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This paper presents a new relativistic theory of gravitation as 
an alternative to that represented in Albert Einstein's General 
Theory of Relativity. Initially, a new representation of the 
space-time continuum, designated the Relativistic Domain 
D1, is created utilising a system of complex linear co-
ordinates. This Domain is subsequently shown to possess all 
the gravitational characteristics of the General Theory, and as 
observed in the Solar System and beyond. A new 
interpretation of the gravitational phenomenon is thus made, 
avoiding the problems associated with an induced curvature of 
the space-time continuum as is required in the General 
Theory. 
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1. Introduction. 
The General Theory of Relativity, published by Albert Einstein in 
1915/16, deals with the kinematics of motion of a free particle mass 
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when under the exclusive influence of gravitation. Within the General 
Theory gravitation is not purported to be caused by an accelerative 
force, it is said to be caused by the presence of matter creating a 
distortion of the space-time continuum. The distortion is such that the 
continuum becomes curved in the direction of the gravitational 
source. A mass within this curved space-time, in motion under the 
sole influence of the source, then moves along a curved path, or 
geodesic, so gravitating towards it. The velocity of such motion 
increases with the increase in the degree of curvature as the source is 
approached. What is not clear in the General Theory however, is how 
a particle mass is caused to accelerate from rest, from any location 
within this curved space-time. Also, the mechanism causing the 
curvature is neither adequately defined nor mathematically described. 

This paper provides an alternative approach to gravitation avoiding 
these difficulties by removing the need for a curved space-time 
continuum. In a manner identical to the analytical approach advanced 
in [1], the concept of an Existence Velocity within a Relativistic 
Domain is used to simplify, extend, and eventually re-define the 
gravitational phenomenon. 

Initially, the precise definition of a linear Relativistic Space-Time 
Domain, D1, within which gravitation is subsequently shown to exist 
naturally, is effected. This permits the derivation of a simple 
expression for the cause of gravitational motion, defined as the 
Acceleration Potential of that Domain. This Potential, subsequent to 
the correlation of the Domain D1 with the Solar System, then enables 
an uncomplicated derivation of the major kinematic equations of 
gravitational motion, including those for a central orbit for a single 
particle mass. Utilising these results, an exact solution of the equation 
of the orbit is then constructed for comparison with the approximate 
solutions of the General Theory, and with gravitational motion within 
the Solar System.  
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Where useful throughout the text, a physical interpretation of the 
results is given, as is frequent comparison with the applicable 
expressions of the General Theory. 

In the interest of brevity, mathematical derivation has been kept as 
short as possible and only the main results presented. Also, familiarity 
with the general concept of a Relativistic Space-Time Domain and its 
main characteristic, Existence Velocity, as presented in [1], is 
assumed. 

2. The Relativistic Space-Time Domain D1. 

2.1 Definition. 
The Relativistic Domain D0, as developed and shown in [1] to be 
equivalent to Pseudo-Euclidean Space-Time, is one in which 
gravitation exists in an artificially defined form only. A rigorously 
defined expression of gravitation, for a single gravitational source, 
requires that the Domain D0 is modified by the presence of the 
source, to produce a new Relativistic Domain, D1. The change is a 
simple one and the only differences between D0 and D1 are, firstly, a 
modification of the form of Existence Velocity, the central concept 
upon which such Domains are based, and secondly a consequential 
modification of the maximum theoretical spatial velocity attainable 
within the Domain. The new Domain is however still linear and does 
not exhibit any form of curvature. 

Accordingly, D1 can be defined as a mutually orthogonal space-
time of four linear dimensions, three of which Y1, Y2, and Y3, are 
spatial in nature, and the fourth, X0, is temporal and identical to the 
temporal dimension of D0. Time in D1 is represented by the 
parameter τ and, as a consequence of the new Domain's modified 
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Existence Velocity, is different from the time t in D0. The Domain is 
such that it possesses a preferred spatial origin, the centre of the 
gravitational source, from which the radius vector magnitude to any 
random point B is 

 ( ) 2
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2
3

2
2

2
1 yyy ++=σ  (2.1) 

where y1 , y2 and y3 are each a distance along the respective spatial 
axes from the origin. σ has been chosen to represent the radius vector 
magnitude in D1 to separately identify it from the same parameter, r, 
in D0. 

All spatial-temporal points that exist within D1 must, at all times, 
possess a characteristic Existence Velocity, the magnitude of which, 
for the point B, is defined to be the resultant of all four velocities 
along the co-ordinate axes of D1 and, may therefore be expressed as 
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where the #y& are the spatial axial velocities of the point and px&  is its 
temporal velocity. The parameter c is a velocity constant numerically 
equal to the magnitude of Existence Velocity in D0 and u is initially 
defined to be an arbitrary dimensionless function of σ. 

Finally, the maximum theoretically attainable spatial velocity in 
D1, designated Spatial Terminal Velocity, is defined as follows. For 
motion purely along a radius vector, Spatial Terminal Velocity is 
defined to be equal to cu. For purely circular motion in any plane 
about the origin, it is defined to be equal to the velocity constant c. 
This difference exists because of the purely radial nature of 
gravitation. 
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2.2 Existence Within D1 
The Spatial-Temporal Existence Velocity Vector V, for the random 
point B within the Domain is determined as follows. 

The spatial-temporal position of the point B with respect to the 
spatial centre of the gravitational source and some chosen temporal 
reference will be 
 pxyyy jkli +++= 321S  (2.3) 

where the y# are each a distance along the three spatial axes Y1, Y2 
and Y3 for which the  i, l and k are normal unit vectors. The term xp is 
a distance along the temporal axis for which j is the unit vector with a 
magnitude of 1− .  

From (2.1), Eq.(2.3) may be rewritten as 
 pxjn+σ=S  (2.4) 

where n is a radial unit vector. 
For planar motion, the velocity of this point is defined by 

differentiating (2.4) with respect to the time τ thus 
 pxu && jtn +ωσ+σ=V  (2.5) 

where  τ= d
dSV  and 

τ
φ

=ω
d
d

 and is the angular rate of the point B.  

Note that (2.5) involves the differential of the unit vector n thus 
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within which 
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and therefore similarly 
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Relationships (2.7) and (2.8) occur because of the different Spatial 
Terminal Velocities in the radial, n, and radial normal, t, directions. 
Proof of the above relationships is presented in Appendix F. 

Taking the magnitude of (2.5) gives, after invoking the 
characteristic of existence in D1 via the insertion of (2.2) 
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from which 
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which when re-inserted into (2.5) yields 
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Eq.(2.11) is the Existence Velocity of the random point B in the 
Relativistic Space-Time Domain D1. This expression will be used in 
the next Section to develop the kinematics and kinetics of 
gravitational motion in D1 which will then be shown to be the natural 
state of existence in that Domain. Before that however, it is useful to 
note three other important characteristics of D1. 

