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The paper confirms a known fact that the Faraday law of 
induction does not, in general, follow from Maxwell’s 
equations. It represents a separate and independent physical 
law, being established experimentally. In this connection the 
invariance properties of this law are tested. It has been 
concluded that the Faraday law of induction is not invariant 
with respect to field transformations in an empty space, and 
hence, it is incompatible with the Einstein relativity principle. 

 
It is well known that Maxwell’s equations are Lorentz-invariant. It is 
also known that these equations can be written in both differential and 
integral forms. In particular, for the equation  
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the integral form is 
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where Γ is the closed line enclosing the area S, and ld
r

 is the element 
of the circuit Γ. In case of a fixed line Γ and area S, eq. (2) can be 
written as 
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where  
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is the electromotive force (e.m.f.), and ∫=Φ
S

SdB
rr

 is the magnetic 

flux across the area S. For fixed Γ and S eq. (3) represents a direct 
inference of eq. (1), and hence, it is Lorentz- invariant, too. Often eq. 
(3) is considered to be closely related to the Faraday induction law. 
However, it is known that the Faraday law is valid not only for fixed 
Γ and S, but also for Γ, S, depending on time. In the general case 
(S=S(t), Γ=Γ(t)), the experimentally established Faraday law 
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does not follow from eq. (2) due to the inequality 
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for S variable with time. Historically the situation was just the 
opposite: The Faraday law (5) was discovered experimentally in the 
first half of 19th century, and it suggested to Maxwell his eqs. (1), (2). 
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However, we see that, in general, eqs. (2) and (5) are mathematically 
quite different relationships due to the inequality (6). Thus, the 
Lorentz-invariance of Maxwell’s equations does not yet mean the 
Lorentz-invariance of the Faraday law (5). Hence, we have to check 
its Lorentz-invariance separately. 

We will carry out the test for the case where S=S(t), Γ=Γ(t), and 
the magnetic field is constant: 
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at least near and within the area S. In addition, we assume a flat area 
S, i.e., its normal n

r
 is a constant. Then 

 
dt

tdS
nBSd

dt
d

BSdB
dt
d

tStS

)(
0

)(
0

)(

rrrrrr
−=−=−= ∫∫ε . (9) 

One can show that for single-valued current in a circuit the e.m.f. is 
transformed as [1] 

 221' cv−= εε , (10) 

where v
r

 is a relative velocity between two inertial reference frames 
(here ε  belongs to a resting (laboratory) frame). Two important 
inferences follow from transformation (10): 1) the e.m.f. 
simultaneously vanishes in all inertial frames; 2) if 0≠ε , its sign is 
the same for all observers. In fact, both these properties of e.m.f. are 
required by the causality principle. However, the rhs of Eq. (10) does 
not satisfy these requirements under space-time transformations. This 
is already seen from the simple fact that the magnetic field 0B

r
 can 

appear in one inertial reference frame and disappear in another inertial 
frame. For instance, this occurs in the case where the field 0B

r
 is 

produced by a system of charged particles, uniformly moving at the 
constant speed v

r
 in the laboratory frame. Then, in the frame attached 
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to the particles, all of them are stationary, and 00 =B
r

. Thus, the 
Faraday law of induction is not invariant with respect to the field 
transformations of SRT. 

The same conclusion can be derived in another way, proceeding 
from the definition of e.m.f. as 
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where F
r

 is the force, acting per unit charge in the loop Γ [1]. For 
fixed Γ, eq. (11) leads to eq. (4). For Γ=Γ(t) one needs to add the 
magnetic force [1]: 

 ( )∫
Γ

×+=
)(

),()(),(
t

ldtrBrvtrE
rrrrrrr

ε , (12) 

where )(rv
rr

 is the velocity of a point with the radius-vector r
r

 within 
the circuit Γ in the reference frame considered (here we assume v

r
 

independent of time). In the particular case of a constant magnetic 
field (eq. (8)),  
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as follows from eq. (1) and the Stokes theorem. Hence, 
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which again represents a non-invariant equation: the field 0B
r

 can 
appear or disappear in different inertial reference frames, as well as 
change its sign, while e.m.f. should be transformed according to (10). 

Further, defining the e.m.f. in a closed circuit, we have to 
distinguish an integration over a mathematical line and integration 
over a matter (conductor, insulator, semi-conductor, etc.). The 
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simplest particular example, demonstrating the general conclusion 
about non-invariance of the Faraday law of induction, is a closed 
mathematical line, lying inside the charged condenser. 

Let there be a closed square line ABCD in the plane xy with 
decreasing with time area due to a motion of the left side AB towards 
to the right side CD with the constant velocity u along the x axis (Fig. 
1). Let this loop be placed inside the flat condenser FC, creating the 
electric field E along the y axis. We assume that the area of the plates 
of FC is sufficiently large to consider the field E

r
 as constant in space 

region near the loop. The condenser FC and the side CD are both at 
rest in the laboratory frame K. In the frame K the charged plates are 
stationary, and there is no magnetic field in this frame. Thus, the 
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Fig. 1. The square line A-B-C-D with moving side AB inside the 
charged flat condenser FC.  



 Apeiron, Vol. 10, No. 1, January 2003 37 

© 2003 C. Roy Keys Inc. 

magnetic flux across the line A-B-C-D is equal to zero, regardless of 
the motion of AB, and there is no e.m.f.  

Now let us consider the same problem in an inertial frame K0, 
wherein the frame K moves along the x axis at the constant velocity v 
(Fig. 1). In order to find the electric and magnetic fields in K0, we 
apply the transformation law for these fields, taking into account that 
the components in K are: 

 0== zx EE , EE y = , 0=== zyx BBB . 

Then we obtain the following components of the electromagnetic 
field in K0: 

 
22220

11 cv

E

cv

vBE
E zy

y
−

=
−

+
= , (14) 

 
( )

22222

2

0
11 cvc

vE

cv

EcvB
B yz

z
−

=
−

+
= , (15) 

 000 == zx EE , 000 == yx BB . 

From a physical viewpoint, the appearance of a non-vanishing 
component of magnetic field along the z axis of K0 is explained by a 
motion of charged plates of FC along the x axis. Thus, the magnetic 
flux across the area A-B-C-D (SABCD) is 
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and its time derivative 
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The time derivative of SABCD is proportional to the difference of the 
velocities of the sides AB and CD along the x axis of the frame K0. 
The velocity of CD side is equal to v, while the velocity of AB side is 
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From this the difference of the velocities is derived as 
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Hence, designating the length of the segment AB as l, we obtain: 
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Substituting eq. (17) into eq. (16), we get the e.m.f. in the circuit A-B-
C-D: 
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Thus, in the frame K0 the e.m.f. is defined by eq. (18), while it is 
vanishing in the frame K. This is obvious in contradiction with the 
Einstein relativity principle. 

The same expression (18) can be derived from eq. (13), too. 
Indeed, in the frame K0 
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which coincides with (18). 
Thus, we find that the Faraday law of induction is intrinsically 

incompatible with the Einstein relativity principle. In this short paper 
we will not discuss possible inferences from this fact, and we will not 
analyze the case of calculation of e.m.f. under integration over matter. 
This will be done in later papers. We only mention that the 
preferential status of SRT among an infinite number of other theories 
of empty space-time that agree with available experimental 
observations [2-4] is not warranted. 
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