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1. Introduction 
In 1905 Albert Einstein published his paper on the Special Theory of 
Relativity, which, as is well known, is concerned with the 
characteristics of space, time and matter when a mass possesses a 
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constant velocity in Pseudo-Euclidean Space-Time. Subsequently, 
Hermann Minkowski showed that Pseudo-Euclidean Space-Time 
could be represented by a four dimensional “World,” in which three 
dimensions were spatial in nature, and the fourth, temporal. A point 
within such a ‘World’ was said to exist at the co-ordinate positions 
representing its location. Minkowski’s development subsequently led 
to the mathematical formulation of the Special Theory using such 
tools as the Tensor Calculus. 

By utilising Minkowski’s representation of space-time in a new 
way e.g. as a linear complex spatial/temporal manifold, in which the 
temporal dimension is represented as the imaginary part and the 
spatial dimensions as the real part, and the introduction within it of a 
new concept, Existence Velocity, a Space-Time Domain designated 
D0 is created. The simple process of induced spatial rectilinear 
motion within this Domain then permits the derivation, using classical 
analytical methods, of the main kinematic and kinetic relationships 
extant within the Special Theory, together with a number of new 
ones. As a demonstration of applicability, the concept is then 
extended to planar, and central orbital motions. Finally, via 
conformance to the appropriate criteria, the Domain D0 is 
subsequently shown in Appendix A, to be equivalent to Pseudo-
Euclidean Space-Time. This is augmented by the reduction of 
selected derivations to their classical equivalents in Appendix B. 

2. The Space-Time Domain D0 

2.1 Definition 
The Domain D0 is defined as a space time of four mutually 
orthogonal linear dimensions, three of which, X1, X2 and X3 are 
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spatial, while the fourth, Xo, following Minkowski, is temporal. Xo is 
defined, and will be shown, (Appendix A), to be the product of the 
time t in D0 and a constant velocity parameter c, designated the 
Spatial Terminal Velocity of D0 . 

The Domain D0 is further characterised in that for any spatial-
temporal point to exist within it, that point must at all times possess a 
vector velocity, designated Existence Velocity, the magnitude of 
which has the same value as the Spatial Terminal Velocity. Thus, for 
any point to exist within D0,, it is necessary for the magnitude of the 
vectorial sum of its velocities along the four co-ordinate axes, to be at 
all times, equal to c. 

2.2 Existence within D0 

The position of any random point B within D0, relative to some 
chosen reference can be expressed in spatial-temporal vector form as 
 ox+x+x+x= jkli         S 321  (2.1) 

where x1, x2 and x3 are each a distance along the corresponding spatial 
axes of D0 , for which i, l and k are the appropriate unit vectors. xo is a 
distance along the temporal axis for which j is the unit vector. i, l and 
k each have the usual magnitude of unity, while j has the magnitude 
of 1− . 

As the temporal axis of D0 is the product of the constant c with 
the time t, so then will the distance xo be a product of c and some 
function of the time t in D0. Accordingly (2.1) may be rewritten as 

 pct+= jr     S  (2.2) 
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where tp is a function of the time t in D0 and, also, where the spatial 
component of (2.1) has been replaced with its resultant spatial vector 
position on a polar spatial linear co-ordinate axis R. 

The velocity of such a point in D0 is defined by differentiating (2.2) 
with respect to t thus: 

 
dt

dt
c+= pjv     V  (2.3) 

where V = dS/dt and v = dr/dt 
Invoking the characteristic of existence in D0 , (2.3) must at all 

times conform to the following identity, 
 V c=  (2.4) 

where V is the magnitude of V. Substitution of (2.4) into (2.3) gives, 
after taking the magnitude, 
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where v is the magnitude of v. Substitution of (2.5) into (2.3) then 
gives 
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and the following terms are defined thus: 
• V is the Existence Velocity of the the point B in D0 
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• dtp /dt is the Temporal Rate of the the point B in D0 
• cdtp /dt is the Temporal Velocity of the the point B in D0 and, 
• tp is the Proper Time of the point B in D0. Thus tp is the time 

measured by any observer moving with a spatial velocity v in 
D0. 

