
 Apeiron, Vol. 10, No. 3, July 2003 183 

© 2003 C. Roy Keys Inc. 

Diffusion Action of Chemical 
Waves 

Jirí Stávek 
Laboratory of Diffusion Processes 
Bazovského 1228 
163 00 Prague, Czech Republic 
e-mail: stavek@volny.cz  

Diffusion actions of chemical waves are calculated as the 
product Kκmλu = h, where K is the diffusivity factor, κ is the 
tortuosity factor, m is the particle mass, λ is the wavelength, u 
is the propagation speed, h is a characteristic constant of the 
diffusion action. During evolution of successive LR 
(Liesegang ring) waves, BZ (Belousov-Zhabotinsky) waves, 
and cAMP (cyclic adenosine 3´,5´-monophospate) waves their 
diffusion actions showed a strong tendency to converge to a 
value 6.6 * 10–34 Js.  
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Chemical waves are known to travel at a propagation speed u that 
represents the product of the distance between the patterns λ and their 
frequency ν (or its reciprocal value the period T). The dependence of 
the propagation speed u on the wavelength λ (or the period T) is 
called the dispersion relation. Dispersion relations bring the additional 
information about the evolution of chemical waves in excitable 
reaction-diffusion systems.  

Several groups of colloidal chemists have evaluated the dispersion 
relations for the Liesegang ring (LR) formation—the precipitation of 
periodic structures of sparingly soluble salts in the presence of a 
polymer in order to stabilize the formed structure in the reaction space 
[1,2,3]. They found that during the evolution of successive waves the 
product of instantaneous propagation speed u and the wavelength λ 
converges to a constant value. It was found that this product uλ 
depends on the type and the concentration of the polymer used. These 
authors have tried to characterize the diffusing front by a 
characteristic particle mass m that is needed for the estimation of the 
diffusion action of chemical waves. The product of the characteristic 
mass m, propagation speed u and the wavelength λ is termed the 
diffusion action.  

This approach to characterizing LR formation has been followed 
repeatedly several times since then. [4] More than one hundred 
different combinations of cations and anions have been employed for 
LR formation. Because of the difficulties in estimating the mass of 
diffusing particles (reaction between the molecules of outer and inner 
electrolytes, irreversible formation of clusters) the calculated values 
of the diffusion action of the order ~10–34 Js could not be tuned to a 
certain constant value. Therefore, this concept has been considered 
very trivial [5]. Meanwhile, several theoretical physicists have 
contributed to this topic [6,7,8,9,10,11], too. Several decades of 
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experimental and theoretical research can now be condensed into the 
following equation: 
 K m u hκ λ =  (1) 

where K is the diffusivity factor, κ is the tortuosity factor, m is the 
particle mass, λ is the wavelength, u is the propagation speed, and h is 
a characteristic constant of the diffusion action. The parameter K—
diffusivity factor—describes the geometrical arrangement of the 
experiment. For one-dimensional space (thin glass tubes) K = 1; for 
two dimensional space (thin layer in a Petri dish) K = 2; in the case of 
the three-dimensional experiment the value K depends on the space 
angle available for the diffusion of Brownian particles from their 
source. If the whole space is available for the propagation of the 
chemical waves, then K = 4p. Many studies of the dispersion relations 
have been performed in gels, membranes, resin beads, and glasses in 
order to prevent hydrodynamic disturbances from the reacting media. 
These media help to localize the propagating bands; however, they 
modify the diffusion path of ions. The diffusion field in these 
restricted environments changes by a tortuosity factor κ that 
characterizes diffusivity in porous media. 

Recently, many dispersion relations have been collected for 
Belousov-Zhabotinsky waves (BZ waves) and cyclic adenosine 
monophosphate waves (cAMP waves) for different reaction 
conditions. These enormous collections of experimental data offer a 
good opportunity to test this old concept, because in both cases the 
particle mass of chemical waves can be well defined. 

The basic system of the BZ waves consists of one-electron redox 
catalyst [Ce(III)/Ce(IV)], an organic substrate that can be easily 
brominated and oxidized (citric acid), and bromate ions in the form of 
KBrO3 , all dissolved in sulfuric or nitric acid. For the evaluation of 
the diffusion action of BZ waves the mass of hydrogen ions H+ will 
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be taken as the characteristic particle mass. Tockstein and Trondl [12] 
have reviewed many variations of the original BZ recipe and 
concluded that the presence of the H+ cations was necessary for the 
appearance of these oscillations. 

Tatterson and Hudson [13] substantially improved both the recipe 
of BZ reaction and the technique for a well-documented observation 
of the dispersion relation in 1D reaction space. They used a stirred 
tank as an oscillating source whose frequency could be controlled by 
the intensity of stirring. The waves emitted from this tank penetrated 
into the attached glass or Plexiglass tubes and 1D propagation of 
waves was observed and measured potentiometrically. Their 
experimental arrangement served as a reproducible and controllable 
source for the waves from outside into the diffusion tube. Their 
experimental results are summarized in the Figure 1 together with a 
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Figure 1 - Evolution of 1D BZ waves in plexiglass thin tube (�), data from 
Tatterson and Hudson (Ref. 13), solid curve was calculated from Equation 1 for 
K = 1, κ = 1, m = mH, h is the Planck constant, the arrow shows the tendency of 
successive waves to minimize their diffusion action. 
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theoretical curve calculated from Equation 1 (h is the Planck constant, 
m represents the mass of H+, λ is the distance between following 
patterns, u is the propagation speed, the diffusivity factor K = 1, the 
tortuosity factor is κ = 1). There is an observable tendency of the 
successive waves to minimize their diffusion action to a certain 
constant value close to the 6.6 * 10–34 Js [14]. The further evolution of 
wave propagation can be described by fluctuations of the diffusion 
actions around the attractor value 6.6 * 10–34 Js. 

