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Continuous periodogram power spectral analyses of fractal 
fluctuations of frequency distributions of bases A, C, G, T in 
Drosophila DNA show that the power spectra follow the 
universal inverse power-law form of the statistical normal 
distribution. Inverse power-law form for power spectra of 
space-time fluctuations is generic to dynamical systems in 
nature and is identified as self-organized criticality . The 
author has developed a general systems theory, which 
provides universal quantification for observed self-organized 
criticality in terms of the statistical normal distribution. The 
long-range correlations intrinsic to self-organized criticality in 
macro-scale dynamical systems are a signature of quantumlike 
chaos. The fractal fluctuations self-organize to form an overall 
logarithmic spiral trajectory with the quasiperiodic Penrose 
tiling pattern for the internal structure. Power spectral analysis 
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resolves such a spiral trajectory as an eddy continuum with 
embedded dominant wavebands. The dominant peak 
periodicities are functions of the golden mean. The observed 
fractal frequency distributions of the Drosophila DNA base 
sequences exhibit quasicrystalline structure with long-range 
spatial correlations or self-organized criticality. Modification 
of the DNA base sequence structure at any location may have 
significant noticeable effects on the function of the DNA 
molecule as a whole. The presence of non-coding introns may 
not be redundant, but serve to organize the effective 
functioning of the coding exons in the DNA molecule as a 
complete unit. 

Keywords: long-range correlations in DNA base sequence, 
self-organized criticality, quantumlike chaos, quasiperiodic 
Penrose tiling pattern 

1. Introduction 

1.1 The DNA molecule and heredity 
Heredity in living organisms is determined by a long complex 
chemical molecule called DNA (deoxyribonucleic acid). The units of 
heredity, the genes are parts of the DNA molecule situated along the 
length of the chromosomes inside the nucleus of the cell. A simplified 
picture of the molecule of DNA may be visualised to consist of two 
long backbones with projections sticking out from them at right 
angles rather like a ladder with its two upright sides and its rungs. The 
backbones are made up of two simple chemicals arranged alternately 
- sugar - phosphate - sugar - phosphate - all along the way. The 
projections are the four units or 'letters' of the code; they are four 
chemical bases called guanine, cytosine, adenine and thymine - G, C, 
A, T. These four bases are arranged in a specific sequence, which 
constitutes the genetic code. The DNA molecule actually consists not 
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of a single thread, but of two helical threads wound around each other 
- a double helix. The two DNA chains run in opposite directions and 
are coiled around each other with the bases facing one another in 
pairs. Only specific pairs of bases can be linked together, T always 
pairs with A, and G with C (Claire, 1964; Bates and Maxwell, 1993). 
The amount of A is the same as the amount of T, while the amount of 
G is the same as the amount of C. These are now known as Chargaff 
ratios (Gribbin, 1985; Alcamo, 2001). 

What distinguishes one type of cell from another and one organism 
from another is the protein, which it contains. And it is DNA which 
dictates to the cell how many and what types of protein it shall make. 
Twenty different chemicals called amino acids in different sets of 
combinations form the proteins. The sequence of bases along each 
DNA molecule in the chromosome determines the sequence of amino 
acids along each of the proteins. It takes a sequence of 3 bases, the 
codon, to identify one amino acid. The order in which these bases 
recur within a particular gene in the helix corresponds to the 
information needed to build that gene's particular protein (Claire, 
1964; Leone, 1992; Ball, 2000). 

The genes of higher organisms are seldom 'recorded' in the 
chromosomes intact, but are scattered in fragmentary fashion along a 
stretch of DNA, broken up by chunks of DNA which seem at first 
sight to carry no message at all. All the useless or "junk" DNA, the 
intervening sequences are known as introns. The pieces of DNA 
carrying genetic code are called exons. The codons, 64 in number are 
distributed over the coding parts of the DNA sequences. It is well 
known that the coding regions are translated into proteins. The non-
coding parts are presumed important in regulatory and promotional 
activities. The biologically meaningful structures in non-coding 
regions are not known (Gribbin, 1985; Guharay et al. 2000; Clark, 
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2001; Som et al., 2001). Understanding genetic defects will make it 
easier to treat them (Watson, 1997). 

Historically, Watson and Crick (1953) put together all the 
experimental data concerning DNA and decided that the only 
structure that fitted all the facts was the double helix and postulated 
that DNA is composed of two ribbonlike "backbones" composed of 
alternating deoxyribose and phosphate molecules. They surmised that 
nucleotides extend out from the backbone chains and that the 0.34nm 
distance represents the space between successive nucleotides. The X-
ray data showed a distance of 34nm between turns, so they guessed 
that ten nucleotides exist per turn. One strand of DNA would only 
encompass 1nm width, so they postulated that DNA is composed of 
two strands to conform to the 2nm diameter observed in the X-ray 
diffraction photographs. Scientists now agree that DNA is arranged as 
a double helix of two intertwined chains, with complementary bases 
(A-T and G-C) opposing each other. Moreover, the strands run 
opposite to one another, that is, the strands display the reverse 
polarity. Given the base sequence of one chain of DNA, the base 
sequence of its partner chain is automatically determined by simply 
noting which bases are complimentary (adenine-thymine or cytosine-
guanine). Furthermore, the structure provides a mechanism by which 
one chain can serve as a template (a model or pattern) for the 
synthesis of the other chain (Sambamurty, 1999; Alcamo, 2001). The 
genomic DNA in cells must be highly compacted in order to be 
contained in the required space. Each chromosome appears to contain 
a single giant molecule of DNA. At least three levels of condensation 
are required to package the 103 to 105 micrometer of DNA in a 
eukaryotic (higher organism) chromosome into a metaphase structure 
a few microns long. The first level of condensation involves 
packaging DNA as a supercoil into nucleosomes. This produces 
10nm diameter interphase chromatin fibre. Second level of 
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condensation involves an additional folding and/or supercoiling of the 
10nm nucleosome fibre to produce the 30nm chromatin fibre. This 
third level of condensation appears to involve the segregation of 
segments of the giant DNA molecules present in eukaryotic 
chromosomes into independently supercoiled domains or loops. The 
mechanism by which this third level of condensation occurs is not 
known (Sambamurty, 1999). 