2.3 The Time τ in D1 
The first concerns the time τ in D1.  From (2.11) when &σ  and ω are 
both zero, motion exists only along the temporal axis of D1 so that 
the temporal velocity of a spatially stationary point in D1 is 
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d
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and therefore an element of time in D1 may be defined by the 
relationship 

 
cu
dx

d 0=τ  (2.13) 

and is therefore a function of spatial position from the origin by virtue 
of the fact that u is a function of σ.  

2.4 The Proper Time in D1 
The second point concerns the proper time of the point B in D1, i.e. 
the time measured by an observer located with the point B. Inserting 
(2.12) into (2.10) and re-arranging gives 
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using (2.13) to rewrite the LHS of (2.14) then gives 
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where 
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where τ
τ

d
d p  is the temporal rate, and τp the proper time of the point 

B in D1. 
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2.5 Temporal Significance of the Function u. 
Although u has been defined as a non-dimensional function of the 
spatial variable σ , its appearance in the temporal components of the 
above relationships has a special significance in that it relates time in 
D1 to that in D0, (Pseudo-Euclidean Space-Time). 

A spatially stationary point in D1, with a temporal velocity given 
by (2.12) would, in an element of time dt in D0  move an element of 
distance dx0 along the temporal axis, given by 
 cudtdx =0  (2.17) 

Therefore in D0 , the proper time of such a point, i.e. the proper time 
of D1 would be  

 udt
c

dx
d ==τ 0  (2.18) 

so that 

 u
dt
d

=
τ

 (2.19) 

and u is therefore a measure of the temporal rate of D1 with respect to 
D0 and, for future reference, it is noted that it must therefore possess 
a positive sign. Also, it is clear that because u is a function of σ, the 
temporal rate of D1 is a variable dependent upon radial distance from 
the centre of the gravitational source, i.e. D1 exhibits spatially 
dependent temporal dilatation, as is also evident from (2.13). 

The relationship between the respective spatial axes of the two 
domains depends upon the characteristics of u and will be developed 
subsequent to the determination of the precise nature of this function 
in Section 4. 
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3. Gravitational Planar Motion in D1 . 

3.1 The Accelerative Force of Gravitation. 
It was shown in [1] that in the Relativistic Domain D0, (Pseudo 
Euclidean Space-Time), a change in the Existence Momentum of a 
mass could only be effected by the application of an accelerative 
force. Indeed, for spatial motion of a mass to exist in any Relativistic 
Domain, including one exhibiting gravitation, it is firmly believed that 
it can only result from the application of such a force. To cause 
gravitational motion therefore, if an accelerative force is not 
artificially applied, then it must be generated within the mass as a 
result of interaction with the characteristics of the Domain. Assuming 
the gravitational effect in D1 to be a purely spatial radial one, this 
internally generated gravitational force can be determined for any 
gravitating mass, by comparing the spatial variation of its total 
energy, with the temporal variation of its Existence Momentum. First, 
consider the variation of Existence Momentum with time. For planar 
motion it is derived as follows. 

If m is the energy mass of a particle possessing free planar motion 
in D1, then, from (2.11), its Existence Momentum will be:- 

 ( )
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1
222222 uucum && jtnM  (3.1) 

Differentiating (3.1) with respect to τ  gives the time rate of 
change of M in D1  as :- 
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where in taking the derivatives of the unit vectors n and t, the 
relationships of (2.7) and (2.8) have been inserted. 

Equation (3.2) gives the reaction of the particle to changes in its 
Existence Momentum and, if the cause of gravitation is purely spatial, 
then the temporal component will be zero, so that 
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This naturally integrates immediately to give:- 

 ( ) kuucm +σω−σ−−= 222222
2
1 &lnln  (3.4) 

Initial conditions may be chosen to correspond to an apse of the 
spatial trajectory so that when ,,,, 0000 uumm =ω=ω==σ&  
and 0σ=σ  giving 
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Note that m0 is not the rest mass but the energy mass at the apse. 
Eq.(3.4a) inserted into (3.4) gives 
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Eq(3.5) represents the energy mass of the particle as a function of its 
velocity in D1. 

To eliminate the term in ω&  in (3.3), use is made of the fact that 
gravitation is a purely radial effect with respect to the origin so that 
the radial normal, ( )t , component of (3.2) must also be zero. 
Therefore this gives 
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so that 
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Note that this is identical to the statement that angular momentum is 
constant. Substitution of (3.7) into (3.3) then gives after reduction 
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so that with substitution of (3.8) into (3.2), both the radial normal, 
( t ), and the temporal components vanish and there is left after 
reduction 
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This represents the resultant reaction of the gravitating mass to 
changes in its Existence Momentum. 
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Next the variation of the total energy of the mass as a function of 
its radial position from the origin will be determined for comparison 
with (3.9). 

The total energy of matter in D0 was, in [1], shown to be the 
product of its energy mass and the square of the magnitude of its 
Existence Velocity. Extending this to the Domain D1, the total 
energy of the mass here is given by 
 E mc u= 2 2  (3.10) 
Differentiating this with respect to σ  gives 
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Converting the differential of the mass to one involving the time then 
gives 
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(3.8) may now be substituted for &m to give after reduction 
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This represents the resultant spatial variation of total energy with 
radial distance. 

Now comparing (3.13) with the magnitude of (3.9) it is clear that 

 
σ

+
τ

=
σ d

du
umc

d
dM

d
dE 2  (3.14) 



 Apeiron, Vol. 10, No. 4, October 2003 110 

© 2003 C. Roy Keys Inc. — http://redshift.vif.com 

However, for purely gravitational motion, there is no artificially 
applied force and therefore the total energy of such a free particle 
within D1 will be constant, i.e. 

 0=
σd

dE
 (3.15) 

Insertion of this into (3.14) then gives 
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This relationship shows that the cause of gravitational motion in D1 
is a reaction force generated within the particle proportional to it's 

energy mass. The term 
σ

−
d
du

uc 2  has the dimensions of acceleration 

and as can be seen is solely a function of the characteristics of the 
Domain. For this reason this term is now defined as the Gravitational 
Acceleration Potential of D1 

3.2 The Equation of Motion. 
The equation of motion of the gravitating mass may now be obtained 
by the simple substitution of the magnitude of (3.9) into (3.16), the 
result being 
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This is also evident from (3.13) when (3.15) is inserted. Equation 
(3.17) is the equation of free planar motion of a mass within D1. The 
term in σω22u  is the centripetal acceleration resulting from the 

rotational nature of the motion about the origin. The term in 
σ

σ
d
du
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is an acceleration caused by the radial velocity as the particle mass 
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moves through the varying temporal field surrounding the 
gravitational source. Both this and the centripetal term act in 
opposition to the main gravitational term, the Acceleration Potential. 

The nature of the gravitational motion is clearly determined by the 
sign of the gradient of u, and it will be shown later that this sign is 
positive for a Domain identical to the Solar System. 

