
iji xAx phph '= , (5) 

one can prove that measured four-vectors are subject to the Lorentz 
transformation L [3]: 

 ( ) ( ) j
iji xLx exex '= , (6) 

where the primed four-vectors belong to the absolute frame K0. 
Further, a transformation between two arbitrary inertial frames K and 
K” has the form [3]: 

 ( ) ( )k
jk

iji xvLvLx ex2
1

1ex ")]()[(
rr −= , (7) 
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k
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where 21 ,vv
rr

 are the absolute velocities of the frames K and K,” 
respectively. Thus in contrast to special relativity theory (SRT), in 
CETs Nature does not “know” a direct relative velocity of two 
arbitrary inertial frames K and K”: it is always composed as a sum 

21 vv
rr

⊕ , where 1v
r

 and 2v
r

 are the corresponding velocities of K and 
K” in the absolute frame K0. This means, in particular, that direct 
rotation-free Lorentz transformation between measured space-time 
four-vectors in K and K” is impossible: according to the general 
group properties of these transformations, an additional rotation of the 
co-ordinate axes of the frames K and K” appears at the Thomas-
Wigner angle Ω, depending on 1v

r
 and 2v

r
. It is quite important that 

such a rotation occurs in measured space-time coordinates, that is, it 
can be measured experimentally. At the same time, in physical space-
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time this rotational effect can be absent. A more detailed analysis of 
Thomas-Wigner rotation in CETs is presented in Section 3. 

Further, we can find a relationship between the matrix B in Eq. (3) 
and matrix A in Eq. (5), using transformations (5), (6) and taking the 
equality (4) into account. Then one can easily obtain that 

 ).()()( 1 vLvAvB kj
k
iij

rrr −=  (9) 

The physical meaning of the matrix B can be found from the 
requirement that for v=0, B is equal to the unit matrix. This allows 
one to rewrite Eq. (3) in the form  

 ( ) ( ) )0()()( phph == vxvBvx j
iji

rr
, (10) 

which clearly indicates a physical meaning of the matrix B: it 
describes a dependence of physical space and time intervals in a 
moving inertial frame on its absolute velocity v

r
. 

We notice that the most general physical principles, constituting 
the basis of CETs, do not allow us to determine the matrix A of 
physical space-time transformation in explicit form. Thus, we are free 
to choose A in different admissible forms, obtaining thereby different 
versions of CETs. The simplest case corresponds to the choice A=G, 
where G is the matrix of Galilean transformation: Gii=1, Gα0=–vα, and 
all others Gij=0. Substituting matrix G in place of matrix A in Eq. (9), 
and using the known form of the matrix L, one gets the following 
coefficients of matrix B: 
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where αβδ  is the Kronekker symbol. Further substitution of Eq. (11) 
into Eq. (10) allows one to determine a dependence of physical space-
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time four-vectors on the absolute velocity v
r

 of some arbitrary inertial 
reference frame K: 
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For the time interval in a fixed spatial point of the frame K 
( phr =0), we obtain the dependence of pht  on v

r
: 

 ,)/(1/)0()( 22
phph cvvtvt −==

r
 (14) 

which means an absolute dilation of time by factor )/(1 22 cv− . 
Furthermore, one obtains from Eq. (12): 
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−==
 (15) 

which means an absolute contraction of moving scale along a vector 
of absolute velocity (Fitzgerald-Lorentz hypothesis). Finally, 
transformation (8) under A=G 

 ( ) ( ) j
iji

xvvGx ph21ph ")]([
rr

−=  

leads to the Galilean law of addition of velocities for physical light 
velocity phc . 

Thus, we have a full set of Lorentz ether postulates in their modern 
form for case A=G [6]. However, the physical space-time in the 
Lorentz ether theory is not observable in an arbitrary inertial reference 
frame, while the measured four-vectors xex obey the Lorentz 
transformations in the form of (7). Therefore, we may consider the 
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Lorentz ether theory as one of CETs defined above, and the simplest 
among them. That is why in the following section, which again deals 
with the problem in Ref. [2], we apply the Lorentz ether theory based 
on the transformation laws (7) and (8), where A=G. 