1.2 Long-range correlations in DNA base sequence 
DNA topology is of fundamental importance for a wide range of 
biological processes (Bates and Maxwell, 1993). One big question in 
DNA research is whether there is some meaning to the order of the 
base pairs in DNA. Human DNA has become a fascinating topic for 
physicists to study. One reason for this fascination is the fact that 
when living cells divide, the DNA is replicated exactly. This is 
interesting because approximately 95% of human DNA is called 
"junk" even by biologists who specialize in DNA. One practical task 
for physicists is simply to identify which sequences within the 
molecule are the coding sequences. Another scientific interest is to 
discover why the "junk" DNA is there in the first place. Almost 
everything in biology has a purpose that, in principle, is discoverable 
(Stanley, 2000). The study of statistical patterns in DNA sequences is 
important as it may improve our understanding of the organization 
and evolution of life on the genomic level. Recent studies indicate 
that the DNA sequence of letters A, C, G and T does have a αf1  
frequency spectrum where f is the frequency and α  the exponent. It 
is possible, therefore, that the sequences have long-range order and 
underlying grammar rules. The opinion on this issue remains divided 
(Som et al., 2001 and all references therein). The findings of long-
range correlations in DNA sequences have attracted much attention, 
and attempts have been made to relate those findings to known 
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biological features such as the presence of triplet periodicities in 
protein-coding DNA sequences, the evolution of DNA sequences, the 
length distribution of protein-coding regions, or the expansion of 
simple sequence repeats (Holste et al., 2001). 

A summary of recent results relating to long-range correlation 
(LRC) in DNA sequences is given in the following. Based on spectral 
analyses, Li et al. found ( Li, 1992; Li and Kaneko, 1992; Li, Marr 
and Kaneko, 1994) that the frequency spectrum of a DNA sequence 
containing mostly introns shows 1/fα behavior, which evidences the 
presence of long-range correlations. The correlation properties of 
coding and non-coding DNA sequences were first studied by Peng et 
al. (1992) in their fractal landscape or DNA walk model. Peng et al. 
(1992) discovered that there exists LRC in non-coding DNA 
sequences while the coding sequences correspond to a regular random 
walk. By doing a more detailed analysis of the same data set, 
Chatzidimitriou-Dreismann and Larhammar (1993) concluded that 
both coding and non-coding sequences exhibit LRC. A subsequent 
work by Prabhu and Claverie (1992) also substantially corroborates 
these results. Buldyrev et al. (1995) showed the LRC appears mainly 
in non-coding DNA using all the DNA sequences available. 
Alternatively, Voss (1992; 1994), based on equal-symbol correlation, 
showed a power-law behavior for the sequences studied regardless of 
the percent of intron contents. Havlin et al. (1995) state that DNA 
sequence in genes containing non-coding regions is correlated, and 
that the correlation is remarkably long range--indeed, base pairs 
thousands of base pairs distant are correlated. Such long-range 
correlations are not found in the coding regions of the gene. Havlin et 
al. (1995) suggest that non-coding regions in plants and invertebrates 
may display a smaller entropy and larger redundancy than coding 
regions, further supporting the possibility that non-coding regions of 
DNA may carry biological information. Investigations based on 
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different models seem to suggest different results, as they all look into 
only a certain aspect of the entire DNA sequence. It is therefore 
important to investigate the degree of correlations in a model-
independent way. Hence one may ignore the composition of the four 
kinds of bases in coding and non-coding segments and only consider 
the rough structure of the complete genome or long DNA sequences. 
Yu et al. (2000) proposed a time series model based on the global 
structure of the complete genome and considered three kinds of 
length sequences. The values of the exponents from these three kinds 
of length sequences of bacteria indicate that the long-range 
correlations exist in most of these sequences (Yu et al., 2000 and all 
the references contained therein). Recently from a systematic analysis 
of human exons, coding sequences (CDS) and introns, Audit et al. 
(2001) have found that power law correlations (PLC) are not only 
present in non-coding sequences but also in coding regions somehow 
hidden in their inner codon structure. If it is now well admitted that 
long-range correlations do exist in genomic sequence, their biological 
interpretation is still a continuing debate (Audit et al., 2001 and all 
references therein). 

The long-range correlation does not necessarily imply a deviation 
from Gaussianity. For example, the fractional Brownian motion, 
which has Gaussian statistics, shows an inverse power-law spectrum. 
According to Allegrini et al. (1996, based on Levy’s statistics), long-
range correlations would imply a strong deviation from Gaussian 
statistics while the investigation of Arneodo et al. (1995) yields an 
important conclusion that the DNA statistics are essentially Gaussian 
(Mohanty and Narayana Rao, 2000). 

In visualizing very long DNA sequences, including the complete 
genomes of several bacteria, yeast and segments of human genes, it is 
seen that fractal-like patterns underlie these biological objects of 
prominent importance. The method used to visualize genomes of 
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organisms may well be used as a convenient tool to trace, e.g., 
evolutionary relatedness of species (Hao et al., 2000). Stanley, 
Amaral et al. (1996) and Stanley, Afanasyev et al. (1996) discuss 
examples of complex systems composed of many interacting 
subsystems, which display nontrivial long-range correlations or long-
term "memory". The statistical properties of DNA sequences, 
heartbeat intervals, brain plaque in Alzheimer brains, and fluctuations 
in economics have the common feature that the guiding principle of 
scale invariance and universality appear to be relevant (Stanley, 
2000). 