3.3 Mass and Energy. 
It was shown in [1] that in D0  the cause of the variation of mass as a 
function of spatial velocity was the manner in which artificially 
induced kinetic energy was stored. In D1, for the type of motion 
under consideration, by virtue of (3.15) artificially induced kinetic 
energy does not exist and consequently the variation of mass, as 
exhibited by (3.5) must have a different cause. To investigate this, 
(3.15) is substituted into (3.11) to give, after separation of variables 
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Solution of this simple equation gives 

 m m
u
u

= 0
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2

2  (3.19) 

showing that in D1 because u is a function of σ , energy mass is 
solely a function of position on the radius vector from the origin. Now 
substitution of (3.19) back into (3.10) then gives 
 E m c u= 0

2
0
2  (3.20) 

e.g. the constant value of the total energy of the gravitating mass 
which is seen to be that at the point taken for initial conditions. 

As mentioned above, m by virtue of the function u  is solely a 
function of σ . However, because m is the mass equivalent of E  
which, being constant for all σ , therefore indicates that in (3.19) it 
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cannot be the amount of matter energy that is varying, but some other 
parameter associated with D1. The only other parameter involved is 
u  and the mechanism behind the variation of mass derives from the 
fact that u  is a measure of the temporal rate of D1 and if the motion 
of a mass involves movement along a radius vector from the origin, it 
therefore moves continuously through a varying temporal rate.  
Because the units of mass include the square of time, these, and 
consequently the value of mass must vary along σ  according to the 
square of the function u . 

3.4 Weight 
Now (3.15) and (3.16) indicate that the gravitationally accelerated 
condition of the mass is its natural state of existence in D1. To change 
this state of this existence, in either assisting or resisting the 
gravitational effect, energy must be provided. As an example of this 
consider the simple case in which gravitational motion of a particle 
mass is prevented at some distance σ1 from the centre of the source. 
Thus in (3.14) putting 

 0=
τd

dM
 (3.21) 

gives 
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But because there is no motion both sides of (3.22) must be constant 
and it can be written 
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where Fg  is the constant force applied to resist gravitation and is 
therefore a measure of the weight of the particle mass. Note that the 
weight of any particle mass is a variable dependent upon its radius 
vector position from the origin of the gravitational source. Therefore, 
if the particle were far enough away from the origin, u would become 
constant, its gradient zero and therefore the weight of the particle also 
zero. This is of course entirely in keeping with experience within the 

Solar System. Note also that if the sign of 
σd

du
 were negative, (3.23) 

shows that the weight of the particle mass in an anti-gravitational field 
would be negative. 

4. Correlation Between the Domain D1 and the 
Solar System 
To this point the analysis has been somewhat generalised because the 
function u, and therefore D1, has only been partially defined. u is the 
most important parameter associated with D1 dictating its inherent 
characteristics and those of existence within it. u could be specified to 
be any arbitrary function of σ, the resulting hypothetical domains 
thereby exhibiting gravitational and other characteristics of various 
types and degrees. To determine D1 such that it possesses the 
gravitational characteristics of ponderable matter in the Solar System, 
requires therefore the determination of the appropriate function for u. 

4.1 Determination of the Function u. 
Because gravitation is a purely radial effect, the function u can most 
easily, and without any loss of generality, be determined by 
establishing a correlation between Newton’s gravitational equation 
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for free rectilinear motion, and the appropriate approximated form of 
(3.17). 

The former is given by 

 
22

2

r

m

dt
rd gγ

−=  (4.1) 

Where r is the distance to the centre of the gravitational source, mg is 
the generating mass of the source and γ is Newton’s constant of 
proportionality.  

Now (4.1) is expressed in terms of the spatial and temporal axes of 
D0, Pseudo-Euclidean Space-Time. However, this relationship was 
empirically derived within primarily the gravitational influence of the 
Earth, and consequently the most accurate form of it would be 
obtained by its expression in terms of the spatial and temporal axes of 
a Domain representing the Earth’s gravitational field. Equation (4.1) 
would then be the classical approximation to such an equation. If D1 
is to represent this Domain then Newton’s rectilinear gravitational 
equation expressed in the spatial and temporal axes of D1 would be 

 
2σ

γ
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and σ must differ from r and, over short periods, τ from t by 
incremental amounts not discernible in Newton’s experimentation. 
These conditions will be proved later. 

The equation of free rectilinear motion in D1 is obtained from 
(3.17) by putting ω to zero, viz. 
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Comparing (4.2) with (4.3), as the former is independent of a velocity 
term, the appropriate approximation of (4.3) is obtained by ignoring 



 Apeiron, Vol. 10, No. 4, October 2003 115 

© 2003 C. Roy Keys Inc. — http://redshift.vif.com 

the term involving σ& . This merely means that in Newton’s 

experimentation the effect of the velocity ratio 
cu
σ&

, (or 
c
dtdr

), was 

too small to be observed. Thus equating the final approximation of 
(4.3) with (4.2) gives 

 
σ

=
σ

γ

d
du

uc
mg 2

2
 (4.4) 

and where there now appears on the right hand side the Gravitational 
Acceleration Potential of D1. Equation (4.4) may be integrated to 
give 

 k
u

+=
σ
α

−
2

2

 (4.5) 

where 

 
2c

mgγ
=α  (4.6) 

the so called gravitational, (or Schwartzschild), radius of the source. 
The constant of integration is obtained by introducing the boundary 
condition that as σ  → ∞, u → 1, i.e. as σ  → ∞, D1 → D0. This 
gives k =-½ which when inserted into (4.5) gives the function u thus 

 
2

1
2

1 







σ
α

−=u  (4.7) 

From this it is easily seen that with u being positive, the gradient of u 
along all radius vectors from the source is also positive. The 
consequence is that the gravitational effect within D1 is to result in 
motion towards the origin, or gravitational source, as it does in the 
Solar System.  
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To demonstrate that D1 as characterised herein is truly 
representative of the gravitational effects of concentrated matter in the 
Solar System, it is necessary to provide proofs to the following three 
statements: 

(i) That σ differs from r, and, over short periods, τ from t by 
incremental amounts not discernible in mechanical experimentation. 

(ii) That the relationship between D1 and D0 is such that (4.1) is 
indeed the classical approximation of (4.2). 

(iii) That free motion within D1 is identical to that observed in the 
Solar System. 

The first two of these statements can be proven via establishment 
of the relationship between the respective polar axes, and the time, in 
D1 and D0. The third proof will be demonstrated in the next section 
by the derivation of the equation of a central orbit in D1 and its 
comparison with that obtained from the General Theory of Relativity 
and with observable planetary motion in the Solar System. A rigorous 
solution to this equation is also presented. 

4.2 Relationship Between the Polar Co-ordinate Axes of 
D1 and D0. 
This relationship can be established by the temporal transformation of 
a spatial velocity in D1 to the Domain D0, and comparing the 
resulting co-ordinate terms with the equivalent parameters in D0. 

