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This paper is devoted to a wave theory of probability of wave 
spaces, including atomic and molecular spaces. It reveals 
kinematics of wave probabilistic processes (the form of the 
process), i.e., the spatial distribution of singularities – nodal 
points, where amplitude of probabilistic potential achieves 
extreme and zero values. Results obtained are applicable to 
problems of condensed matter physics. In particular, they 
reveal morphology of crystals and the law of constancy of 
angles between edges, and elucidate the “strictly forbidden” 
symmetry found in quasicrystals, etc. 
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1. Introduction 
In this paper we describe the wave approach to the problem on the 
spatial (not energetic) structure of material spaces at molecular, 
atomic, and subatomic levels, unsolvable directly in the framework of 
quantum mechanics (QM). We mean the interatomic and intratomic 



 Apeiron, Vol. 9, No. 4, October 2002 92 

© 2002 C. Roy Keys Inc. 

spatial geometry of disposition of the corresponding constituents 
(atoms and nucleons). This geometry (structure) is directly related 
with the symmetry that is inherent in material spaces at all levels. 
The new notions of probability, different from Born’s probability, and 
of the wave function, different from Schrödinger’s wave Ψ-function 
[1, 2], are in the base of our approach. 

Because the wave exchange of matter-space and motion-rest 
(matter-space-time for brevity) is in the nature of all physical 
phenomena, the probability of possible states at wave exchange 
must also have the  wave character and reflect the states of rest and 
motion. The possibility of rest and motion gives rise to the 
potential-kinetic field of reality, where rest (potential field) and 
motion (kinetic field) are inseparably linked between themselves in 
the unit potential-kinetic field. The wider notion exchange 
(introduced first in the work [3]) instead of interaction reflects 
wave behavior of micro-objects [4] in their dynamic equilibrium 
with the ambient field, at rest and motion, and interactions with 
other objects. 

The new concept of probability, phase probability, presented here, 
was set forth first in [5]. It reveals the geometry of distribution of 
specific points in wave spaces, including atomic, where amplitude of 
probabilistic potential achieves extreme and zero values. The phase 
probability and its density introduced describe any wave events, 
including probability of concentration of substance in such points of 
space. Because of this, it is especially important for an analysis and 
prediction of molecular and crystalline structures. Actually, the wave 
theory of probability reveals the structure (morphology) of crystals, 
including the five-fold symmetry observed in quasicrystals [6], 
“strictly forbidden by the mathematical laws of crystallography” [7], 
etc. The law of constancy of angles between edges (and facets) for all 
crystals of the same substance finds thus a new physical and logical 
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justification. The other important effects of the results obtained are in 
[1]. 

2. Phase and energetic probabilities; Probability 
potential 
Speaking about the wave field of probability, we bear in mind the 
mathematical image of the wave field of possibility. We call such 
probability the phase probability and denote it by the symbol p̂ . Two 
opposite phase probabilities, the kinetic pk and potential pp express, 
respectively, the probability of states of motion and rest. They define 
the potential-kinetic phase probability 
 kp ippp +=ˆ . (2.1) 

The density of phase probability Ψ̂  describes the distribution of 
phase probability p̂ :  

 kpkp idVpiddVpddVpd Ψ+Ψ=+==Ψ /ˆ/ˆ/ˆˆ , (2.2) 

where pd ˆ  is the elementary phase probability, dV is the elementary 
volume of space, pΨ  and kΨ  are, respectively, the potential and 
kinetic densities of phase probability. 