In the absence of stirring, periodic propagation of concentration 
waves occurs also in a two dimensional system and its investigation 

0

2

4

6

8

10

0 20 40

Wavelength ( mm )

P
ro

p
ag

at
io

n
 s

p
ee

d
 

( m
m

/m
in

 )

 
Figure 2 - Evolution of 2D BZ waves in water non-restricted media, data 
taken from Ševcíková and Marek (Ref. 15), solid curve was calculated 
from Equation 1 for K = 2, κ = 1, m = mH, h is the Planck constant, arrows 
show the tendency of successive waves to minimize their diffusion action. 
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brings new evidences about the world of Brownian particles. 
Dispersion relations for propagating 2D BZ waves were reported by 
Marek with Ševcíková [15], Pagola et al. [16 ], Jahnke et al. [17], and 
Nagy-Ungvárai with Hess [18]. Their dispersion relations are given in 
Figure 2 with a relation calculated from Equation 1 for the diffusivity 
factor K = 2, and tortuosity factor κ = 1 (water non-restricted media). 
The target patterns are continuously changing, with new patterns of 
lower propagation velocity and shorter wavelengths replacing their 
predecessors. The velocity and wavelength of successive waves 
decrease until they reach a constant value of their product uλ, and the 
next waves keep this value for a long time. There is a strong tendency 
for all four sequences of propagating target waves to self-organize 
their diffusion fields in such a way that their diffusion actions 
approach the attractor value 6.6 * 10–34 Js. Diffusion actions of the 
next waves fluctuate around this attractor value. 

Numerous dispersion relations of BZ waves were measured in the 
presence of gels, resin beads, glasses, etc. In this case the network of 
restricted media influences both the propagation speed and 
wavelength of penetrating waves, and the tortuosity factor κ has to be 
inserted into Equation 1. However, the dispersion relations in these 
restricted media show the same tendency: minimization of the 
diffusion action to a certain constant value. Steinbock and Muller [19] 
have introduced a powerful technique for manipulation of wave 
propagation. In the ruthenium catalyzed BZ reaction the laser beam 
can modify the parameters of waves. When the laser source is 
switched off, the perturbed spiral waves minimize their diffusion 
action to the lowest value again. 

Propagating cAMP waves (cyclic adenosine 3´,5 -́monophospate 
with Mw = 329.22) controlling chemotactic aggregation of starving 
cells of the social amoebae Dictyostelium discoideum may serve as an 
another interesting example of chemical waves. The cAMP waves are 
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periodically relayed by cells in aggregation centers and are visible as 
outward-moving target or spiral waves. The dispersion relations of 
these cAMP waves during the early stages of aggregation were 
measured by Alcantara and Monk [20], Gross et al. [21], Tomchik 
and Devreotes [22], Siegert and Weijer [23], Rietdorf et al. [24], 
Dormann et al. [25].  

In the typical experimental arrangement cells are placed at density 
of 5 * 105 cells/cm2 on 1% KK2 (20 mM potassium phosphate buffer, 
pH 6,8) agar plates and incubated at 22° C for 6 hours. After 6 hours 
of development the aggregation starts and dark-field wave 
propagation can be observed. After the onset of aggregation of cells 
the successive cAMP waves start to decrease both their period and the 
wave propagation speed during aggregation. The period of cAMP 
waves decreases from 6 min at the begin of the cell aggregation to 2.5 
min (or 1.25 min) after the evolution of 20–30 waves when streams 
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Figure 3 - Evolution of 2D cAMP waves in 1% agar, data taken from Rietdorf 
et al. (Ref. 24) and Dormann et al. (Ref. 25), solid curve calculated from 
Equation 1 for K = 2, κ = 1, m = mcAMP, h is the Planck constant, the arrow 
shows the tendency of successive cAMP waves to minimize their diffusion 
action. 
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are still flowing into the forming mound. At the same time the wave 
propagation speed decreases from 600 to 100 µm/min. In late stages 
after mound formation wave propagation speed stays low and slowly 
decreases to about 60 µm/min, while the wave period increases to 
about 4 minutes.  

The product of the propagation speed and the wavelength remains 
approximately constant during mound formation. This situation is 
depicted on Figure 3. The diffusion action of cAMP waves decreases 
in value during the early aggregation and remains approximately 
constant during mound formation. The diffusion of cAMP molecules 
occurs in the presence of 1% agar and therefore, the tortuosity factor 
influences the resulting propagation speed and wavelength.  

Figure 4 summarizes the evolution of the diffusion actions of 
Liesegang ring formation, Belousov-Zhabotinsky waves and cAMP 
waves. The main trend for all three types of chemical waves is 
similar. During evolution the successive chemical waves show a 
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Figure 4 - Temporal evolution of diffusion actions of LR (Liesegang ring) waves, 
BZ (Belousov-Zhabotinsky) waves, and cAMP (cyclic adenosine 3´,5´-
monophospate) waves. 
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strong tendency to self-organize their diffusion fields in such a way 
that the diffusion actions converge to a constant value of about 
6.6 * 10–34 Js. Diffusion actions of the following waves fluctuate 
around this quantity of action. 

The earlier studies of chemical waves revealed several interesting 
properties that are similar to the effects observed with photon waves 
(Snell law, reflection, refraction). This diffusion concept may 
contribute to the explanation of many observed effects from the 
microworld (including the famous double-slit experiment when single 
particles create a pattern structure as a diffusion process). 
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