Thus taking the spatial component of (2.11) 
 tn ωσ+σ=υ u&  (4.8) 

The equivalent expression in the co-ordinates of D0 is 

 tnv r
dt
d

dt
dr ϕ

+=  (4.9) 

Consider the radial component of (4.8) first 
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τ
σ

=σ
d
d&  (4.10) 

temporally transforming this to the Domain D0 using (2.16) 

 
dt
d

u
σ

=σ&  (4.11) 

Comparing this with the radial component of (4.9), if  

 
dt
dr

dt
d

=
σ

 (4.12) 

then upon integration 
 kr +=σ  (4.13) 
The constant of integration relates to the boundary conditions of the 
two Domains. The lower boundary condition is not known because 
D1 is not homogeneous in this region. However, the other boundary 
at which both domains are homogeneous can be utilised as follows. 
From (4.7) write 

 ασ−σ=σ 2222u  (4.14) 
differentiate this with respect to r. 

 ( ) ( )α−σ
σ

=σ
dr
d

u
dr
d

222  (4.15) 

Inserting (4.12) and (4.13) into the right hand side of (4.15) then gives 

 ( ) ( )α−=−σ kru
dr
d

2222  (4.16) 

and this expression must conform to the boundary condition that as 
r→∞, σ→r and u→1. i.e. D1 → D0. At this boundary the left-hand 
side of (4.16) vanishes leaving 
 α=k  (4.17) 
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Thus in (4.12) this gives simply 
 α+=σ r  (4.18) 

as the relationship between the radial axes of D1 and D0. This 
expression, together with (4.6), shows that σ differs from r by an 
incremental amount not discernible in mechanical experimentation. 
i.e. proof of the spatial part of statement (i) above. It should be noted 
that the above process is essentially the same as that in [2] where the 
same result is obtained from the requirement that the two sets of co-
ordinates be “harmonic”. It should also be noted that (4.7) and (4.18) 
are only valid in homogeneous regions of D1 i.e. outside the 
generating mass of the gravitational source. This "extension" of radial 
distance occurs inside the gravitational source and (4.18) is the 
resultant effect outside the geometric dimensions of the source.  

Now consider the radial normal terms in (4.8) and (4.9). Extracting 
and equating the angular rates, noting that the angular rate in D1 is 
already a function of time in D0 

 

dt
d
dt
d

u

ϕ
=

φ
=ω

 (4.19) 

Integrating 
 φ=ϕ  (4.20) 

Where the constant of integration may be made zero by assuming a 
common reference radial in both domains. Thus angles in D1 and D0 
are identical. This is to be expected as gravitation is a purely radial 
effect. 
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4.3 The Temporal Relationship Between D1 and D0 

The temporal relationship between D1 and D0 can be established by 
integrating (2.9) and inserting (4.7). This gives 

 
2

1









α−
α+

==τ
r
r

tut  (4.21) 

where the constant of integration has been put to zero by taking a 
common artificial temporal origin in both D1 and D0. Thus, where, 

as in Newton’s experiments, the inequality 
2

2
c

mgγ
>>σ , (or 

2c

m
r gγ

>> ), is valid, over short periods of time t≈τ . This constitutes 

proof of the temporal part of Statement (i) above. 

4.4 The Classical Approximation to the Equation of 
Free Rectilinear Motion in D1 

Utilising the above results it is now possible to show that Newton’s 
gravitational equation, (4.1), is indeed the classical approximation of 
(4.2). 

From (2.16) and (4.18) 

 
dt
dr

ud
d 1

=
τ
σ

 (4.22) 

so that for the left hand side of (4.2) 

 





=

τ
σ

dt
dr

udt
d

ud
d 11

2

2

 (4.23) 

working this out gives 
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σ







−=

τ
σ

d
du

dt
dr

udt
rd

ud
d

2

32

2

22

2 11  (4.24) 

Substitution for u from (4.7) and for its spatial gradient, and then for 
σ from (4.18) gives 

 
( )

2

22

2

2

2









α−
α

+







α−
α+

=
τ
σ

dt
dr

rdt
rd

r
r

d
d

 (4.25) 

Once again if r>>α, then (4.25), for the left hand side of (4.2) 
approximates to 

 
2

2

2

2

dt
rd

d
d

≈
τ
σ

 (4.26) 

For the right hand side of (4.2), substitution from (4.18) and (4.6) and 
taking the approximation yields 

 
22 r

mm gg γ
−≈

σ

γ
−  (4.27) 

Thus completing the exercise and providing proof of Statement (ii) 
above. 

5 Planetary Orbits in D1 – Equation of the 
Orbit and its Solution. 

The equation of a planetary orbit can be derived in either the axes of 
D1 or those of D0. In the former it is generally known as Einstein’s 
Equation of Planetary Motion. The latter is derived in [2] from the 
metric of the space–time of the General Theory. The former is 
derived here from foregoing results as a first demonstration that 
gravitational motion in D1 is identical to that in the space-time of the 
General Theory. A solution of the orbit is also obtained which when 
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approximated for the appropriate astronomical situations shows that it 
also satisfactorily represents gravitational motion in the Solar System. 
As such this solution thereby provides the proof for Statement (iii) in 
Section 4 above. The equation of the orbit in the axes of D0 is 
derived in Appendix B for comparison with that in [2]. 

5.1 A Planetary Orbit in the Axes of D1 – Einstein’s 
Equation of Planetary Motion. 

Note – In this Section reference is made to results obtained in 
Appendix C. 

To derive the equation of planetary motion in the axes of D1, 
consider first (3.6). This equation can be integrated immediately to 
give 

 kum +ωσ= 2lnln  (5.1) 
Inserting the usual initial condition determines the constant of 
integration as 

 2
0000 σω= umk ln  (5.2 

so that in (5.1) 

 2
0000

2 σω=ωσ ummu  (5.3) 

Substituting for m from (3.5) then gives 

 
2

1

2

2
0

2
0

2
00

2
1

2

22

22

2

2

11 






 σω
−

σω
=








 ω
−

σ
−

ωσ

cc
r

uc
&

 (5.4) 

In line with convention, this constant is now designated as h. 
However, from (C7) it can also be written as 

 2σω′=h  (5.5) 
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The equation of the orbit can now be derived in the usual manner as 
follows. Put 

 
µ

=σ
1

 (5.6) 

and from (5.5) and (5.6) compute the second order differential term in 
(C9) as 

 2

2
22

2

2

φ
µ

µ−=
τ
σ

d
d

h
d
d

p

 (5.7) 

Substitution of this, together with (5.5) and (5.6) into (C9) then yields 
the desired equation of the orbit thus 

 2
2

2

2

2

3αµ+
α

=µ+
φ
µ

h
c

d
d

 (5.8) 

5.2 Solution of the Orbital Equation in D1 
In the literature the equation of the trajectory of a planetary orbit has 
been obtained from an approximate solution of the orbital equation 
for two particular cases. Firstly, for closed orbits, it has been shown to 
approximate a precessing ellipse, viz. [2] pp 199, which constructs an 
approximate solution of (B14), (the equation of the orbit expressed in 
the axes of D0), for a truly elliptical orbit. A similar result is obtained 
in [3], pp247 Example 102, where an approximate solution of (5.8) is 
obtained. This solution however, applies only to a circular orbit. 
Secondly, an approximate solution of (B14) has been obtained for an 
open orbit in the extreme form of a light ray passing close to the 
geometrical radius of a gravitational source, viz. [2] pp 202, and has 
thus been shown to be a precessing hyperbola. 