We further assume that the phase probability p̂  (2.1) and its 
density Ψ̂  (2.2) satisfy the wave probabilistic equations:  
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The phase probability p̂  and its density Ψ̂  must describe any 
wave events. In every concrete case, the character of studying objects 
and the concrete chosen parameters-measures of the description are 
determined by these events. If the density of energy of the field is 
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proportional to the wave amplitude of density of phase probability 
squared, then 
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where dEp, dEk, and dE are differentials of the potential, kinetic, and 
total energy; pζ  and kζ  are some coefficients of proportionality 
depending on the selection of phase probability and on the character 
of the field. For the class of fields satisfying the 
condition ζζζ == kp , we have 

 
222 ˆ)(/ Ψ=Ψ+Ψ= ζζ kpdVdE . (2.5) 

Along with the phase probability, we operate with the notion of 
energetic probability. It is needed due to the simple reason that the 
distributions of total energy and masses are different (although they 
are related between themselves in the wave field-space of exchange). 
We must distinguish them. The differential of energetic probability 
dw, by the definition, should be assumed to be proportional to the 
differential of energy dE, i.e., dEdw η= , where ? is the coefficient of 
proportionality. In such a case the densities of potential, kinetic, and 
total energetic probabilities are determined as 
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where ζηξ =  is the coefficient of proportionality depending on the 
character of the field and the choice of the wave function Ψ̂ . The 
characteristic elements of the wave probabilistic geometry − extremes 
and zeroes of the functions Ψk and Ψp − define its discrete structure. 
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Potential and kinetic extremes are mutually conjugated because the 
conjugated functions kp iΨΨΨ +=ˆ  (2.2) and 

 kppkkp iii )()()(ˆ ΨΨΨΨΨ +−=+=  (2.7) 

satisfy the wave equation. Moreover, these extremes are also 
“conjugated” to zeroes of the wave function, because the kinetic 
extremes spatially coincide with the potential zeroes and the potential 
extremes are spatially imposed upon the kinetic zeroes. 

The extremes and zeroes of Ψk and Ψp coincide with the extremes 
and zeroes of their squares, 2

kΨ  and 2
pΨ , in three-dimensional space of 

reality. Therefore, they define the same probabilistic geometry of 
density of states and the energies related to the extremes and zeroes. 
Since p̂  and Ψ̂  satisfy the same wave equation (2.3), the extremes 
and zeroes of phase probability p̂  and its density Ψ̂  coincide; in this 
sense, the functions p̂  and Ψ̂  are equivalent.  

The value of the constant coefficient (the normalizing factor) of 
the Ψ̂ -function does not matter because only its extremes and zeros 
define the discrete structure of a studying object. Therefore, it makes 
sense to introduce the notion the probabilistic potential (or the 
probability potential) proportional to the wave function, which we 
also designate by the symbol Ψ̂ . 

The wave probabilistic potential Ψ̂  in the spherical polar 
coordinates (with the physical polar Z-axis) is represented in the form 
of the product of the four multiplicative components-functions of 
probability: )(ˆ ρR  (where kr=ρ ), )(θΘ , )(ˆ ϕΦ , and )(ˆ tΞ , which 
represent by themselves the multiplicative components of probability 
potential. The radial, polar and azimuth components of the potential 
of probability form the spatial amplitude of the potential of 
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probability )(ˆ)()(ˆ),,(ˆ ϕθρϕθρψ ΦΘR= . Thus, the potential of 
probability Ψ̂ , 

 )(ˆ),,(ˆ)(ˆ)(ˆ)()(ˆˆ ttR ΞΞΦΘΨ ϕθρψϕθρ == , (2.8) 

is determined by the product of spatial and time potentials of 
probability. Their amplitudes are described, in accordance with (2.3), 
by the following equations: 

 0ˆˆ 2 =+ ψψ k∆ ,      and      Ξ−=Ξ ˆ/ˆ 222 ωdtd , (2.9)  

where ck //2 ωλπ ==  is the wave number, the constant quantity (ω 
is the fundamental, carrier, frequency of the wave field of exchange at 
the subatomic level equal to 1181086916197.1 −⋅= sω  [1]). After the 
conventional separation of variables, Eq. (2.9) falls into the equations 
of radial )(ˆ ρlR , polar )(, θmlΘ , and azimuth )(ˆ ϕΦ  components. 