1.3 Nonlinear dynamics and chaos 
Irregular (nonlinear) fluctuations on all scales of space and time are 
generic to dynamical systems in nature such as fluid flows, 
atmospheric weather patterns, heart beat patterns, stock market 
fluctuations, etc. Mandelbrot (1977) coined the name fractal for the 
non-Euclidean geometry of such fluctuations which have fractional 
dimension, for example, the rise and susequent fall with time of the 
Dow Jones Index or rainfall traces a zig-zag line in a two-dimensional 
plane and therefore has a fractal dimension greater than one but less 
than two. Mathematical models of dynamical systems are nonlinear 
and finite precision computer realizations exhibit sensitive 
dependence on initial conditions resulting in chaotic solutions, 
identified as deterministic chaos. Nonlinear dynamics and chaos is 
now (since 1980s) an area of intensive research in all branches of 
science (Gleick, 1987). The fractal fluctuations exhibit scale 
invariance or selfsimilarity manifested as the widely documented 
(Bak, Tang, Wiesenfeld, 1988; Bak and Chen, 1989; 1991; 
Schroeder, 1991; Stanley, 1995; Buchanan, 1997) inverse power-law 
form for power spectra of space-time fluctuations identified as self-
organized criticality by Bak et al. (1987). The power-law is a 
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distinctive experimental signature seen in a wide variety of complex 
systems. In economy it goes by the name fat tails, in physics it is 
referred to as critical fluctuations, in computer science and biology it 
is the edge of chaos, and in demographics it is called Zipf's law 
(Newman, 2000). Power-law scaling is not new to economics. The 
power-law distribution of wealth discovered by Vilfredo Pareto 
(1848-1923) in the 19th century (Eatwell, Milgate and Newman, 
1991) predates any power-laws in physics (Farmer, 1999). One of the 
oldest scaling laws in geophysics is the Omori law (Omori, 1895). It 
describes the temporal distribution of the number of aftershocks, 
which occur after a larger earthquake (i.e., mainshock) by a scaling 
relationship. The other basic empirical seismological law, the 
Gutenberg-Richter law (Gutenberg and Richter, 1944) is also a 
scaling relationship, and relates intensity to its probability of 
occurrence (Hooge et. al., 1994). Time series analyses of global 
market economy also exhibits power-law behaviour (Bak et al., 1992; 
Mantegna and Stanley, 1995; Sornette et al., 1995; Chen, 1996a,b; 
Stanley, Amaral, Buldyrev, Havlin et al., 1996; Feigenbaum and 
Freund, 1997a,b; Gopikrishnan et al., 1999; Plerou et al., 1999; 
Stanley et al., 2000; Feigenbaum, 2001a, b) with possible multifractal 
structure (Farmer, 1999) and has suggested an analogy to fluid 
turbulence (Ghashghaie et al., 1996; Arneodo et al., 1998). Sornette 
et al. (1995) conclude that the observed power law represents 
structures similar to Elliott waves of technical analysis first introduced 
in the 1930s. It describes the time series of a stock price as made of 
different waves; these waves are in relation to each other through the 
Fibonacci series. Sornette et al. (1995) speculate that Elliott waves 
could be a signature of an underlying critical structure of the stock 
market. Incidentally the Fibonacci series represent a fractal tree-like 
branching network of selfsimilar structures (Stewart, 1992). The 
commonly found shapes in nature are the helix and the dodecahedron 
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(Muller and Beugholt, 1996), which are signatures of selfsimilarity 
underlying Fibonacci numbers. The general systems theory presented 
in this paper shows (Section 2) that Fibonacci series underlies fractal 
fluctuations on all space-time scales. 

Historically, basic similarity in the branching (fractal) form 
underlying the individual leaf and the tree as a whole was identified 
more than three centuries ago in botany (Arber, 1950). The branching 
(bifurcating) structure of roots, shoots, veins on leaves of plants, etc., 
have similarity in form to branched lighting strokes, tributaries of 
rivers, physiological networks of blood vessels, nerves and ducts in 
lungs, heart, liver, kidney, brain, etc. (Freeman, 1987; 1990; 
Goldberger et al., 1990; Jean, 1994;). Such seemingly complex 
network structure is again associated with Fibonacci numbers seen in 
the exquisitely ordered beautiful patterns in flowers and arrangement 
of leaves in the plant kingdom (Jean, 1994; Stewart, 1995). The 
identification of physical mechanism for the spontaneous generation 
of mathematically precise, robust spatial pattern formation in plants 
will have direct applications in all other areas of science (Mary 
Selvam, 1998). The importance of scaling concepts were recognized 
nearly a century ago in biology and botany where the dependence of a 
property y on size x is usually expressed by the allometric equation 
y=axb where a and b are constants (Thompson, 1963; Strathmann, 
1990; Jean, 1994; Stanley, Amaral, Buldyrev, Goldberger et al., 
1996). This type of scaling implies a hierarchy of substructures and 
was used by D’Arcy Thompson for scaling anatomical structures, for 
example, how proportions tend to vary as an animal grows in size 
(West, 1990a). D’Arcy Thompson (1963, first published in 1917) in 
his book On Growth and Form  has dealt extensively with similitude 
principle for biological modelling. Rapid advances have been made in 
recent years in the fields of biology and medicine in the application of 
scaling (fractal) concepts for description and quantification of 



 Apeiron, Vol. 9, No. 4, October 2002 113 

© 2002 C. Roy Keys Inc. 

physiological systems and their functions (Goldberger, Rigney and 
West, 1990; West, 1990a,b; Deering and West, 1992; Skinner, 1994; 
Stanley, Amaral, Buldyrev, Goldberger et. al., 1996). In 
meteorological theory, the concept of selfsimilar fluctuations was 
identified and introduced in the description of turbulent flows by 
Richardson (1965, originally published in 1922; see also Richardson, 
1960), Kolmogorov (1941, 1962), Mandelbrot (1975) (Kadanoff 
1996) and others (see Monin and Yaglom, 1975 for a review). 