From (2.6) it is evident that V possesses a spatial-temporal 
orientation in D0 which is directly dependent upon the spatial 
velocity magnitude v. As v increases from zero, temporal velocity 
undergoes a proportional reduction such that V, relative to the 
temporal co-ordinate of D0 rotates through an angle in the Xo-R 
plane, related to v by the expression 

 
c
v

Sin =θ  (2.7) 

Thus, for future reference it is noted that 
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 (2.8) 

This completes the definition and characterisation of D0 . Its 
equivalence with Pseudo-Euclidean Space-Time is demonstrated in 
Appendix A. The next section formulates the kinematics and kinetics 
of rectilinear motion within D0 for comparison with that of the 
Special Theory. 
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3. The Mechanics of Simple Spatial 
Rectilinear Motion in D0 

3.1 Mass and The Equation of Motion 
The Special Theory of Relativity asserts that the mass of a fixed 
quantity of matter, spatially in motion with a constant rectilinear 
velocity in Pseudo-Euclidean Space-Time, is greater than when it is at 
rest. For this to be so the increase in mass can only take place during 
the time that spatial acceleration is in effect. This process can be 
investigated by treating mass as a variable when analysing the change 
in the Existence Momentum of a point mass subjected to spatial 
acceleration in D0 . 

If m is the mass of the point mass with Existence Velocity V in D0 
then its Existence Momentum will be given by: 
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where V has been substituted from (2.6) . If F is the force applied to 
effect acceleration then: 
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Showing that there are four kinetic reaction terms involved in this 
process. 
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If F is purely spatial, the temporal component of (3.2) will be zero, 
whereby: 
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so that upon separating variables and integrating 
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The constant of integration is obtained from initial conditions viz: 
when v = 0, m = mo, the mass of the point mass when spatially at rest 
in D0 , i.e. the ‘rest mass’. Then: 

 k m= ln 0  (3.5) 
which gives in (3.4) 
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as asserted in the Special Theory. However, it is clear from the above 
development that, in addition to a constant spatial velocity, (3.6) is 
also valid during the time that spatial acceleration of a point mass is in 
effect. For reasons that will be discussed later m will be referred to as 
Energy Mass. 

Substitution of (3.6) into (3.3) yields: 
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which thus represents the time rate of change of mass subjected to 
spatial acceleration in D0 . This can also be obtained by simply 
differentiating (3.6) with respect to the time t. These last two terms, 
(3.6) and (3.7), may now be inserted into (3.2), whereupon the 
temporal component vanishes and, if rectilinear motion only is being 
considered, F can also be reduced to a spatial vector, F, so that (3.2) 
yields, after reduction: 
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As F is arbitrary, (3.8) represents the spatial rectilinear equation of 
motion of a point mass in D0 . (Non rectilinear motion is examined in 
Sections 4 and 5). 

Note that the right hand side of (3.8) is the product of the spatial 
acceleration and a mass term. 

Putting 
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then ma is, from (3.8), synonymous with inertial mass. Three values 
of mass have thus been identified for the same point mass i.e. 
mo is Rest Mass 
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The latter two are sometimes referred to in the literature [1],[2],[4] as 
‘transverse’ and ‘longitudinal’ mass, (see Section 4) . 

For interpretation of these results, reference is made to Fig.(3.1) 
where it is shown that as a consequence of the rotation of V in Do, 
the applied spatial vector force F may be resolved from two spatial-
temporal vector components, Fa normal to V and Fe parallel to V. 

The component Fa is proportional to the change in Existence 
Velocity, while the component Fe is proportional to the change in the 

 jc(1 -v2 /c2 )1/2

V

v

F

FeFa

FIG.3.1: COMPONENTS OF F WITH RESPECT TO V 
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mass. This is clear from (3.2) where by inspection: 
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From these equations, (3.2) can now be interpreted kinetically. 
From (3.10) and (3.12) it can be seen that the kinetic reactions to the 
two components of F, each comprise a spatial and temporal term. If 
the balanced force vector F is diagrammatically represented as in 
Fig.(3.2), the four kinetic reaction terms of (3.2) can be interpreted as 
follows: 

(i) The spatial term, mdv dt  is the reaction force of the energy 
mass to spatial acceleration. 

(ii) The temporal term, 
( ) 2

1
221 cvc

dtdvmv

−

−
 is the reaction force of the 

energy mass to temporal deceleration. 
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(iii) The temporal term, ( ) dtdmcvc 2
1

221−  is a reaction force 
generated by the combination of mass rate and temporal velocity and 
acts in opposition to the term in (ii). 

(iv) The spatial term, v dm dt  is a reaction force generated by the 
combination of mass rate and spatial velocity and acts as an additional 
reaction to spatial acceleration, thereby causing the apparent mass to 
increase, from m to ma, during the period of acceleration. 

A consequence of this, is that this term must be related to the 
difference between inertial and energy mass, by the product of that 
difference and the spatial acceleration. This may be shown as follows. 