In this Section, an exact solution is obtained for the planetary orbit 
in D1, (5.8), by assuming it to be a precessing conic section and 
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using, essentially, the method of Frobenús. This solution is then 
reduced to the above approximate forms via a process of logical 
simplification. 

Note – In this Section reference is made to results obtained in 
Appendices B and C. 

5.2.1 Equation of the Spatial Trajectory – The Basic Curve. 
The equation of the basic curve of the trajectory will be derived from 
the first integral of (5.8) which is á priori obtained from (B8) by 
computing dσ/dτp from the first order term in (C2), then substitution 
of (5.5), (5.6) and (B16) to give 

 22
2

2

2

222

µ−−
ε

=







φ
µ

u
h
cu

h
c

d
d

 (5.9) 

Substitution of (4.7) then gives the required relationship as 

 ( ) 32
2

2
2

2

22

2
2

1 αµ+µ−µ
α

+−ε=







φ
µ

h
c

h
c

d
d

 (5.10) 

the first integral of (5.8). 
If the integral of (5.10) is assumed to be a precessing conic section 

then it will take the form 

 ( ){ }Ω−φ+=µ cose
L

1
1

 (5.11) 

where 
L is the semi latus rectum 
e is the eccentricity of the basic curve 
φ is the angle of the focal point radius vector to the major axis 
and Ω is the angle of precession of an apse of the trajectory. 
Differentiating (5.11) with respect to φ yields 



 Apeiron, Vol. 10, No. 4, October 2003 124 

© 2003 C. Roy Keys Inc. — http://redshift.vif.com 

 ( ) 







φ
Ω

−Ω−φ−=
φ
µ

d
d

L
e

d
d

1sin  (5.12) 

but from (5.11) 

 ( )
2

1
2

1
1



















 −µ

−=Ω−φ
e

L
sin  (5.13) 

Thus (5.12) and (5.13) give, after expansion 
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2
2

22

1
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



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
φ
Ω

−

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

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+
−
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






φ
µ

d
d

LL
e

d
d

 (5.14) 

Comparing (5.14) with (5.10), to obtain the term in µ3 with the correct 
coefficient, it is necessary to put 

 ( )αµ−=







φ
Ω

− 21
2

b
d
d

 (5.15) 

where b is some constant. 
Inserting (5.15) into (5.14) and expanding gives 

( ) ( ) 322
2

22

2
4

1
21

αµ+µ





 α

+−µ

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



 −

α
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−
=








φ
µ

L
be

L
b

L
b

L
e

d
d

 

(5.16) 
Again, comparing (5.16) with (5.10), for the coefficient of µ2 to be –
1, it is necessary to put 

 
L

b
α

−=
4

1  (5.17) 

so that in (5.16) this gives after reduction 
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( ) ( ) 322
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231
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1
1
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
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α
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φ
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e
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e
d
d

 (5.18) 

Now, equating the coefficient of µ in (5.18) with that in (5.10) then 
gives 

 
( )2

2
2

31 e
L

Lc
h

+
α

−

α
=  (5.19) 

L can be determined from initial conditions applied to (5.11) to be 

 
0

1
µ
+

=
e

L  (5.20) 

Inserting (5.20) and (5.4) for h into (5.19) then gives, after solving for 
2
0ω  

 
( )

( ){ }e
ec

00

3
0

22
2
0 2121

1
αµ++αµ−

µ+α
=ω  (5.21) 

Now, for the basic orbit to be circular, i.e. e=0, (5.21) reduces to 

 
0

3
0

2
2
0 21 αµ−

µα
=ω

c
 (5.22) 

For values of ω0 below this, the basic orbit will be degenerative, and 
for values above elliptical.  

For the basic orbit to be parabolic, i.e. e=1, (5.21) reduces to 

 3
0

22
0 2 µα=ω c  (5.23) 

For values of ω0 below this the basic orbit will be elliptical and for 
values above hyperbolic. 

Solving (5.21) for e gives 
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( ) ( )
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1621221
2

1
ccc

e (5.24) 

which can also be obtained by equating the constant terms in (5.10) 
and (5.18). 

Now, for the case in which ω0 is equal or very close to its terminal 
value in D1, its upper boundary, i.e. ω0 =cµ0, (5.24) reduces to 

 ( )




 µα−αµ+±

αµ
= 2

1
2
0

2
0

0

12411
2

1
e  (5.25) 

and it is noted for future reference that if 4αµ0 <<1, (5.25) may be 
approximated by 

 
0

1
αµ

≈e  (5.26) 

There appears to be a second root under this criteria, i.e. at e=0. 
However, if the terminal value of ω0 is entered into (5.22), it reduces 
to 3αµ0 = 1, which contradicts the inequality. This second root may 
therefore be discounted for astronomical situations. 

Thus, the basic curve of the trajectory is now seen to be given by 
the combination of the three equations; (5.11), (5.20) and (5.24). The 
full solution to (5.10) is completed by the determination of the 
function Ω. 

5.2.2 Precession of the Perihelion of the Basic Curve. 
Determination of Ω is effected by substituting (5.11), (5.17) and 
(5.20) into (5.15) to give 

 ( )Ω−φ
+

αµ
−

+
αµ

−=







φ
Ω

− cos
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e
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d

1
2

1
6

11 00

2

 (5.27) 
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Putting 
 χ=Ω−φ  (5.28) 

reduces (5.27) to the following elliptic integral 

 χ




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
χ

+
αµ

−
+

αµ
−=φ

−

d
e
e

e
d
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the solution of which is 
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e
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(5.30) 

the constant of integration being zero. 
This relationship, together with (5.28) then permits the 

determination of Ω for any value of φ, for any condition. Thus (5.30), 
together with (5.11), (5.20) and (5.24), albeit somewhat cumbersome, 
constitutes the exact solution of (5.10). 

5.2.3 Comparison with Existing Approximate Solutions. 
To compare the above results with the approximate solutions of the 
General Theory mentioned earlier, it is only necessary to simplify 
(5.30) for known astronomical conditions. 