3. The Faraday induction law, Thomas-
Wigner rotation and Lorentz ether theory 

In this section we consider a physical problem as described in [2]. Let 
there be a conducting rectangular loop with elongated segment AB 
inside a flat charged condenser FC (Fig. 1). The thin vertical wires of 
the loop enter into the condenser via the tiny holes C and D in its 
lower plate, so that distortion of the electric field E  inside the 
condenser is negligible. An inertial frame K1 is attached to the loop, 
while an inertial frame K2 is attached to FC. There is an inertial 
reference frame K0, wherein the frame K1 moves at the constant 
velocity v along the axis x, and the frame K2 moves at the constant 
velocity },{ uvV

r
 in the xy-plane (Fig. 2). For this motion diagram, the 

frame K2 moves only along the axis y of K1. We must find an e.m.f. in 

y0

x0

E

(K1)

(K2)

K0
V

A B

DC

L

FC

 
Fig. 1. The inertial frame K1 is attached to the rectangular conductive loop, while 
the inertial frame K2 is attached to the flat condenser. The upper lead AB of the 
loop lies inside the condenser. The profile leads of loop pass across the tiny 
holes C and D in the lower plate of condenser. 
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the loop (indication of the voltmeter V). 
Calculated the electric and magnetic fields in the frame K0 should 

be the same in SRT and covariant ether theories, if K0 is taken as the 
absolute frame in CETs. This conclusion follows from the 
transformation (6). Then the field transformations [7] from K2 to K0 
give the following result (to order of approximation c-2) [2]: 
 

 ;
2 20 c
uv

EE x −=  (16a) 

 ;
2 2

2

0 c
v

EEE y +=  (16b) 

 ;00 =zE ;00 =xB ;00 =yB  (16c) 

 
20 c

vE
B z = . (16d) 

K1

K2

K0

),{ uvV
r

v

 
Fig. 2. The motion diagram of inertial reference frames K1 and K2 in the third 
inertial frame K0 (in CETs K0 is taken as absolute). 
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Thus, in K0 the magnetic field inside the condenser is not equal to 
zero, and its non-vanishing z-component is defined by Eq. (16d). 
Simultaneously one can see that under motion of FC at the velocity 

},{ uvV
r

, as well as motion of the loop at the velocity v along the axis 
x, the area ABDC between the lower plate of FC and upper line of the 
loop (the grey area in Fig. 3, where the magnetic field B0z exists) 
decreases with time. Therefore, in the frame K0 the total time 
derivative of magnetic flux across the area ABCD decreases with 
time, too. One can easily find that this time derivative is equal to 

  L
c

uvE
dt

dS
B

dt
d

z 2
ABDC

0 −≈=
Φ

, (17) 

where L is the length of the side AB. (In the adopted accuracy of 
calculations a contraction of this length in K0 is not significant). 
Hence, the Faraday induction law requires the appearance of e.m.f. in 
the loop. When calculatomg the e.m.f. we assume that the electric and 
magnetic fields below the lower plate of FC are negligible, and take 
into account that due to the scale contraction effect in K0, the co-

_

+

V

y0

x0 v
(K1)

(K2)

B0z

K0
V

C D

A B

FC

 
Fig. 3. An observer in the frame K0 sees that under motion of the frames K1 
and K2, the gray area ABDC decreases with time and hence, the magnetic flux 
across the conducting loop also decreases. 
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ordinate axes of K2 are turned out at the angle 22cuv=ϕ in the 
opposite rotational directions, as depicted in Fig. 4,a [2]. Then the 
e.m.f. is equal to [2] 

 

( ) ( )

( ).
2 2 ACDBEL

c
uvE

ACDBEdxEldBvE y
BA

x

−+

≈−+=×+= ∫∫
Γ

rrrr
ε

 (18) 

One can find from Fig. 4,b that  

 22cuvLLACDB ==− ϕ .  (19) 

Substituting Eq. (19) into Eq. (18), we obtain 

 L
c

uvE
2=ε  (20) 

in a full accordance with the Faraday induction law (see, Eq. (17)). 
 Further, let us write a transformation from K0 to K1 [7]: 

 
( ) ( )

( )( ) ( )( ).;;

;;;

0
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2
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yzvzzyvyxx
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γγ
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(21) 

Substituting Eqs. (16) into Eqs. (21), one gets: 

 21 2c
uv

EEx −≈  (22a) 

 







−≈ 2

2

1 2
1

c
v

EEy , (22b) 

 0111 === yxz BBE ,  (22c) 

 01 ≈zB . (22d) 
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Thus, the magnetic field in the frame K1 disappears, while the 
electric field E

r
 has a non-zero projection onto the axis x1, Eq. (22a). 