From (3.6) and (3.9). 

mdv/dt

F

Fe

vdm/dt

+jc(1 - v2 /c2)1/2 .dm/dt
Fa

jmvdv/dt
c(1 - v2/c2)1/2

 
FIG.(3.2): THE BALANCED FORCE VECTOR 
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which with insertion of (3.7) gives the required relationship: 

 ( )m m
dv
dt

v dm dta − =  (3.15) 

Finally, a comment upon two additional points that emerge from 
the above analysis. Firstly the fact that the two temporal reaction 
terms, items (ii) and (iii) above, are, as shown by (3.2) and in Fig. (3.2), 
to be equal in magnitude but opposite in sign, does not mean that they 
do not separately exist. Whilst they do in the above example, cancel, 
they are quite different in nature, the first being a mass reaction to 
temporal deceleration and the second a mass rate reaction to temporal 
velocity. They are equal in magnitude but opposite in sign solely 
because, in this case, there is no net temporal component of impressed 
force, i.e. F is purely spatial. 

The second point concerns the inertial mass ma. While ma can be 
expressed solely as a function of the spatial velocity, as is apparent 
from (3.9), it is equally apparent from (3.15) that its existence is 
entirely dependent upon the spatial reaction term vdm/dt. As this term 
only exists while spatial acceleration is taking place, so then can ma 
only exist during this period. When spatial acceleration ceases, the 
term vdm/dt vanishes and, the value of the mass instantly reverts to 
that of the energy mass, m. 
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3.2 Energy 
In classical mechanics the acceleration of a point mass is said to result 
in it gaining a kinetic energy equal to the product of the applied force 
and the distance over which it acts. The manner in which kinetic 
energy was stored by such an accelerated mass was not addressed. 
From the results of the preceding section however, this can now be 
demonstrated as follows. 

Consider the change in energy of the point mass as the spatial 
acceleration proceeds. Integrating (3.8) with respect to the spatial 
distance travelled, 
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using simple substitution methods this evaluates to 
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Initial conditions are that Ek = 0 when v = 0 so that k = –m0 c 2
. 

Inserting this into (3.18) then gives a version of Einstein’s well 
known equation for the energy of matter. 
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 2
0

2 cmmcEk −=  (3.19) 

where each term may be interpreted, as in the literature, as follows: 
(i) mc2 is the total energy of matter at some instantaneous spatial 

velocity v. 
(ii) Ek is the energy imparted to matter via the action of the applied 

force over the  spatial distance travelled during its application, i.e. 
kinetic energy. 

(iii) m
0
c2 is the rest mass energy of matter 

From (3.19) it is seen that the increase in mass, from m0, that at 
rest, to m, that at velocity v, is as described in the literature, [2], due to 
the storage of energy imparted from the applied force. Thus m is the 
mass equivalent of the total energy of matter at the instantaneous 
velocity v. It was for this reason that m was earlier designated as 
Energy Mass. 

Reduction of all of the above relationships involving the spatial 
velocity, v, to non-relativistic form is effected in the usual manner, by 
assuming the Spatial Terminal Velocity, c, to be infinitely large, (see 
Appendix B). 

4 Curvi-Linear Motion in D0—Primary Equations 

This condition is briefly investigated to illustrate the effects of 
accelerative forces on the direction of motion of a point mass in D0 . 
In doing so however, it also enables the reason for the original 
designations of “longitudinal” and “transverse” mass to be simply 
demonstrated (see Sect. 3.1) . The spatial situation can most easily be 
described by Fig. 4.1. where, for clarity, spatial cartesian co-ordinates 
are now represented by X and Y. 
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The momentum equations are: 
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where m is the energy mass of the point mass and Mx and My are the 
respective spatial, and Mt the temporal, existence momentums. The 
initial velocity at t = 0 is v0, the spatial acceleration is a, and the other 
terms are as shown in Fig. 4.1. Differentiating with respect to t gives 
the force equations thus: 

v0
vx
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v

F
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ψ
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η

 
FIG. 4.1—FORCE/VELOCITY/ACCELERATION DIAGRAM 
(SPATIAL) NON-RECTILINEAR ACCELERATION IN DO 
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Determination of m and dm/dt 
If in (4.2), Ft is zero, m can be determined by simple integration to 
give, as in Sect. 3: 
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so that also 
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but in this case with 

 ( )v v vx y= +2 2
1

2  (4.5) 

then 
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and this in (4.4) gives: 
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Substitution from (4.14) for dvx /dt and dvy /dt then gives: 

 ( )ξ+ξ= sincos yx vv
c
F

dt
dm

2
 (4.8) 

Finally substitution for vx and vy from relationships implicit in Fig. 
4.1, yields: 

 ( )[ ]η−ξ= cosv
c
F

dt
dm

2
 (4.9) 

which clearly shows that a variation in mass only results from that 
element of applied accelerative force acting along the velocity vector. 
Determination of dvx /dt and dvy /dt and Associated Inertial Masses. 
Substitution of (4.3) and (4.7) into the spatial part of (4.2) yields after 
reduction: 
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so that from the Fy half of this equation: 
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With substitution of this into the Fx half of (4.10), there is after 
reduction: 
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but from Fig. 4.1, Fy = Fx tanξ which when substituted into (4.12) 
yields: 
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Finally substitution for vx and vy from relationships implicit in Fig. 
4.1, gives: 
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 (4.14) 