Firstly, terms in 2
0µ  may be considered negligible in comparison 

with unity, (5.30) then becomes 
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 (5.31) 

in which (5.28) has been re-inserted. 
For astronomical conditions, Ω will be very small compared to φ 

so that (5.31) may be further simplified to 
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This is solvable for Ω giving 
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 (5.33) 

Now, if the astronomical situation is such that the additional 
inequality αµ0 << 1 is valid, (5.33) finally reduces to 

 
e

e
e +

φαµ
+φ

+
αµ

≈Ω
11

3 00 sin
 (5.34) 

Consider first, an orbit with an elliptical basic curve. When φ=2π, 
(5.34) becomes 

 
e+

παµ
≈Ω

1
6 0  (5.35) 

in agreement with the solution of [2], pp199, Eq(58.43). 
For a circular orbit, e=0 which gives in (5.34) 

 φαµ≈Ω 03  (5.35a) 

However, µ0  may be approximated for a circular orbit from (5.19) 
and (5.20) to be 

 
2

2

0 h
cα

≈µ  (5.36) 

Substitution of this into (5.35a) then yields 
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 φ
α

≈Ω
2

223
h

c
 (5.37) 

which agrees with the approximate solution of [3], pp 247, Example 
102,  and represents a maximum value of Ω. 

For the special case in which 00 µ=ω c , its upper boundary, and 
the geometric radius of the gravitational source is much greater than 
its gravitational radius, then (5.26) may be used for the eccentricity of 
the basic trajectory. Thus inserting (5.26) into (5.34) gives 
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2
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11
3

αµ+
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+φ
αµ+

µα
≈Ω

sin  (5.38) 

which may immediately be further approximated to 
 φαµ≈Ω sin0  (5.39) 

This represents the rotation of the perihelion of the hyperbolic curve 
and constitutes a minimum value of Ω. To determine the total angle 
of deflection of the trajectory, (5.20), (5.26) and (5.39) are now 
substituted into (5.11) to give 

 ( ){ }φαµ−φ+αµ
αµ+

µ
≈µ sincos 00

0

0

1
 (5.40) 

expanding the cosine term and taking the usual approximation yields 
after reduction 
 ( )φ+αµµ≈µ cos00 2  (5.41) 

The total angle of deflection may now be approximated from the two 
boundary conditions of the orbit where µ=0. At these boundaries if 







 δ+

π
±=φ

2
, then applying these conditions to (5.41) gives 
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 02αµ≈δ  (5.42) 

and the total angle of deflection of the trajectory is then 
 042 αµ≈δ  (5.43) 

in agreement with the approximate solution in [2], pp202, Eq[59.18], 
for the “bending of light rays” in close proximity to a gravitational 
source. 

The results of this Section provide the final proof for Statement 
(iii) in Section 4. 

6  Concluding Remarks 
The conventional mathematical approach adopted here has, for the 
gravitational effects studied, produced results that are in agreement 
with those obtained from the General Theory of Relativity, and as 
observed for astronomical motion within the Solar System. However, 
the concepts from which this approach stems, e.g. that all matter must 
possess an Existence Velocity within a linear Relativistic Domain, as 
herein defined, differ from the concepts upon which the General 
Theory is based. That difference is in the manner in which the 
“gravitational field” of the source causes motion. In the General 
Theory this is defined as due to a “curvature” of the space-time 
continuum, proportional to, and in the direction of, the gravitational 
source. The “world line” of any gravitating mass is then said to be 
curved in the direction of the source.  
In the development presented here, the space-time continuum of the 
Relativistic Domain D1 is defined to be spatially and temporally 
linear, and gravitationally induced motion has been shown to be 
caused by an Acceleration Potential, generated by the gravitational 
source, proportional to its mass and inversely proportional to the 
distance from it. The effect of this Potential has in turn been shown to 
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be augmented by the result of temporal dilatation produced by the 
source. 

Because of this fundamental difference in which gravitational 
motion is caused, the concepts presented in this paper cannot be 
considered as merely a different mathematical formulation of 
gravitation, but should be considered as an alternative to that of the 
General Theory. 

In both concepts the continuum of Pseudo-Euclidean Space-Time, 
is required to possess characteristics such that it interacts with matter 
energy to produce a new continuum, which in turn causes 
gravitationally induced motion. Also, both concepts incorporate 
temporal dilatation plus the small radial extension of distance from 
the source. Both of these latter effects are created within the body of 
the gravitational source and then extend beyond its geometric 
confines. In the General Theory temporal dilatation is treated as a 
consequence of gravitation while in the presentation here it is shown 
to contribute to the cause of it. Accordingly, in view of the great 
similarity of results in the two concepts, it is believed that the 
purported cause of gravitationally induced motion in the General 
Theory, the curvature of space-time, is a mis-interpretation, and this 
curvature is nothing more than the curvature of the trajectory of the 
gravitating mass, rather than of the space-time continuum in which it 
moves. If this is so, the consequence is that the continuum proper of 
the General Theory must therefore be identical to that of D1. Some 
evidence for this is shown in Appendix D. Also, the derivation of 
Einstein's equation of planetary motion from the characteristics of D1 
further supports this opinion. 

The primary cause of gravitational motion in the Domain D1 is its 
Acceleration Potential. This Potential is in turn augmented by the 
spatially dependent temporal dilatation shown to exist in that Domain, 
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and represented by the parameter u. The generation of these effects 
within a gravitational source in D1 is therefore central to this theory, 
and a mechanism for it will be presented in a next paper. 

The successful application of the concepts of Relativistic Domains 
in both a Pseudo-Euclidean Space-Time, (D0, see [1]), and a 
Gravitational one (D1), as well as representing a unification of 
mathematical analysis within them, has also established a unique link 
between them such that the variation of only one parameter, the 
temporal rate u, is sufficient to transform one into the other. In fact 
this can be completely generalised with the result that both the 
Pseudo-Euclidean and Gravitational space-times are merely particular 
cases of a potentially infinite number of hypothetical Relativistic 
Domains in which the parameter u can be of any form. Pseudo-
Euclidean Space-Time would perhaps retain its special character 
insofar as its temporal rate possessed the unique value of unity. The 
Domain D1 is of course equally if not more important because it 
describes the space time continuum of the gravitational effects within 
Solar System and beyond. 

Throughout the text there are a number of results that can be taken 
further. Of particular interest are the questions of inertial mass, 
naturally generated kinetic energy and effects inside the geometric 
constraints of the gravitational source itself. The same applies when 
given a set of special conditions outside the source. Most particular in 
this latter respect is the situation, possibly hypothetical, where the 
geometrical radius of a gravitational source is of the same order of 
magnitude as twice the gravitational radius. At the point of 
equivalence the temporal rate of D1 becomes zero, i.e. time stops. 

Finally, it should be remembered that, for a single isolated 
gravitational source, despite the agreement of the results in this paper 
with those of the General Theory, and with observed planetary motion 
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in the Solar System, all such results, strictly from the point of view of 
mathematical rigour, are approximations. This is so because in all 
cases the analysis assumes that the gravitational source is stationary, 
i.e. not affected by the gravitational influence of the gravitating mass. 
No matter how small the latter, there will always be an effect on the 
larger mass. Therefore the results here and in the General Theory are 
only approximately correct in the case where the gravitational source 
is much larger than the gravitating mass. Where sizes are comparable 
it is necessary to take account of the mutual gravitational attraction, 
which effectively results in a new Relativistic Domain, D2. 

The appendices to the main text provide additional evidence that 
gravitational motion within the Relativistic Domain D1 is identical to 
that postulated in the General Theory. 