Self-organized criticality implies long-range space-time 
correlations or non- local connections in the spatially extended 
dynamical system. The physics underlying self-organized criticality is 
not yet identified. Prediction of the future evolution of the dynamical 
system requires precise quantification of the observed self-organized 
criticality. The author has developed a general systems theory (Capra, 
1996), which predicts the observed self-organized criticality as a 
signature of quantumlike chaos in the macro-scale dynamical system 
(Mary Selvam, 1990; Mary Selvam, Pethkar and Kulkarni, 1992; 
Selvam and Fadnavis, 1998). The model also provides universal and 
unique quantification for the observed self-organized criticality in 
terms of the statistical normal distribution. 

Continuous periodogram power spectral analyses of the frequency 
distribution of bases A, C, G, T in Drosophila DNA base sequence 
agree with model prediction, namely, the power spectra follow the 
universal inverse power law form of the statistical normal 
distribution. The geometrical distribution in space, of the DNA bases, 
therefore exhibit self-organized criticality, which is a signature of 
quantumlike chaos. Earlier studies by the author have identified 
quantumlike chaos exhibited by dynamical systems underlying the 
observed fractal fluctuations of the following data sets: (1) Time 
series of meteorological parameters (Mary Selvam, Pethkar and 
Kulkarni, 1992; Selvam and Joshi, 1995; Selvam et al., 1996; Selvam 
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and Fadnavis, 1998). (2) Spacing intervals of adjacent prime numbers 
(Selvam and Suvarna Fadnavis, 1998; Selvam, 2001a) (3) Spacing 
intervals of adjacent non-trivial zeros of the Riemann zeta function 
(Selvam, 2001b). 

2. General Systems Theory for Universal 
Quantification of Fractal Fluctuations of 
Dynamical Systems 

As mentioned earlier (Section 1.3) power spectral analyses of fractal 
space-time fluctuations of dynamical systems exhibits inverse power-
law form, i.e., a selfsimilar eddy continuum. The cell dynamical 
system model (Mary Selvam, 1990; Selvam and Fadnavis, 1998, and 
all references contained therein; Selvam, 2001a, b) is a general 
systems theory (Capra, 1996) applicable to dynamical systems of all 
size scales. The model shows that such an eddy continuum can be 
visualised as a hierarchy of successively larger scale eddies enclosing 
smaller scale eddies. Eddy or wave is characterised by circulation 
speed and radius. Large eddies of root mean square (r.m.s) circulation 
speed W and radius R form as envelopes enclosing small eddies of 
r.m.s circulation speed w* and radius r such that  

 22 w
R
r2

W ∗=
π

 (1) 

Since the large eddy is but the average of the enclosed smaller 
eddies, the eddy energy spectrum follows the statistical normal 
distribution according to the Central Limit Theorem  (Ruhla, 1992). 
Therefore, the variance represents the probability densities. Such a 
result that the additive amplitudes of eddies, when squared, represent 
the probabilities is an observed feature of the subatomic dynamics of 
quantum systems such as the electron or photon (Maddox 1988a, 
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1993; Rae, 1988). The fractal space-time fluctuations exhibited by 
dynamical systems are signatures of quantumlike mechanics. The cell 
dynamical system model provides a unique quantification for the  
apparently chaotic or unpredictable nature of such fractal fluctuations 
(Selvam and Fadnavis, 1998). The model predictions for quantumlike 
chaos of dynamical systems are as follows. 

• The observed fractal fluctuations of dynamical systems are 
generated by an overall logarithmic spiral trajectory with 
the quasiperiodic Penrose tiling pattern (Nelson, 1986; 
Selvam and Fadnavis, 1998) for the internal structure. 

• Conventional continuous periodogram power spectral 
analyses of such spiral trajectories will reveal a continuum 
of periodicities with progressive increase in phase. 

• The broadband power spectrum will have embedded 
dominant wavebands, the bandwidth increasing with period 
length. The peak periods (or length scales) En in the 
dominant wavebands is given in terms of τ, the golden 
mean equal to (1+√ 5)/2 [≅ 1.618]  and Ts, the primary 
perturbation length scale as 

 n
Sn )2(TE ττ+=  (2) 

Considering the most representative example of turbulent fluid 
flows, namely, atmospheric flows, Ghil (1994) reports that the 
most striking feature in climate variability on all time scales is 
the presence of sharp peaks superimposed on a continuous 
background. The model predicted periodicities (or length 
scales) in terms of the primary perturbation length scale units 
are 2.2, 3.6, 5.8, 9.5, 15.3, 24.8, 40.1, 64.9, 105.0 respectively 
for values of n ranging from -1 to 7. Periodicities (or length 
scales) close to model predicted have been reported in weather 
and climate variability (Burroughs, 1992; Kane, 1996), prime 
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number distribution (Selvam, 2001a), Riemann zeta zeros (non-
trivial) distribution (Selvam, 2001b).  
As mentioned earlier Sornette et al. (1995) also conclude that 
the observed power-law represents structures similar to Elliott 
waves of technical analysis first introduced in the 1930s. It 
describes the time series of a stock price as made of different 
waves; these waves are in relation to each other through the 
Fibonacci series.  
• The length scale ratio r/R also represents the increment 