Interpretation of these equations is quite simple when (4.3) and 
(4.9) are introduced. In both cases (4.14) reduces to the spatial parts 
of (4.2), showing that the first term inside the respective brackets is 
the normal acceleration resulting from the ratio of force to energy 
mass, while the second term is the retardation due to the reaction 
between mass rate and spatial velocity. Consequently from (4.14), max 

and may, the inertial masses in the respective directions, may be 
expressed thus: 
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The difference between these two terms is solely due to the different 
mass rate reaction forces generated in the respective directions. 
Equality occurs when the applied force and velocity vectors are 
coincident i.e. when ξ and η are equal (but not zero) . Then: 
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and is of course equal to the inertial mass of rectilinear motion. 
Angular Relationship Between Applied Force and Acceleration. 
This can most easily be inspected by comparing the respective 
angular relationships between both the a and F directions and the X 
axis. Thus from (4.14) directly: 
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which shows that the resultant spatial acceleration does not lie in the 
same direction as the applied force. The reason is again the difference 
in the mass rate reaction terms, in the X and Y directions. 
Determination of dv/dt and dvn /dt 
These terms are defined as the accelerations produced both along and 
normal to the velocity vector. Substitution of (4.14) into (4.6) yields: 
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Note that inertial mass along the velocity vector, is, as would be 
expected by virtue of (4.9), equal to that in rectilinear acceleration. 

To determine dvn /dt, note that from Fig. 4.1 

 ( )η−ψ= tan
dt
dv

dt
dvn  (4.19) 
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after expansion, substitution from (4.17) produces, after some 
reduction: 
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so that substitution for dv/dt from (4.18) then yields: 

 ( )η−ξ







−= sin

2
1

2

2

0

1
c
v

m
F

dt
dvn  (4.21) 

The point about this result is of course the appearance of the energy 
mass, there being no mass rate reaction involved because the direction 
concerned is normal to the velocity vector. 

Other terms, such as acceleration along and normal to the direction 
of applied force, angular rate and angular acceleration of the velocity 
vector and, associated energies, exhibit relationships of a similar 
nature to the above. 
Boundary Conditions of ξ. 
The two boundary conditions of ξ are, ξ = 0 and ξ = π /2, at which 
the following apply: 
(i) ξ = 0 i.e. F lies parallel to the Velocity Vector, along the X axis 
Motion in the Y direction is non-existent while that in the X direction 
is of course that of rectilinear motion of the main text, i.e. η is also 
zero. (Note that this condition is a special case of ξ = η used to obtain 
(4.16) above). Of particular interest however is from (4.15) 
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max is now the inertial mass of rectilinear motion and applies only in 
the X direction, i.e. in the direction of the now coincident force, 
acceleration and velocity vectors. It was for this reason that max, in the 
above form was in the literature originally termed “longitudinal” 
mass. Under this condition may is the mass applicable normal to the 
accelerated motion and was consequently originally termed 
“transverse” mass. It is equal to the value of energy mass because of 
course no mass rate reaction term exists in the transverse direction. 
(ii) ξ = π /2 i.e. F lies normal to the Initial Velocity Vector. 
The most interesting result from this situation emerges from (4.14) 
and (4.15) i.e. 
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This simply states that with all the accelerative force applied normal 
to the direction of initial velocity, a very small deceleration in that 
direction occurs due to the reaction of mass rate with vx. Inertial mass 
in the X direction consequently takes the ‘hypothetical’ value of zero 
as a deceleration occurs without the application of an external force in 
that direction. 
Summary 
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It is clear that the primary difference between the motion described 
herein and that of Classical Mechanics, apart from the main 
relativistic effects, is due to the mass rate reaction terms. Most 
particular in this respect is the non-coincidence of the force and 
acceleration vectors. In the next Section it is shown that a primary 
result of this effect upon a trajectory is to cause it to rotate. 

5 Planar Orbital Motion Kinematics In D0. 

In this Section, the equation of an orbital motion is first derived and 
then solved as a second illustration of the manner in which the 
concept of Existence Velocity, may be applied to relativistic problems 
of this nature in Pseudo-Euclidean Space-Time. 