APPENDIX A - Transformation of the Equation of 
Free Planar Motion to the Axes of D0 

As a further example of the relationship between D1 and D0, the 
equation of planar motion in D1 (3.17) is, in this appendix, 
transformed to the axes of Do. 

Transformation of the term σ&&  in (3.17) is given in terms of u by 
(4.24). Transformation of the other terms is as follows. 

From (2.19) and (4.18) 

 ( )α+





 φ

=σω r
dt
d

u
2

22  (A1) 

and from (2.19), (4.12) and (4.18) 

 
dr
du

dt
dr

ud
du

u

2

3

2 22

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
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 (A2) 
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and finally from (4.12) 

 
dr
du

uc
d
du

uc 22 −=
σ

−  (A3) 

The full transformation of (3.17) in terms of u then becomes, from 
(4.24), (A1), (A2) and (A3) 

 ( )α+
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dt
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rd 2
2

2
32

2

2 3
 (A4) 

Substitution of (4.7) and (4.18) for u and σ, then expands this to the 
final result 
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c
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APPENDIX B - Transformation of the Equation of 
the Orbit to the Axes of D0 
The equation of a planetary orbit in the axes of Pseudo-Euclidean 
Space-Time has, in [2] been derived, in the form of a first order 
equation, from a Lagrangian analysis of the metric of the General 
Theory. To obtain that form here, the simplest process is to obtain the 
first integral of (C8) from which the desired relationship can be 
obtained directly. The easiest manner to obtain the first integral of 
(C8) is firstly, via a re-arrangement of (5.4), thus 
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222222 11
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From (5.3) note that 
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σω

=
u
um

m  (B2) 

which with (3.19) gives 
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 (B3) 

Inserting this into (B1) then gives 
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which incidentally can be shown to be the first integral of (3.17), the 
equation of planar motion in D1. 

Now, from (2.15) 
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so that substitution for σ&  from (B4) yields 
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Also from (C7) and (B4) 
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which when inserted into (B6) yields 
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as the first integral of (C8). 
Transformation to the Axes of D0 and Derivation of the Equation of 
the Orbit. 
Transformation of (B8) to the axes of D0 via (4.7), (4.12) and (4.13) 
gives 
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For simplicity write this as 

 
( )
( )3

2222

2

α+
α−

−







α+
α−

−ε=










τ r

r
h

r
r

cc
d
dr

p

 (B10) 

where (5.5) has also been inserted 
The equation of the orbit, (expressed in the axes D0), can now be 

derived in the conventional manner as follows. Put 
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so that 
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Inserting this and (B11) into (B10) yields 
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Expanding, this finally reduces to the desired expression, thus 
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as derived in [2], pp 198, Eq[58.35]. 
Finally, in (B10) the simplifying identity 
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was inserted. To shown that this is identical to the same parameter in 
[2], pp197, Eq(58.26), insert (4.7) and (4.18) thus 
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which from (3.5) and (3.19) becomes 
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and which with (2.15) and (2.19) then gives 
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so that insertion of (4.7) again into this finally gives 
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As derived in [2]. 
Also from (5.5) it can be seen that the constant h in this paper is 

identical to the parameter µ in [2], pp197, Eq(58.27). These results 
provide additional proof that a central orbit in D1 is identical to that 
in the General Theory. 

APPENDIX C - Determination of the Equation of 
Free Planar Motion as a Function of the Proper 
Time of the Gravitating Mass. 

It is first noted for future reference that substitution for 
&m
m

, derived 

from (3.18), into (3.7) gives 
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First the second order variation of radial position with respect to the 
proper time of the gravitating mass is computed thus 
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which from (2.15) becomes 
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working this out yields 

2

2

22

22

2

2

2

2

2

32

3

22

2

22

22

22

2

11 






 σω
−

σ
−








 σσω
+

σωω
+

σ
σ

−
σσ

σ
+








 σω
−

σ
−

σ
=

τ
σ

cuc

ccd
du

ucuc

cuc

d
d

p &

&&&&&&&

&
&&

(C.4) 

Substitution for ω&  from (C.1) then gives after reduction 
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Now substitution for σ&&  from (3.17) gives 
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But 
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and insertion of this into (C.6) finally gives 
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which is the required relationship, expressed in the axes of D1 and the 
parameter u. Substitution for u, (from (4.7)) and its spatial gradient, 
reduces (C.8) to 
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being the equation of motion as a function of the proper time 
expressed fully in the axes of D1. 

Note that because the time dilatation effect is embodied in the 
proper time τp, the reactive acceleration term due to this in (3.17), is 
not present in (C.9). 

APPENDIX D - The Red Shift of Atomic Spectra 
in D1. 
This is the third classic test to which the General Theory was 
subjected to verify its applicability within the Solar System. It is 
therefore necessary that the existence of atomic spectra within D1 
meet the same criteria. 

Note that in this Appendix the value of Spatial Terminal Velocity 
is used for the velocity of electromagnetic radiation in a vacuum. This 
has been done solely to enable comparison of the results of this 
Appendix with similar effects in the General Theory. It may not be 
strictly correct however, because such radiation must possess a mass, 
however small, by virtue of Einstein’s universal energy-mass 
relationship, and it is not possible, within a finite time to accelerate 
any mass to the Spatial Terminal Velocity of a Relativistic Domain. 
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Accordingly, it should also be noted that the Spatial Terminal 
Velocity of D1 is by virtue of the function u, a variable dependent 
upon σ and so therefore is the velocity of electromagnetic radiation as 
defined in this Appendix. 

Accordingly, the wavelength of an atomic spectra at the point of 
emission in D1, the surface of a gravitational source, a distance of σ1 
from its centre, is given by 
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1
1 f

cu
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where f1 is the frequency of the spectra, and cu1 its velocity of 
propagation at the point of emission. 

The solution of the rectilinear version of (3.17), (with ω = 0), for 
an initial condition of 10 cu=σ&  is 

 cu=σ&  (D2) 
so that after travelling directly away from the source to a point of 
observation, a distance of σ2 from the centre of the source, the 
wavelength of the spectra will be  
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Another spectra of an identical atom emitted at the point of 
observation will possess a wavelength of  

 
2

2
2 f

cu
=λ  (D4) 

so that from (D3) and (D4) 
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1f ′′  is the frequency of the first spectra after travelling to the point of 
observation and is given by 
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where n1 is an integral number of cycles and dτ1 and dτ2 are elements 
of time at the points of emission and observation respectively. u1 and 
u2 are the temporal rates at these locations. Therefore 
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where E1 and E2 are the energies imparted to the two respective 
waves by the process of emission. Because this process is an internal 
function of the atom concerned, the energy of emission is independent 
of the location within the Domain in which it occurs. Therefore 
 21 EE =  (D8) 

and so 
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u
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Because u2 >u1, 1λ ′′ exhibits an apparent red shift compared to λ2. 
Also note from (D7) and (D8) it is clear that f1 = f2. 