ϕ

V

x0

x2

y0

xV

x2⊥V

22
2 1 cVx V −

ϕ

E

ϕL

LA

C

D

V0 x0

Condenser

a)

b)

ϕ

B

y2

 
Fig. 4: a – the axes x2 and y2 of the frame K2 are no longer parallel to the 
corresponding axes of K0 due to the scale contraction effect in the frame K0;  b 
– due to this effect, an observer in the frame K0 fixes that the plates of 
condenser constitute the negative angle ϕ with the axis x0 (and with the line 
AB). 
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As mentioned in Ref. [2], a spatial turn of the vector E
r

 at the angle 
22cuv≈ϕ  has a simple physical meaning in special relativity, if we 

take into account the Thomas-Wigner rotation of the axes of K1 and 
K2 frames for the motion diagram in Fig. 2. The angle of this rotation 
is [8] ϕ=≈Ω 22cuv . This means that the vector E

r
 is orthogonal to 

the axis x2 of K2, and an observer in frame K1 sees a simple spatial 
rotation of the condenser, as depicted in Fig. 5. At the same time, as 
known in electrostatics, rotation of a charged condenser does not 
induce an e.m.f. in a closed loop passing through the condenser. The 
same result can be obtained from Eq. (18), if we take into account that 
the difference DB-AC changes its sign in the frame K1 in comparison 
with K0 (compare Figs. 4,b and 5):  

 22cuvLACDB −=− ,  (23) 

and ε=0 in Eq. (18). This result, obtained within SRT, is quite 
contradictory: the e.m.f. exists in the frame K0, and disappears for an 
observer in the (laboratory) frame K1. In addition, it means a violation 
of causality. 

Now we will show that such a non-physical result is avoided in 
CETs: the e.m.f. exists in both K0 and K1 frames in accordance with 
the Faraday induction law. In order to substantiate this conclusion, let 
us inspect more closely the effect of Thomas-Wigner rotation in 
CETs, in particular, in LET.  

In the physical space-time of LET, where the rotation-free 
Galilean transformations are valid, the spatial rotation of co-ordinate 
axes is absent. We will show that the Thomas-Wigner rotation 
appears in LET as illusional effect (i.e., for measured space-time 
coordinates), caused by the combined action of the absolute 
contraction of moving scales and anisotropy of physical light velocity 
in moving inertial frames. Then, this principal difference in 
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interpretation of the Thomas-Wigner rotation in STR and in LET will 
lead to different values of integral (18), in spite of the same field 
transformations in both these theories. 

First of all, we take the inertial reference frame K0 in Fig. 2 as 
absolute. This means that Fig. 4a, depicting the directions of the 
coordinate axes of the frame K2 for an observer in K0, remains valid. 
Due to the absolute contraction of the moving scale in LET 
(transformations (15), the same Fig. 4a holds true for the observer in 
K1, whose coordinate axes remain parallel to the coordinate axes of 
the absolute frame K0. However, due to the light velocity anisotropy 
along the axis x1 of the frame K1 ( ,vcc x −=+ vcc x +=−  in 
accordance with the Galilean law of velocity composition in physical 
space-time), the true (black) position of the axis x2 of K2 transforms to 

Ω

(K2)
E

ΩL

LA

C

B

D

V

y1

x1
K1

u’

Condenser

ϕ

 
Fig. 5. Due to the Thomas-Wigner rotation between the frames K1 and K2, an 
observer in K1 sees the space turn of condenser at the positive angle 
Ω=uv/2c2. 
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the “illusionary” (measured) red position of this axis for the observer 
in K1 (see, Fig. 6).  

We can understand the appearance of this illusion, analyzing a 
procedure of measurement of inclination of the axis x2 of K2 from the 
axis x1 of K1. In this measurement we can put two distant clocks Cl1 
and Cl2 along the axis x1 of K1 and look for a difference in their 
readings at the instant when they touch the moving axis x2 of K2 
frame (see, Fig. 7). 