5.1 Derivation of the General Curvi-linear Equation of 
Motion in a Plane in D0. 

Repeating (2.6) for convenience: 
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If the energy mass is m then existence momentum, for purely planar 
motion, is: 
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where for mathematical convenience spatial polar axes have been 
chosen and where, with reference to some stationary origin, 
r is the radial distance of the orbit. 
&r  = dr/dt is the radial velocity of the orbit. 
ω = dϕ/dt is the angular rate of the orbit. 
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and n and t the radial and radial normal unit vectors. 
Differentiating (5.1) with respect to time yields the force equation 

thus: 
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If F is purely spatial, then the temporal part of (5.2) is zero and m can 
be determined by simple integration to be: 
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where mo is the rest mass. Thus the mass rate is: 
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Substitution of (5.3) and (5.4) into (5.2) then yields after reduction, (F 
is now purely spatial), 
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This is the most general form of the force equation for spatially 
accelerated curvi-linear motion in a plane in D0 and which clearly 
possesses a distinct symmetry. 
The Case of a Purely Radial Force 
If F is purely radial (constant angular momentum) , then in (5.2), in 
addition to the temporal component, the radial normal component will 
also be zero. Thus 
 ( )2   m r + r m rω ω ω= −&& &  (5.6) 

which from (5.3) and (5.4) becomes 
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which can also be obtained from the radial normal component of 
(5.5). Substitution of (5.7) into (5.5) gives 
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     (5.8) 

This is the equation of motion of a point mass in a plane in D0 
subjected to an arbitrary spatial radial force. Note that substitution of 
(5.7) into (5.4) yields after reduction 
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which when substituted into (5.8) gives 
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This is clearly seen to be identical to the rectilinear case and provides 
further confirmation that the mass rate effect only exists along 
coincident elements of the force and velocity vectors. 

5.2 Conversion of the Equation of Motion to Proper Time 
To determine the equation of the orbit it is first necessary to convert 
the equation of motion to the proper time of the point mass. 

Conversion of (5.8) to the proper time of the point mass, is 
achieved as follows. With 
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consequently with 
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Substitution from (5.11) and (5.12) gives 
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But from (5.7) 
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Which, when substituted into (5.14) gives after reduction 
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Also from (5.8) after taking the magnitude 
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and substitution of this into (5.16) then yields 
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but from (5.11) 
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so that this gives in (5.18) 
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It now only remains to convert the term ( )1 2 2 2 2 2 1 2
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proper time as follows; rewriting (5.12) as 
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and, from (5.19), with 
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and rearrangement of this then gives 
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so that (5.20) finally becomes 
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and for a purely spatial radial force, is the equation of planar motion 
in D0 expressed as a function of the proper time. 

5.3 Derivation of the Equation of the Orbit 
To obtain the equation of the orbit from (5.24), it is initially necessary 
to evaluate the first integral of (5.6). Rearrangement of that equation 
yields 
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Integrating (5.25) gives 
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which then, after the determination of the constant of integration, k 
from initial conditions, 0rr = and 0ω=ω , when 0=r&  gives, 
together with the second part of (5.21): 
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and in line with convention this constant is designated, h. The 
equation of the orbit may now be obtained in the usual way thus. 
Putting 
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Insertion of (5.26b), (5.27) and (5.28a & b) into (5.24) then gives the 
desired result for the equation of the orbit. 
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5.4 Solution of the Equation of the Orbit for Two 
Oppositely Charged Particles In a Vacuum. 
Assuming conditions are such that the only effect between the two 
particles is an electrostatic one and that their relative size is such that 
the smaller has negligible effect upon the larger, and ignoring any 
spin effects, then the force of attraction between them may be 
expressed as 
 F F= 0

2µ  (5.30) 
The equation of motion of the smaller particle, from (5.29) and (5.30) 
then becomes 
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to solve this equation put 
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this being the inverse of the perpendicular distance from a focal point 
of the orbit to a tangent at any point on the spatial trajectory. 

Differentiating (5.32) with respect to ϕ gives 
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Substitution of (5.32) and (5.33) into (5.31) then yields 
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This equation can now be solved using standard methods to yield 
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where the constant of integration has, together with (5.32), been 
inserted. Rearranging (5.35) for dµ/dϕ gives 
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This equation is also a standard type that can be solved using 
conventional methods to yield, after some reduction 
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where 
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and where initial conditions have been chosen such that the constant 
of integration is zero. Equation (5.37) describes the spatial trajectory 
of the smaller particle about the larger and clearly, as in the literature 
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[5], is seen to be a rotating conic section. From the second part of 
(5.37), this rotation is seen to be a function of the finite Spatial 
Terminal Velocity, c, within D0,, and also, that the precession angle is 
a constant retrograde one being, unlike the gravitational case, 
independent of the term µ. 