θd  in phase angle θ  (Equation 1). Therefore the phase 
angle θ  represents the variance. Hence, when the 
logarithmic spiral is resolved as an eddy continuum in 
conventional spectral analysis, the increment in wavelength 
is concomitant with increase in phase (Selvam and 
Fadnavis, 1998). Such a result that increments in 
wavelength and phase angle are related is observed in 
quantum systems and has been named Berry's phase (Berry 
1988; Maddox 1988b; Simon et al., 1988; Anandan, 1992). 
The relationship of angular turning of the spiral to intensity 
of fluctuations is seen in the tight coiling of the hurricane 
spiral cloud systems. 

• The overall logarithmic spiral flow structure is given by the 
relation 

 zlog
k

w
W ∗=  (3) 

• The constant k in Equation 3 is the steady state 
fractional volume dilution of large eddy by inherent 
turbulent eddy fluctuations. The constant k is equal to 

382.01 2 ≅τ  and is identified as the universal 
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constant for deterministic chaos in fluid flows (Selvam 
and Fadnavis, 1998). The steady state emergence of 
fractal structures is therefore equal to 

 62.2
k
1

≅  (4) 

The model predicted logarithmic wind profile relationship 
such as Equation 3 is a long-established (observational) 
feature of atmospheric flows in the atmospheric boundary 
layer, the constant k, called the Von Karman’s constant has 
the value equal to 0.38 as determined from observations 
(Wallace and Hobbs, 1977). 
• In Equation 3, W represents the standard deviation of 

eddy fluctuations, since W is computed as the 
instantaneous r.m.s. (root mean square) eddy 
perturbation amplitude with reference to the earlier step 
of eddy growth. For two successive stages of eddy 
growth starting from primary perturbation w* the ratio 
of the standard deviations Wn+1 and Wn is given from 
Equation 3 as (n+1)/n. Denoting by σ  the standard 
deviation of eddy fluctuations at the reference level 
(n=1), the standard deviations of eddy fluctuations for 
successive stages of eddy growth are given as integer 
multiple of σ , i.e., σ , 2 σ , 3 σ , etc., and 
correspond respectively to statistical normalized 
standard deviation t=0, 1, 2, 3, etc. 

 ,.......3,2,1,0tdeviationdardtansnormalizedlstatistica =  (5) 

• The conventional power spectrum plotted as the 
variance versus the frequency in log-log scale will now 
represent the eddy probability density on logarithmic 



 Apeiron, Vol. 9, No. 4, October 2002 118 

© 2002 C. Roy Keys Inc. 

scale versus the standard deviation of the eddy 
fluctuations on linear scale since the logarithm of the 
eddy wavelength represents the standard deviation, i.e., 
the r.m.s. value of eddy fluctuations (Equation 3). The 
r.m.s. value of eddy fluctuations can be represented in 
terms of statistical normal distribution as follows. A 
normalized standard deviation t=0 corresponds to 
cumulative percentage probability density equal to 50 
for the mean value of the distribution. Since the 
logarithm of the wavelength represents the r.m.s. value 
of eddy fluctuations the normalized standard deviation t 
is defined for the eddy energy as 

 1
Tlog
Llog

t
50

−=  (6) 

• The parameter L in Equation 6 is the wavelength (or 
period) and T50 is the wavelength (or period) up to 
which the cumulative percentage contribution to total 
variance is equal to 50 and t = 0. The variable logT50 
also represents the mean value for the r.m.s. eddy 
fluctuations and is consistent with the concept of the 
mean level represented by r.m.s. eddy fluctuations. 
Spectra of time series of fluctuations of dynamical 
systems, for example, meteorological parameters, when 
plotted as cumulative percentage contribution to total 
variance versus t follow the model predicted universal 
spectrum (Selvam and Fadnavis, 1998, and all 
references therein). The literature shows many 
examples of pressure, wind and temperature whose 
shapes display a remarkable degree of universality 
(Canavero and Einaudi, 1987). 
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• The periodicities (or length scales) T50 and T95 up to 
which the cumulative percentage contribution to total 
variances are respectively equal to 50 and 95 are 
computed from model concepts as follows. The power 
spectrum, when plotted as normalised standard 
deviation t versus cumulative percentage contribution to 
total variance represents the statistical normal 
distribution (Equation 6), i.e. the variance represents the 
probability density. The normalised standard deviation 
values t corresponding to cumulative percentage 
probability densities P equal to 50 and 95 respectively 
are equal to 0 and 2 from statistical normal distribution 
characteristics. Since t represents the eddy growth step 
n (Equation 5) the dominant periodicities (or length 
scales) T50 and T95 up to which the cumulative 
percentage contribution to total variance are 
respectively equal to 50 and 95 are obtained from 
Equation 2 for corresponding values of n equal to 0 and 
2. In the present study of fractal fluctuations of 
frequency distribution of Drosophila DNA bases A, C, 
G, T, the primary perturbation length scale Ts is equal to 
unit length segment of 50 bases and T50 and T95 are 
obtained as 

 bases50ofsegmentlengthunit6.3)2(T 0
50 ≅+= ττ  (7) 

 bases50ofsegmentlengthunit5.9)2(T 2
95 ≅+= ττ  (8) 

The above model predictions are applicable to all real world 
and computed model dynamical systems. Continuous periodogram 
power spectral analyses of number frequency (per 50 bases) of 
occurrence of bases A, C, G, T in Drosophila DNA base sequence 
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at different locations along its length give results in agreement 
with the above model predictions. 