3. Space configuration of probability; Solutions 
For any model of an object of study, the radial solutions define the 
characteristic spheres of extremes (domains of more intensive radial 
displacements) and zeroes (where radial displacements are absent) of 
the radial function. For a variety of problems, it is sufficient to know 
that such characteristic spheres exist. It is very important for 
determination of the spatial geometry of a studying object. 

Polar components )(, θmlΘ  of spatial density of probability Ψ̂  
define characteristic parallels of extremes (primary and secondary) 
and zeroes on radial spheres (shells). Azimuth components Φm(ϕ) 
define characteristic meridians of extremes and zeroes. Potential 
and kinetic polar-azimuth probabilities select together the 
distinctive coordinates (points) of extremes and zeroes on the 
radial shells. Graphs of these functions (see Fig. 3.1 and Table 3.1) 
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show that there are primary and secondary extremes (we will also 
call them nodes), which determine, correspondingly, stable and 
metastable states of probabilistic events. 

  
Fig. 3.1. The graphs of (a) Θ5,2 (θ), (b) Y5,2 (θ, ϕ), (c) Y5,2 (θ, ϕ) together with 
R5(r), indicating (d) the disposition of primary and secondary potential extremes 
(designated conditionally by shaded and blank spheres) of p),,(2,5 ϕθρψ in the 

spherical field of probability. 
 
The completely realized polar-azimuth n-th shell of the 

potential nodes is defined, in accordance with the wave equation of 
probability (2.3), by the function 
 )cos()()(),,( ,,,, αϕθρϕθρ += mRC mlnllpnlml ΘΨ Ψ , (3.1) 

where nl ,ρ  is the radius of n-th extremal radial shell of the function 
)(ρlR . We will call such shells the whole shells. The geometry of 

shells is determined by the polar-azimuth functions. 
The “fractional” (uncompleted) shells are defined by the half-

integer solutions of the form 

 )cos(sin)(),,( ,,, αϕθρϕθρ += lRC l
nllpnlll ΨΨ , (3.2) 

where l is a real number, with extremes lying in the equatorial 
plane. 
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Table 3.1. Solutions of Eq. (2.3) presented in the form of the spatial 
distribution of potential extremes-nodes; numbers 1, 2, 3, … , 110 are 
the ordinal numbers Z of the primary polar-azimuth nodes and, 
simultaneously, they are the ordinal numbers of the last primary node 
of a probabilistic object. 
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In a general case, the complete structure of any probabilistic object 
(we call it an abstract atom [1]) with the ordinal number Z is defined 
by the two sums: 

 ( )∑
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where the subscript Z indicates the number of primary nodes and, 
simultaneously, the ordinal number of the last primary node of a 
probabilistic object; ...,3,2,1,0=s ; mα and sβ  are the initial phases. 
The first sum in (3.3) consists of embedded whole shells; the second 
sum consists of embedded half-integer subshells. 

The extremes and zeros of the phase probability are significant in 
an equal degree. Zero values of the wave spherical field of probability 
define the radial shells of zero probability of radial displacements 
(oscillations). Naturally, they are the shells of stationary states. On the 
contrary, shells of extremal values of the wave field of probability 
define domains of more intensive radial displacements and, 
accordingly, these shells describe nonstationary (unstable) states. 

Thus, the extremes of the wave field of probability do not quite 
mean that they are domains of the most probable localization of 
microparticles. (The QM formalism, accentuating the attention to 
extremes of the wave function squared, is unable to describe the 
qualitative peculiarities of probabilistic processes). 

As was mentioned above, there is the difference between 
distributions of two kinds of extremes: (2.2) the density of phase 
probability Ψ̂  and (2.5) the density of energy of wave fields 

proportional to
2

Ψ̂ . This difference is demonstrated in Fig. 3.2. 
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Fig. 3.2. Distribution of extremes of probabilistic states (small black and blank 
spheres) and extremes of the total energy Em (two shaded rings) for the shell with 
l=4, m=±2. 