6. Concluding Remarks 
The concept of Existence Velocity within the Relativistic Domain 
D0, both as have been defined in this paper, has, using methods 
identical to those of classical mechanics, enabled a simplified 
mathematical formulation of the kinematics and kinetics of the 
Special Theory of Relativity, for one particular case, rectilinear 
motion. In doing so, it has also provided a clearer insight into the 
relativistic nature of an applied spatial force, and the associated 
kinetic energy that it produces in a spatially accelerated point mass. In 
Sections 4 and 5 this simplified method has been used to examine two 
further relativistic kinematic situations, linear planar, and central 
orbital motion, as demonstrations of its application. 

It must be noted that these concepts are only valid within the 
domain D0 i.e. Pseudo-Euclidean Space-Time, (see Appendix A). 
For other relativistic domains, such as one containing gravitation, it is 
necessary to change the characteristics of the Domain accordingly. 
This will be the subject of the next paper where a new theorem for 
gravitation will be presented using a suitably modified Relativistic 
Domain. This new theorem will differ from that of the General 
Theory of Relativity in that although the modified Domain will differ 
from Pseudo-Euclidean Space-Time, it will still be one exhibiting a 
linear co-ordinate system. 
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One final note. In the Special Theory, the limiting spatial velocity 
is generally accepted to be the velocity of electromagnetic radiation in 
a vacuum, i.e. light. In this paper the limiting velocity has been 
termed the “Spatial Terminal Velocity” and no reference has been 
made to the velocity of light. This approach has been adopted because 
it has not been conclusively proven that the limiting spatial velocity in 
the Special Theory is indeed the velocity of light. It may well be that 
the true limiting velocity is slightly different from this. This is 
believed possible because from the Special Theory it is known that 
matter possessing mass and thus energy, cannot be accelerated to the 
velocity of light within a finite time. Yet it is also known that 
electromagnetic radiation possesses energy and must therefore also 
possess mass, however small. Thus it is considered probable that the 
velocity of light may well be slightly lower than the true limiting 
spatial velocity in the Special Theory and therefore also in D0. 

APPENDIX A—Equivalence of the Domain D0 
with Pseudo Euclidean Space Time 
To fully reconcile the application of the concepts presented in this 
paper with the Special Theory of Relativity, it is necessary to 
demonstrate that the Domain D0 is equivalent to the Space-Time in 
which that theory applies, Pseudo-Euclidean Space-Time. It is 
therefore necessary to show that D0 possesses the following 
additional characteristics to those already defined. 

(i) The Temporal Co-ordinate Xo is related to the time t in D0 by 
the expression, (after Minkowski) , 
 ctj=0X  (A.1) 
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(ii) The magnitude of the maximum theoretically attainable spatial 
velocity in D0, is equal to the Spatial Terminal Velocity, c. 

(iii) When the spatial velocity of a moving point in D0 is rectilinear 
and constant, measurements of time and distance related to axes 
associated with it, transform from those of D0 according to the 
Lorentz Transformations of the Special Theory. 
The Temporal Co-Ordinate Xo 
In (2.6), if v is zero, i.e. a point is spatially at rest in D0 , its Existence 
Velocity is reduced to: 
 c= jV  (A.2) 

which upon integration with respect to t gives: 
 ct= jr +0S  (A.3) 

where ro, the constant of integration, is the constant spatial position in 
D0 from some stationary reference. In this case the trajectory of 
motion is clearly, from (A.2), along the temporal axis Xo so that, in 
(A.3), the relationship of (A.1) is implicit. 
The Maximum Theoretically Attainable Spatial Velocity in D0. 
Inserting (2.7) and (2.8) into (2.6) gives for Existence Velocity in 
spatial-temporal polar form 
 θ+θ cCoscSin= jsV  (A.4) 

where s is a unit vector in the direction of v. Clearly the maximum 
theoretically attainable spatial velocity occurs when θ π= 2 , the 
Existence Velocity becoming simply: 
 cs=V  (A.5) 

At any other value of θ, the spatial component of V must be less than 
c. 
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Transformation of The Axes 
This is the more complex of the three criteria to prove. It is 
accomplished by derivation from first principles, of the relationship 
between the spatial and temporal axes of a point in D0 moving with 
constant velocity, and those of D0 itself. The temporal axis 
relationship is derived in the form of a time parameter in order to fully 
demonstrate agreement with the Lorentz Transformations. During this 
process a relationship for the proper time of the point is also derived. 

Let B be a point in D0 moving with a constant spatial rectilinear 
velocity v. Let R’ be a “space like” co-ordinate associated with B, let 
Q be any fixed point on R’, and let t’q be the time along a “temporal” 
axis X’q, associated with R’ at the location of Q. Finally, let initial 
conditions be such that at some instant in D0 designated t = 0, the 
position of B in D0 is defined as a reference point, (Fig. A1 may be 
usefully referred to in following this derivation). 