If the point of observation is sufficiently far from the point of 
emission, it may, (as in the literature), be approximated to free space, 
i.e. u2  → 1, as in D0 and then 
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which after insertion of (4.7) may be further approximated to 
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This is effectively the result most often quoted in the literature, [4], 
[5]. 

It should be noted that a comparison of the wavelength of the first 
wave upon reaching the point of observation with its wavelength at 
the point of emission produces the result 
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showing that the true red shift of the travelling wave is greater than 
when simply compared to a wave emitted at the point of observation. 
Substitution of (D12) into (D9) then gives 
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as would be expected. 
The mechanism behind the shift is that as the wave moves away 

from the source, it continuously moves through an increasing 
temporal rate, which causes its frequency to decrease. This produces a 
corresponding increase in spectral wavelength. 

Note that from (D1), if the geometrical radius of the gravitational 
source is equal to, (or less than), twice its gravitational radius, the 
propogation velocity of emission is zero. Hence electromagnetic 
radiation from such a physical body is impossible. This indicates that 
"Black Holes" are at least mathematically permissible within the 
Domain D1, as they are in the General Theory. 
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APPENDIX E - Derivation of the Metric of 
General Relativity from the Characteristics of 
Existence in D1 
To establish the relationship between the metric of the General 
Theory and the characteristics of existence in D1 it is necessary to 
extend (2.15) into the second spatial plane thus 
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where β is an angle in the second spatial plane. This is the temporal 
rate for three-dimensional motion in D1. From (2.17), (4.12), and 
(4.18), (E1) can be transformed to a temporal distance in D0 thus 
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where dx0 is the distance moved along the temporal axis in an element 
of time dt in D0. 

Incorporating (4.7), with (4.18) incorporated therein, converts (E2) 
to 
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as derived in [2], pp194, Eq(57.64) for the metric of the space-time of 
the General Theory of Relativity in the co-ordinate axes of Pseudo-
Euclidean Space-Time. The above process shows that the metric of 
the General Theory is directly proportional to the temporal rate of a 
gravitating mass in D1. This suggests that the metric of the General 
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Theory is a temporal metric rather than one of a true space-time 
interval. 

Nevertheless, however (E3) is interpreted, from the above it 
clearly involves three-dimensional spatial terms and, as such, can 
only represent the metric of the General Theory for the case in which 
three-dimensional spatial variation in position is involved. If this 
variation is put to zero, then a metric for a spatially stationary point in 
the co-ordinate system of the General Theory is obtained.  

Thus by putting dr, dφ and dβ to zero in (E3) gives 

 dt
r
r

cdx
2

1
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α+
α−

=  (E4) 

Re-inserting (4.7) and (4.18) then gives 
 cudtdx =0  (E5) 

so that the proper time of this point relative to Pseudo-Euclidean 
Space-Time is then 

 udt
c

dx
d ==τ 0  (E6) 

as derived in (2.18). 
Thus the proper time of a spatially stationary point in the space-

time of the General Theory, relative to Pseudo-Euclidean Space-
Time, is identical to the proper time of D1 relative to D0. 

APPENDIX F - Radial and Radial-Normal Unit 
Vector Differentials in D1. 

In this Appendix, proofs of the differentials of unit vectors in D1 as 
represented by (2.7) and (2.8) are given. 

Consider the vector σ  in D1. 
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 nσ=σ  (F1) 

Differentiating this with respect to the time in D1. 
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Assume now that there is only radial normal motion, i.e. 0=σ& , then 
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Because this motion is only a radial normal one, the right hand side 
can be equated to a simple velocity term thus 
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 (F4) 

This must be valid for all values of ω including boundary conditions. 
The lower condition is trivial, (when ω = 0, υ = 0), but at the upper 
condition of Terminal Spatial Velocity in the radial normal direction, 
i.e. ωσ = c, the left hand side of (F4) becomes 
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At this boundary, temporal velocity is zero and spatial velocity is 
equal to the magnitude of Existence Velocity and therefore the right 
hand side of (F4) can be written 
 [ ] tt cuupper =υ  (F6) 

Thus from (F5) and (F6) 
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n

u
d
d

=
φ

 (F7) 

A similar proof exists for  

 n
t

u
d
d

−=
φ

 (F8) 

These relationships exist because the Spatial Terminal Velocity in the 
radial normal direction is different from the magnitude of Existence 
Velocity in this Domain. 

APPENDIX G - Reduction of Selected Relativistic 
Gravitational Equations to their Equivalents in 
Classical Theory. 
This is only effected for the more complex expressions, or in trivial 
cases, where a special implication is involved. First it should be noted 
from (4.7) and (4.18) that the Schwartzchild radius of a gravitational 
source can be expressed as 
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so that when u = 1, α = 0 and therefore, from (4.18) and (4.21) 

so that 
r
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In Section 2. 
(i) Eq.(2.11), Existence Velocity 
(a) Reduction to the Special Relativistic Equivalent is affected by 
putting u = 1 
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(b) Reduction to the classical equivalent. In (G3) when ∞→c  
 ∞+ω+= jtn rr&V  (G4) 

as found in [1] and in classical studies the temporal term is ignored. 
In Section 3. 
(ii) Eq.(3.5), Mass 
(a) Reduction to the Special Relativistic equivalent is effected by 
putting u = u0 = 1 
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This can be compared with [1], Eq.(3.6) by putting ω = ω0 =0. 
(b) Reduction to the classical equivalent. When in (G5) ∞→c  

 0mm =  (G6) 

(iii) Eq.(3.9), Rate of change of momentum. 
(a) Reduction to the Special Relativistic equivalent is effected by 
putting u = 1 
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which becomes with insertion of (G5) 
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This can be compared with [1], Eq.(3.8) by putting ω = 0. 
(b) Reduction to the classical equivalent. When in (G8) ∞→c  
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(iv) Eq.(3.13), Spatial gradient of energy. 
(a) Reduction to the Special Relativistic equivalent is effected by 
putting u = 1 
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which is the same as the magnitude of (G7) and therefore shows that 
gravitation only exists within the Special Theory of Relativity as an 
axiomatic addition as it does in classical theory. 
In Section 5. 
(v) The planetary orbit. This is most easily reduced to the classical 
equivalent by first putting α = 0 in (5.30) which gives 
 χ=φ  (G11) 

So that this gives in (5.28) 
 0=Ω  (G12) 

and therefore in (5.11) 
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the equation of a standard conic section, and in which the eccentricity, 
e, is reduced from (5.24) to 
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where 
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and where now µ0 =1/r0 

(vi) Eq.(5.8), equation of the orbit. 
First express (5.8) as 
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To reduce (G16) to its classical equivalent put α = 0 and then put  
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to yield 
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the classical equation in mechanics. 
In Appendix A 
(vii) Eq.(A4), The equation of free planar motion in the axes of D0. 
Substituting for α from (4.6) gives 
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and then assuming c to be infinitely large reduces this to the classical 
equation 
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