3. Data and Analysis 
The Drosophila DNA base sequence was obtained from Berkeley 
Drosophila Genome Project (BGDP Resources at 
http://www.fruitfly.org/index.html. The data set used for the study 
corresponds to the file NA_ARMS~1 with the title: >2L, 28-11-
2001.1 (22207800 bases) segment 1 of 1 for arm 2L on wed Nov 28 
00:30:01 PST 2001 
(http://www.fruitfly.org/sequence/sequence_db/na_arms.dros. RELEASE 2.9) 
finished sequence for 2L. The first 225000 bases were used to give 50 
data sets each of length 4500 bases. The number of times that each of 
the bases A, C, G, T occur in successive blocks of 50 bases was 
determined for each data set of 4500 bases. Each data set of 4500 
bases then gives 4 groups of 90 frequency sequence values 
corresponding respectively to the four bases A, C, G, T. 

3.1 Fractal nature of frequency distribution of 
Drosophila DNA base (A, C, G, or T) sequence 

A representative sample for the frequency of occurrence of base A in 
successive blocks of length 50 bases is plotted in Figure 1 for 10, 100, 
1000 and 4500 segments for the total sequence consisting of 225000 
bases used in the study. 
The frequency distribution shows irregular or fractal fluctuations for 
all the segment length scales. The irregular fluctuations may be 
visualized to result from the superimposition of an ensemble of eddies 
(wavelengths). 
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Figure 1: Fractal nature of frequency distribution of Drosophila DNA base (A, C, G, 
or T) sequence 

3.1 The frequency distributions of DNA bases A, C, G, 
T and the statistical normal distribution 

The frequency distribution of bases A, C, G, T follow statistical 
normal distribution (Selvam and Suvarna Fadnavis, 2001) as 
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described in the following. Each data set consists of the frequency 
distribution Xj where j = 1, 2, ...n denotes the class interval number, 
the total number n equals 90 class intervals and each class interval 
consists of 50 bases, so that each data set consists of 4500 bases. The 
mean Xbar, standard deviation s, and normalised standard deviation 
tj for each set of frequency distributions was calculated as follows: 

 
n

jX
Xbarmean

n

1
j∑ ∗

=   

 
n

j)Xmean(
sdeviationdardtans

n

1

2
j∑ ∗−

=   

The cumulative frequency of occurrence pj of base (A, C, G or T) 
for class intervals j = 1, 2, ...n were calculated as 

 ∑=
j

1
jj Xp   

The cumulative percentage frequency of occurrence pc of base (A, 
C, G or T) for class intervals j = 1, 2, ...n were then calculated as 

 100
p

p
p

n

j
c ∗=   

The graph of cumulative percentage frequency of occurrence pc 
versus the corresponding normalised standard deviation tj follows 
closely the statistical normal distribution as shown in Figure 2 for all 
the four bases A, C, G, T in the Drosophila DNA sequence. The 
above result is consistent with model prediction that the variance 
spectrum of fractal fluctuations follows statistical normal distribution 
as explained in the following. From Equation (1), namely 
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22 w
R
r2

W ∗=
π

it is seen that the length scale ratio r/R (or frequency 

ratio) represents the variance spectrum (W2/w*
2) and therefore the 

cumulative frequency distribution follows closely the cumulative 
normal distribution as shown in Figure 2. 

 

3.2 Continuous 
periodogram 
power spectral 
analyses 

The broadband power 
spectrum of space-time 
fluctuations of dynamical 
systems can be computed 
accurately by an elementary, 
but very powerful method of 
analysis developed by 
Jenkinson (1977) which 
provides a quasi-continuous 
form of the classical 
periodogram allowing 
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Lm which increase 
geometrically as Lm=2 
exp(Cm) where C=.001 and 
m=0, 1, 2,....m. The data 
series Xj for the n data 
points was used. The 
periodogram estimates the 
set of 

)S2cos(A mmm φπν −  
where Am, mν  and mφ  
denote respectively the 
amplitude, frequency and 
phase angle for the mth 
wavelength (or periodicity) 
and S is the spatial (or time) 
interval in units of 50 bases 

in the present study of Drosophila DNA 
base sequence structure. The cumulative 
percentage contribution to total variance 
was computed starting from the high 
frequency side of the spectrum. The 
wavelength (or period) T50 at which 50% contribution to total 
variance occurs is taken as reference and the normalized standard 
deviation tm values are computed as (Equation 6) 

 1
Tlog
Llog
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The cumulative percentage contribution to total variance, the 
cumulative percentage normalized phase (normalized with respect to 
the total phase rotation) and the corresponding tm values were 
computed. The power spectra were plotted as cumulative percentage 
contribution to total variance versus the normalized standard 
deviation tm as given above. The wavelength (or period) Lm is in units 
of 50 bases as explained above. Wavelengths (or periodicities) up to 
T50 contribute up to 50% of total variance. The phase spectra were 
plotted as cumulative percentage normalized (normalized to total 
rotation) phase. 