Consider first the spatial axis R’. At time t the positions of B and 
Q in D0 will be given by : 

 q

bb
ct

ct

jr

jr

q +=

+=

q
b

S
S

 (A.6) 

From (A.6) the position of Q on R’ can be expressed in spatial-
temporal vector form as: 
 ( )bqb ttc −+−=−=′ jrrqq bq SSr  (A.7) 

Differentiating (A7) with respect to t 
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But with 
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In (A8) this gives 
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and taking the magnitude of (A10) 
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but for Q to exist in D0 
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so that in (A 11) 
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but r’q is constant, therefore dr’q /dt must be zero. This gives in 
(A15) 
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As v is constant (A.14) can be integrated immediately to give: 
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Substitution of (A.15) into (A.7) then yields: 
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Now as Q is any point on the R’ axis, it can be co-incident with B to 
give ′ =rq 0 . In this case (A.16) would reduce to: 

 r vq = =t and k 0  

Therefore k must be zero for all R’ Consequently (A.15) and (A.16) 
respectively reduce to: 



 Apeiron, Vol. 10, No. 4, October 2003 88 

© 2003 C. Roy Keys Inc. — http://redshift.vif.com 

 
2

1

2

2

2

1 







−

−
=

c
v

c
v

rt
t

q

q  (A.17) 

and 
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The magnitude of (A.18) yielding: 
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As Q is any point on R’, then (A.18) and (A19) represent the 
relationship between the spatial axis associated with B and that of D0, 
and (A.17) represents a measure of the proper time of Q in D0 . The 
parameters r’q and rq may therefore, in (A18) and (A19), be replaced 
with the axis designators R’, and R respectively,and the lengths r’q. 
and rq therefore represent the relationship between their scales. 
Subsequent reference to (A.18) shows that R’ possesses both spatial 
and temporal components and therefore a precise orientation in Do . 
Substitution of (A.19), (2.7) and (2.8) into (A.18) gives: 
 ( )θ−θ′′ sinjcossR=R  (A.20) 
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where s is a unit vector in the direction of v. This shows by 
comparison with (A.4) that R’ is orthogonal to the Existence Velocity 
Vector and, therefore, the spatial-temporal trajectory of B in D0 . 
Also, from (A.19) it is clear that units of length along R’ (i.e. with t 
constant) are greater than units of length along R, and that the increase 
is a direct result of the orientation of R’ relative to R in D0. 

Now consider the temporal co-ordinate associated with R’ at the 
location of Q. Firstly it is noted that since Q is fixed in relation to B, 
its only motion in axes associated with B is a temporal one. Therefore 
the primed temporal axis along which Q is in motion, X’q, must lie 
along its trajectory in D0 which must be parallel to that of B. As a 
consequence, this axis must be orthogonal to R’. Now (A.17), as 
stated above, is a measure of the proper time of Q in D0 and by virtue 
of (A.6) is therefore directly proportional to its position on Xo from its 
initial position at t = o. In like manner however, the proper time of Q 
on its primed temporal axis is directly proportional to its position on 
that axis from its initial position. Note however that, as Q possesses 
only temporal motion in the primed axes, its proper time along X’q 
will be identical to that of X’q itself. Therefore, to derive the 
relationship between time on the two temporal axes for any constant 
value of rq, a one-to-one correspondence between incremental 
distances on them can be established as follows. If dXo is an 
incremental distance along the temporal axis of D0 , and dX’q an 
incremental distance along the temporal axis associated with the point 
Q on R’ such that they are temporily coincident in D0 , then due to 
their relative orientation, they conform to the following expression: 
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As t’q is the time along X’q, and since the primed temporal 

velocity of all points on R’ is c, i.e. equal to |V|, then by (A.2), (A.21) 
may be rewritten thus: 
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Integrating (A.22) 
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The constant k is the initial condition that ensures temporal 
coincidence of the two incrementals within D0, and k must therefore 
be such that when t’q is zero, the proper time of Q in D0 is also zero. 
Thus, from (A.17) when tq is zero, t is given by 

 t r
v
cq= 2  (A.24) 

which gives in (A.23) when t’q is zero 
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so that finally in (A.23) 
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This being the relationship between time on the X’q and Xo axes. 
Note that (A 22) shows that the units of time along X’q are greater 

than those along Xo by the same factor and, for the same reason that 
the units of length along the spatial axes differ. Clearly all such points 
on R’, including B, must have associated with them a time, along a 
unique temporal axis, of the form of (A.26) in which the spatial term 
differs appropriately. The locus of the reference zero on these axes 
lies along the spatial axis of D0 at t = 0. This together with the 
expansion of the units of time along these axes ensures the 
simultaneity of existence of each point on R’ in both frames of 
reference. It is also noted that the mathematical relationship between 
t’q and t is the same as that between tq and t. They cannot be equated 
however because of the difference in the magnitude of the units. 