A true angle between the axes x1 and x2, in accordance with Fig. 6, 
is equal to ϕ≈-uv/2c2. Hence, if the distance between two clocks is L, 
that the true time difference between the instants of their operation is 

ϕ

V

x1

x2 (true)

y1y2

xV

x2⊥V

22
2 1 cVx V −

Ω

x2 (illusional)

Ω

 
Fig. 6. For the illusionary (red) position of the axis x2 of K2 frame, an observer in 

K1 fixes a common spatial rotation of the frame K2 at the angle 22cuv=Ω  
(Thomas-Wigner rotation). 
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 2

2

2
2

c
Lv

u
c
uv

L
t −=

−

=∆ , 

i.e., the “stop” clock Cl1 operates earlier than “start” clock Cl2 (∆t is 
negative). At the moment of touching each clock emits a short light 
pulse to strike the time analyzer TA at the middle between Cl1 and 
Cl2. Due to anisotropy of physical light velocity along the axis x1 
(c+=c-v, c-=c+v), the time analyzer measures the difference between 
two pulses: 

 ( ) ( ) 22 2222 c
Lv

vc
L

vc
L

c
Lv

≈
+

−
−

+−=∆τ . 

The plus sign means that the light pulse from Cl2 (the “start” 
clock) arrives earlier than the pulse from Cl1 (“stop” clock) to TA. 
Since an observer in K1 does not know about anisotropy of light 
velocity along the axis x1 of his frame (measured light velocity is 
equal to c in LET and in any other CET), he concludes that the 
inclination angle of the axis x2 of frame K2 (measured direction of this 

K1

x1
Cl1 Cl2

TA

u’

ϕ

True position
of the axis x2

Illusional position
of the axis x2

Fig. 7. For observer in K1 the true (black) position of the axis x2 of K2 appears 
as the illusionary (red) position of this axis due to the light velocity anisotropy 
in the frame K1. TA is the time analyzer. 
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axis) is positive, i.e., it has the reverse sign with respect to the x1 axis 
of frame K1 in comparison with its true (negative) inclination angle. 
That is why the physical (black) position of the axis x2 of frame K2 in 
Figs. 6, 7, due to the light velocity anisotropy in K1, appears as the red 
axis x2 (illusionary position). It occurs due to inversion of the sign of 
the inclination angle for the illusionary direction of the x2 axis relative 
to its true direction. As a result, the observer in K1 frame erroneously 
concludes that both x2 and y2 axes are turned out at the same positive 
angle 22cuv=Ω , which means a simple spatial rotation through 
angle Ω of the frame K2 with respect to the frame K1 (Thomas-
Wigner rotation in SRT, Fig. 6). In the author’s opinion, this physical 
explanation of the Thomas-Wigner rotation, which does not require 
the action of any torque, represents an important advantage of LET 
(and CETs) in comparison with SRT, where this effect is not 
explained. One can add that the Thomas precession (appearance of a 
multiplier ½ in the expression for spin-orbit interaction in atoms), 
considered as a strong experimental confirmation of the Thomas-
Wigner rotation, finds alternative explanations in LET [4, 9]. 

The revealed principal difference between LET’s and STR’s 
interpretations of the Thomas-Wigner rotation is a cornerstone for 
explanation of the Faraday induction law in the frame K1. Namely, in 
LET the condenser moving in K1 has a true position according to Fig. 
4,b, while in SRT the condenser has the true position depicted in Fig. 
5. Note that in both Figs. 4, 5 the angle of E

r
 with the axis x1 of K1 is 

the same. However, the difference of the lengths of segments DB and 
AC has opposite signs for true and illusionary positions of the x2 axis 
of frame K2 (or lower plate of the condenser). For the illusionary 
position of the lower plate we get the difference DB and AC 
according to Eq. (23). For the true position of the plate (which should 
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be used in LET calculations), the difference is positive, as in the 
frame K0 (see Eq. (19): 

 L
c

uvE
LACDB 22

==− ϕ . (24) 

Substituting Eq. (24) into Eq. (18), one gets for the frame K1: 

 ( ) L
c

uvE
ACDBEL

c
uvE

222
=−+=ε , (25) 

which is the same value as in the frame K0 (see, Eq. (20)) with the 
adopted accuracy of calculation. 