3.4 Power spectral analyses: summary of results 
3.4.1 Average variance and phase spectra 

The average variance and phase spectra for the 50 data sets used in 
the study along with statistical normal distribution are shown in 
Figure 3 for the four bases A, C, G, T. The 'goodness of fit' (statistical 
chi-square test) between the variance spectra and statistical normal 
distribution is significant at less than or equal to 5% level for all the 
variance spectra. The eddy variance spectra following statistical 
normal distribution is a signature of quantumlike chaos (see Section 
2) in the frequency distribution sequence of bases A, C, G, T in 
Drosophila DNA base sequence arrangement. Phase spectra are close 
to the statistical normal distribution, with the 'goodness of fit' being 
statistically significant for 42, 36, 48 and 42 percent of data sets 
respectively for the four bases A, C, G, T. However, in all the cases, 
the 'goodness of fit' between variance and phase spectra are 
statistically significant (chi-square test) for individual dominant 
wavebands, in particular for shorter wavelengths as shown in Figure 
6. Eddy variance spectra following phase spectra is identified as 
Berry's phase and is also a signature of quantumlike chaos (see 
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Figure 4: Average wavelength class 
interval-wise distribution of dominant 
wavebands for the four bases A, C, G, 
T in the 50 data sets (a total of 225000 
bases) of Drosophila DNA  

Section 1, Equation 1). The data sets, which do not exhibit Berry’s 
phase, are indicated in Figure 9. 

3.4.2 Dominant wavebands 
The power spectra exhibit dominant wavebands where the normalised 
variance is equal to or greater than 1. The dominant peak wavelengths 
(periodicities) were grouped into class intervals 2 - 3, 3 - 4, 4 - 6, 6 - 
12, 12 - 20, 20 - 30, 30 - 50, 50 - 80, 80 - 120. These class intervals 
include the model predicted (Equation 2) dominant peak periodicities 
(or length scales) 2.2, 3.6, 5.8, 9.5, 15.3, 24.8, 40.1, 64.9, 105.0, (in 
block length segment unit of 50 bases) for values of n ranging from -1 
to 7. Wavelength class interval-wise percentage frequency of 
occurrence of dominant periodicities were computed. In each class 
interval, the number of dominant statistically significant (less than or 
equal to 5%) periodicities and also the number of dominant 

wavebands which exhibit 
Berry's phase (variance and 
phase spectra are the same) are 
computed as percentages of the 
total number of dominant 
wavebands in each class 
interval. The class interval-wise 
mean and standard deviation of 
the above computed frequency 
distribution of dominant 
periodicities, significant 
dominant periodicities and 
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Figure 5: Average wavelength 
class interval-wise distribution 
of dominant significant 
wavebands for the four bases 
A, C, G, T in the 50 data sets 
(a total of 225000 bases) of 
Drosophila DNA base 
sequence used for the study 

Figure 6: Average wavelength 
class interval-wise distribution of 
dominant wavebands exhibiting 
Berry's phase for the four bases A, 
C, G, T in the 50 data sets (a total 
of 225000 bases) of Drosophila 
DNA base sequence used for the 
study 

dominant periodicities exhibiting Berry's phase (see Section 2) were 
then computed for the four bases A, C, G, T in the Drosophila DNA 
sequence. The average class interval-wise distribution of dominant 
wavelengths (periodicities), significant dominant wavelengths and 
dominant wavelengths exhibiting Berry's phase respectively are 
shown in Figures 4, 5 and 6. 
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Figure 7: Log-log plot of average values of 
bandwidth versus peak wavelength for the 
four bases A, C, G, T. The slope 
(bandwidth/peak wavelength) of this graph, 
also plotted in the above figure shows an 
approximately constant value equal to ~2. 

3.4.3 Peak wavelength versus bandwidth 
The model predicts that the apparently irregular fractal fluctuations 
contribute to the ordered growth of the quasiperiodic Penrose tiling 
pattern with an overall logarithmic spiral trajectory such that the 
successive radii lengths follow the Fibonacci mathematical series. 

Conventional power 
spectral analyses resolves 
such a spiral trajectory as 
an eddy continuum with 
embedded dominant 
wavebands, the bandwidth 
increasing with 
wavelength. The 
progressive increase in the 
radius of the spiral 
trajectory generates the 
eddy bandwidth 
proportional to the 
increment θd  in phase 
angle equal to r/R. The 
relative eddy circulation 
speed W/w* is directly 
proportional to the relative 
peak wavelength ratio R/r 
since the eddy circulation 

speed W=2πR/T where T 
is the eddy time period. 
The relationship between 
the peak wavelength and 
the bandwidth is obtained 
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from Equation (1), namely, 22 w
R
r2

W ∗=
π

. 

Considering eddy growth with overall logarithmic spiral trajectory 

 
R
r

dbandwidtheddyrelative ∝∝ θ   

The eddy circulation speed is related to eddy radius as 

 
wavelengthpeakRW

T
R2

W

∝∝

=
π

  

The relative peak wavelength is given in terms of eddy circulation 
speed as 

 
∗

∝
w
W

wavelengthpeakrelative   

From Equation (1) the relationship between eddy bandwidth and peak 
wavelength is obtained as 

 
2

)wavelengthpeaklog((
)bandwidtheddylog(

)wavelengthpeak(bandwidtheddy 2

=

=
 (9) 

A log-log plot of peak wavelength versus bandwidth will be a straight 
line with a slope (bandwidth/peak wavelength) equal to 2. A log- log 
plot of the average values of bandwidth versus peak wavelength 
shown in Figure 7 exhibits a constant slope approximately equal to 2 
in agreement with the above model prediction. 

The mean and standard deviation of the frequency distribution for 
bases A, C, G, T for all the 50 data sets are given in Figure 8. Each 
data set consists of a sequence of 90 frequency values corresponding 
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Figure 9: The periodicities T50 up 
to which the cumulative 
percentage contribution to total 
variance is equal to 50. The 
letter 'N' denotes data set which 
does not exhibit 'Berry's phase', 
i.e., the 'goodness of fit' between 
variance and phase spectra is 
not significant. Variance spectra 
follow normal distribution for all 
data sets. 