4. Conclusion 
The data presented reveals the kinematics (form) of wave 
probabilistic processes, i.e., the spatial distribution of nodal points, 
where amplitude of probabilistic potential achieves extreme and zero 
values. By definition reality is the realized possibility, and probability 
is their measure. Hence, discrete structure of probability obtained, and 
presented in Table 3.1, reflects at the same time the structures really 
existed in nature. 

Actually, the theory of wave fields-spaces of possibility and reality 
has the general discrete-wave feature because it is applicable to an 
analysis of any discrete-wave material spaces. In particular, 
characteristic angles of the functions (3.1) and (3.2), as it is shown in 
[1, 5], are materialized in characteristic angles of crystal forms of 
minerals. They repeat at the macro-level the angles of disposition of 
corresponding nodes of shells, presented in Table 3.1, and define the 
shape (morphology) of crystals [8]. This testifies thus in favor of the 
wave nature of the law of constancy of angles between edges (and 
facets) for all crystals of the same substance.  

Half- integer solutions in the equatorial domain (3.2) have any-fold 
symmetry. Accordingly, they reveal the nature of the five-fold 
symmetry, “strictly forbidden by the mathematical laws of 
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crystallography” [7], found in 1984 [6], which attracts at present the 
world-wide attention.  

The comprehensive analysis, conducted in [1], confirms also 
that the directions of chemical bonds in ordered structures are 
determined by the superposition of elementary solutions of the 
equation for the wave probabilistic field (2.3) [9]. These solutions 
can be used for the prediction of the molecular and crystalline 
structures. Moreover, they reveal the nature of Mendeleev’s 
Periodic Law not discussed here (see [1]), etc. 

References 
[1] L. Kreidik and G. Shpenkov, Atomic Structure of Matter-Space, Geo. S., 

Bydgoszcz, 2001, 584 p.  
[2] L. Kreidik and G. Shpenkov, “Important Results of Analyzing Foundations of 

Quantum Mechanics,” Galilean Electrodynamics & GED-East, Special Issues 
2, 13, 23-30, (2002). 

[3] L. Kreidik and G. Shpenkov, Alternative Picture of the World, Geo. S., 
Bydgoszcz, 1996, Vol. 1-3; 148, 156, and 178 p. 

[4] L. Kreidik and G. Shpenkov, “Dynamic Model of Elementary Particles and the 
Nature of Mass and ‘Electric'’ Charge,” Revista Ciências Exatas Naturais, 
Vol. 3, No 2, 157-170, (2001); 
http://www.unicentro.br/pesquisa/editora/revistas/exatas/v3n2/trc510final.pdf 

[5] L. Kreidik and G. Shpenkov, Foundations of Physics; 13.644… Collected 
Papers, Geo. S., Bydgoszcz, 1998, 272 p.  

[6] D. Shechtman, et al., “Metallic Phase with Long-Range Orientation Order and 
no Translation Symmetry,” Phys. Rev. Lett., 53, No.20, 1984, 1951-53 p. 

[7] P.J. Steinhardt and H.C. Jeong, Nature, Vol. 382, pages 433-5 (1996); New 
Rules for Constructing Penrose Tilings May Shed Light on How Quasicrystals 
Form,” http://dept.physics.upenn.edu/~www/astro -cosmo/walker/walker.html 

[8] L. Kreidik and G. Shpenkov, “A Wave Field of Probability and the Form of 
Crystals,” Abstracts, p.258, 18th IUCr Congress & General Assembly, 4th-
13th August, 1999, Glasgow, Scotland. 

[9] L. Kreidik and G. Shpenkov, “Nucleon Shells of the Atom and the Structure of 
Molecules (Chemistry of Nucleon Bonds),” Proceedings of The 5th Int. Conf. 



 Apeiron, Vol. 9, No. 4, October 2002 102 

© 2002 C. Roy Keys Inc. 

on Intermolecular Interactions in Matter, 61-6 p., Politechnika Lubelska, 2-4 
September, Lublin, Poland, 1999. 