Thus, within LET the e.m.f. in the circuit exists in both frames K0 
and K1, while for SRT we derived a result in contradiction with the 
causality principle: the e.m.f. exists in the frame K0 and disappears in 
the frame K1. 

In the next section we will describe a possible experimental 
scheme to detect an absolute velocity of Earth on the basis of the 
calculations carried out above. 

4. The proposed experiment to test special 
relativity and covariant ether theories 

The possible scheme of the experiment is shown in Fig. 8. Moving 
system MS, resting in a laboratory, provides an oscillating harmonic 
motion of the charged flat condenser at the angular frequency ω: 
 tyy ωsin0= , 

where y0 is the amplitude of oscillation. The velocity of oscillation is 
 tyu ωω cos0= . 

The side AB of the multi-turned conductive rectangular loop at 
rest in the laboratory passes across the inner volume of the condenser. 
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The high voltage, applied to the plates of the condenser, is equal to U. 
The distance between the plates of the condenser is l0, and the length 
of the plates along the axis x is L. The output of the loop is connected 
with narrow-banded (near the frequency ω) amplifier A. The output 
of amplifier is connected with the oscilloscope to measure a possible 
e.m.f. in the loop.  

According to SRT, we are dealing with relative motion of the 
condenser and the loop, and the velocity u of this motion is co-linear 
to the vector E

r
 inside the condenser. This motion does not create a 

magnetic field inside the condenser, and no e.m.f. is induced in the 
circuit. 

Considering this experiment within LET, we assume that the 
laboratory (Earth) moves at the constant “absolute” velocity v along 
the axis x. Due to the transformations (7), (8), there is no relative 
velocity between two arbitrary inertial reference frames in CETs, and 
all calculations should be carried out for their “absolute” velocities. 
This means, in particular, that in the absolute frame K0 the loop 
moves at the “absolute” velocity v along the axis x, while the 
condenser moves at the absolute velocity vuV

rrr
⊕= . For this motion 

diagram, Fig. 2 becomes relevant, and the e.m.f. in the loop can be 
defined according to Eq. (25) (for a single turn), with a single 
correction: if the profile sides of the loop lie very far from the 
boundaries of the condenser (Fig. 8), L denotes the length of plates of 
the condenser along the axis x, but not the length of sides of the loop. 
Substituting into Eq. (25) the following numerical values: ω=6⋅102 Hz 
(ν≈100 oscillations per second), U=4⋅103 V (an acceptable value for 
laboratory conditions), L=0.2 m, l0=2 mm, x0=l0/2=1 mm (the 
maximum value of amplitude of oscillation for given l0), v≈10–3c 
(typical velocities of Galactic objects). we estimate the maximum 
value of e.m.f. as 
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 VU
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2

0 ≈=== − . 

An attractive feature of the Faraday induction experiments is the 
possibility of multiplying the e.m.f. by a number of turns n of the 
loop. In particular, for n=100, we obtain 
 Vµε 80≈ . 

For the amplifying coefficient of the amplifier A about 103, we get the 
amplitude of e.m.f. 
 mV80≈ε , 
which can be easy measured by oscilloscope. If CETs are correct, 24-
hour and yearly variations of amplitude of e.m.f. should be detected. 
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A
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u

v

A B

 
Fig. 8. Proposed scheme for an experimental test of SRT and LET. 
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5. Conclusions 
Thus, a contradictory result, obtained within the framework of SRT 
for the problem considered in ref. [2] (a relative motion of parallel 
plate condenser and conducting loop with the side lying inside the 
condenser), is closely related to a relativistic interpretation of the 
Thomas-Wigner rotation as real spatial rotation of the co-ordinate 
axes of the reference frames involved into successive space-time 
transformations. This incorrect result signifies that an e.m.f. exists in 
one inertial reference frame, and disappears in another inertial frame. 
Recovery of causality (the e.m.f. exists for any inertial observer) 
occurs in Lorentz ether theory (one of the CETs), where the Thomas-
Wigner rotation represents an illusional phenomenon, caused by the 
absolute scale contraction effect, as well as by anisotropy of physical 
light velocity for an arbitrary inertial observer. A principal difference 
in the interpretation of Thomas-Wigner rotation in SRT and LET 
makes it possible to perform and experimentum crucis to decide 
between two these theories. It rejects a wide-spread opinion that these 
two theories are indistinguishable at the experimental level. 
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