The above relationships, specifically associated with the point Q, 
can be diagrammatically represented as in Fig. (A1) below. The 
spatial motion of the point B, has, from the above argument, resulted 
in axes associated with it being expanded and rotated in the direction 
of motion in D0 through the same spatial-temporal angle θ as the 
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Existence Velocity vector of B. This concurs with statements in the 
literature [3] that in Minkowski’s ‘World’ the Lorentz 
Transformations “correspond to a rotation of the co-ordinate system.” 

Clearly (A.19) and (A.26) are identical to the Lorentz 
Transformations of the Special Theory and together with the previous 
results of this Appendix, demonstrates the equivalence of the Domain 
D0 with Pseudo-Euclidean Space-Time. The application of the 
concept of Existence Velocity within the latter is therefore a valid 
one. 
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FIG. A.1: DIAGRAMMATIC REPRESENTATION OF THE RELATIONSHIP 
BETWEEN THE REFERENCE AXES OF Do AND THOSE ASSOCIATED 

WITH B AT THE POINT Q 
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APPENDIX B 

Reduction of Selected Relativistic Equations to their 
Classical Equivalents 
In all cases this is effected by allowing the constant velocity 
parameter c to become infinite. Only the main equations for which a 
classical equivalent exists is so treated. Trivial examples will be 
ignored unless a special condition is implied. 
In Section 2 
(i) Eq. (2.5), the temporal rate. When c → ∞  

 1=
dt

dt p  (B1) 

Hence in classical theory the proper time of a moving body is 
identical to the time in D0, Pseudo-Euclidean Space-Time. 
(ii) Eq. (2.6), Existence Velocity. When c → ∞  
 ∞+= jvV  (B2) 

Hence temporal velocity in classical studies is “infinite.” Existence 
velocity does not exist in classical mechanics, and temporal velocity 
in such studies, is therefore a meaningless concept because it implies 
that time passes infinitely quickly. Where a concept does not exist in 
classical mechanics etc, relativistic reduction generally results in an 
infinite or zero value. 
In Section 3. 
(iii) Eqs. (3.6) and (3.9), Rest, Energy and Inertial Mass. When 
c → ∞  
 ammm ==0  (B3) 
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Thus rest, energy and inertial mass are identical in classical 
mechanics. Hence any reference to inertial mass in such studies is 
meaningless. Consequently, as is evident from Eq (3.7), when c → ∞  

 0=
dt
dm

 (B4) 

(iv) Eq (3.19), Kinetic Energy. To determine the classical expression 
for kinetic energy directly from (3.19) would be incorrect because 
(3.19) is a relationship in matter energy, a concept that does not exist 
in classical mechanics. The correct procedure is first to insert (3.6) 
into (3.19) and expand the result binomially to yield 

 ...+++= 4
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vmvm

Ek  (B5) 

from which, when c → ∞  
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0vm
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the classical result. 
In Section 4. 
(v) Eq. (4.14), the acceleration vectors along the co-ordinant axes, 
when c → ∞  

 0

0

cos

sin

x

y

dv F
dt m

dv F
dt m

ξ

ξ

=

=
 (B7) 

and clearly therefore the force and acceleration vectors are coincident. 
(vi) Eq. (4.15), the mass on each co-ordinant axis, when c → ∞  
 0mmm ayax ==  (B8) 
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(vii) Eq. (4.17), Angular relationship between the acceleration vector 
and the X axis, when c → ∞  
 η=Ψ tantan  (B9) 

which confirms the result at (B7). 
(viii) Eqs. (4.18) and (4.21), accelerations along and normal to the 
velocity vector, when c → ∞ . 

 ( )η−ξ= cos
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F
dt
dv

 and ( )η−ξ= sin
0m

F
dt

dvn  (B10) 

so that from (B7) and (B10) 
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which now also shows that the force, acceleration and velocity 
vectors are co-incident. 
In Section 5. 
(ix) Eq. (5.5), general curvi-linear equation of motion, when c → ∞  

 ( ) ( )2
0 n 2 tF m r r r rω ω ω = − + + &&& &  (B12) 

the classical equation in mechanics. 
(x) Eq. (5.24), equation of planar motion in the proper time, when 
c → ∞  

 r
m
F

dt
rd 2

0
2

2

ω+=  (B13) 

the classical equation in mechanics. 
(xi) Eq. (5.29), the equation of a central orbit, when c → ∞  
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where 

 2
00rh ω=  

the classical equations in mechanics. 
(xii) Eq. (5.37), the equation of a central orbit trajectory, when c → 
∞  
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which is clearly the equation of a simple conic section. The semi-latus 
rectum and eccentricity are 
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These are again the classical results. 
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