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A derivation of two
homogenous Maxwell
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We present a theoretical derivation of two homoge-

nous Maxwell equations, based on Stokes theorem for

Minkowski space tensors. A more general equation is also

derived for the case of a field-strength tensor which is not

antisymmetric. (Communicated by V. Dvoeglazov. Re-

ceived on Jan 22, 2004.)
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Introduction

The Maxwell equations (1)-(2) for the electromagnetic field
and the Lorentz 4-force law (3) for a charged particle are general-
izations based on the experiments on the forces between electric
charges and currents. These equations can be written in the
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covariant form [1]
∂Fαβ

xα

=
4π

c
Jβ, (1)

∂Fαβ

∂xγ

+
∂Fβγ

∂xα

+
∂Fγα

∂xβ

= 0, (2)

Fα =
q

c
FαβUβ, (3)

where x is the position 4-vector, J is the 4-current, F is the
4-force, U is the 4-velocity, and F is the antisymmetric field-
strength tensor. We work in the x, y, z, ict Minkowski space,
where there is no distinction between covariant and contravari-
ant tensors.

These equations are intimately related with the principles
of special relativity. Indeed, it was the consistent treatment of
the electrodynamics of moving bodies that led to relativity [2].
Tolman [3] and Jefimenko [4] have derived the Lorentz force law
from the Maxwell equations and special relativity. Frisch and
Wilets [5] have derived the Maxwell equations and the Lorentz
force law by applying the transformations of special relativity to
Gauss’s law of the flux of the electric field. Dyson [6] reproduces
an argument due to Feynman, in which Maxwell equations fol-
low from Newton’s law of motion and the quantum mechanics
commutation relations. It is remarkable how nonrelativistic as-
sumptions can lead to relativistically invariant equations. Ger-
sten [7] and Dvoeglazov [8] have derived generalized Maxwell
equations from first principles, similar to those which have been
used to derive the Dirac quantum relativistic electron equation.
In this paper we derive two homogenous Maxwell equations by
using Stokes theorem, in a fully relativistic manner.
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Derivation of two homogenous Maxwell equations

A consequence of the antisymmetry of the field-strength ten-
sor is that the magnitude imoc of the 4-momentum p is constant.
We will consider an extension of the Lorentz 4-force law (3) to
the case of a field-strength tensor not necessarily antisymmetric
Fαβ = F

(a)
αβ + F

(s)
αβ . Consequently the rest mass mo of the test

particle will no longer be constant (but the electric charge will
not be modified). Such a theory which allows for the variation
of the rest mass has been under investigation by Galeriu [9]. In
this theory the concept of ’material point particle’ is rejected, a
time symmetric interaction taking place between finite segments
along the world-lines of the particles.

We will assume that the rest mass of a particle at a given
SpaceTime point, and with a given velocity, does not depend
on the history of that particle. This is the underlying physical
principle behind the homogenous Maxwell equations (2). The
classical theory is obviously a special case of this more general
theory, limited to an antisymmetric field-strength tensor.

Consider two SpaceTime events A and B, and a charged test
particle moving from A to B on any possible smooth path Γ, re-
stricted only to the condition that the initial and final velocities
be given. Since at A and B the direction of the 4-momentum is
given, and the magnitude of the 4-momentum is also unique, we
conclude that the variation of the 4-momentum between A and
B is the same regardless of the path followed. For two different
paths, Γ1 and Γ2, we can write

pBα − pAα =

∫
Γ1

dpα =

∫
Γ2

dpα. (4)

The expression (3) of the Lorentz 4-force allows us to write the
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integrals in (4) as the circulation of the field-strength tensor

∫
Γ

dpα =

∫
Γ

Fαdτ =

∫
Γ

q

c
Fαβ

dxβ

dτ
dτ =

∫
Γ

q

c
Fαβdxβ. (5)

From (4) and (5) we obtain that in general

∮
q

c
Fαβdxβ = 0⇒

∮
Fαβdxβ = 0. (6)

Stokes theorem, usually used in connection with the null cir-
culation of a vector, will now be applied for the more general
case of a tensor. Stokes theorem in the 4-dimensional Minkowski
space takes the form [1]

∮
Fαβdxβ =

1

2

∫
dfβγ(

∂Fαγ

∂xβ

−
∂Fαβ

∂xγ

), (7)

where dfβγ are projections of a surface element. Due to the
arbitrary nature of the paths Γ1 and Γ2, from equations (6)-(7)
it follows that

∂Fαγ

∂xβ

−
∂Fαβ

∂xγ

= 0. (8)

This is the most general condition that the field-strength tensor
must satisfy. We separate the symmetric and the antisymmetric
components in (8), obtaining

∂F
(s)
γα

∂xβ

−
∂F

(s)
αβ

∂xγ

=
∂F

(a)
γα

∂xβ

+
∂F

(a)
αβ

∂xγ

. (9)

From (9) we obtain two more equations by cyclic permutations of
the indices (α→ β, β → γ, γ → α) and (α→ γ, β → α, γ → β).
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By summing up all the three equations the symmetric compo-
nents cancel, and we end up with two homogenous Maxwell
equations

∂F
(a)
αβ

∂xγ

+
∂F

(a)
βγ

∂xα

+
∂F

(a)
γα

∂xβ

= 0. (10)

By subtracting (9) from (10) we also see that, if no symmetric
components are allowed (the left side of (9) is zero), a problem-
atic equation emerges:

∂F
(a)
βγ

∂xα

= 0. (11)

These results, and other problems related to the radiation reac-
tion 4-force [10], suggest that the symmetric part of the field-
strength tensor cannot be ignored.
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