Figure 8: The mean and 
standard deviation of the 
frequency distribution for bases 
A, C, G, T for all the 50 data 
sets. The vertical line correspond 
to one standard deviation for the 
data set. 

to 90 successive block lengths of 50 bases of Drosophila DNA base 
sequence. 

The periodicities T50 up to which the cumulative percentage 
contribution to total variance is equal to 50 are shown for the bases A, 
C, G, T for the 50 data sets in Figure 9. The letter 'N' denotes data set 
which does not exhibit Berry's 
phase, i.e., the 'goodness of fit' 
between variance and phase 
spectra is not significant. 
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4. Results and Discussion 
The number frequency of occurrence of each of the bases A, C, G, T 
in successive block lengths of 50 bases of Drosophila DNA base 
sequence exhibit selfsimilar fractal fluctuations generic to dynamical 
systems in nature. The apparently irregular (chaotic) fractal 
fluctuations, which characterise the fine-scale geometry of spatial 
structures in nature, are now an intensive field of study in the new 
science of Nonlinear Dynamics and Chaos. The fractal fluctuations 
are basically a zigzag pattern of successive upward and downward 
swings such as that shown in Figure 1 for the frequency distribution 
of bases A, C, G, T for all data lengths, i.e., number of blocks ranging 
from 10 to the maximum 4500, a total of 225000 Drosophila DNA 
base sequence. Such irregular fluctuations may be visualised to result 
from the superimposition of a continuum of eddies. Power spectral 
analysis is commonly applied to resolve the component wavelengths 
and their phases, the wavelengths being given in terms of the unit 
block length of 50 bases used for determining the wavelength 
distribution. Continuous periodogram power spectral analyses of the 
fractal fluctuations in the frequency distribution of bases A, C, G, T 
in Drosophila DNA base sequence follow closely the following 
model predictions given in Section 2. 

• The variance spectra for the entire data sets exhibit the 
universal inverse power-law form αf1  of the 
statistical normal distribution (Figures 2 and 3) where f 
is the frequency and α , the spectral slope decreases 
with increase in wavelength (or decrease in frequency 
since frequency is inversely proportional to 
wavelength) and approaches 1 for long wavelengths. 
Inverse power-law form for power spectra imply long-
range spatial correlations in the frequency distributions 
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of the bases A, C, G, T in Drosophila DNA base 
sequence structure. Fractal fluctuations exhibit scale 
invariance, namely the eddy amplitudes being related to 
each other by a simple proportionality factor for the 
range of wavelengths for which α  is a constant. The 
observed frequency distribution exhibits multifractal 
structure since the slope α  of the spectrum is not a 
constant, but decreases with increasing wavelength. 
Microscopic-scale quantum systems such as the 
electron or photon exhibit non-local connections or 
long-range correlations and are visualised to result from 
the superimposition of a continuum of eddies. 
Therefore, by analogy, the observed fractal fluctuations 
of frequency distribution of bases A, C, G, T exhibit 
quantumlike chaos in the Drosophila DNA base 
sequence structure. 

Incidentally physics at the atomic scale is determined by the rules 
of quantum mechanics, which tells us that particles propagate like 
waves, and so can be described by a quantum mechanical wave 
function (Rae, 1999). As an immediate consequence, a particle can be 
in two or more states at the same time - a so-called superposition of 
states. This curious behaviour has been hugely successful in 
describing physical systems at the microscopic level. For example, 
under the rules of quantum mechanics two atoms sharing an electron 
form a chemical bond, whereas in classical theory the electron 
remains confined to one atom and the bond cannot form (Blatter, 
2000). 

• Berry's phase, namely, phase spectra and variance 
spectra being the same is seen in about 50% of the data 
sets (Figure 9). However, for all the data sets, the phase 
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spectra follow the variance spectra for a majority of 
dominant wavebands (Figure 6), particularly for the 
shorter wavelengths up to 4 - 6 unit block length of 50 
bases. Microscopic scale quantum systems exhibit 
Berry's phase. 

• The period T50 up to which the cumulative percentage 
contribution to total variance is equal to 50% is larger 
than the model predicted (Equation 7) value equal to 
3.6 unit block length of 50 bases for a majority of data 
sets (Figure 9). This may indicate that the primary 
length scale may be less than the unit block length of 50 
bases used for evaluating the frequency distribution. 

• The power spectra exhibit dominant wavebands with 
peak wavelengths close to model predicted values 
(Equation 2). The average class interval-wise 
distribution of dominant wavelengths (Figure 4) and 
dominant wavelengths which exhibit Berry's phase 
(Figure 6) for all data sets show a maximum for the 
shorter wavelengths up to 4 - 6 unit block length of 50 
bases. The dominant significant wavelengths show a 
maximum for wavelengths larger than 4 - 6 unit block 
length of 50 bases. This result is consistent with 
observed value of T50 being greater than the model 
predicted value equal to 3.6 unit block length of 50 
bases as shown the earlier item above. 

• The bandwidth of the dominant waveband is directly 
proportional to the square of the corresponding peak 
wavelength (Figure 7) in agreement with model 
prediction (Equation 9). 
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5. Conclusions 
Power spectra of frequency distribution of bases A, C, G, T of 
Drosophila DNA base sequence follow the model predicted universal 
and unique inverse power-law form of the statistical normal 
distribution. 

Inverse power-law form for power spectra generic to fractal 
fluctuations is a signature of self-organized criticality in dynamical 
systems in nature. The author had shown earlier (Selvam and Suvarna 
Fadnavis, 1998; Selvam, 2001a, b) that (a) self-organized criticality 
can be quantified in terms of the universal inverse power-law form of 
the statistical normal distribution and (b) self-organized criticality of 
selfsimilar fractal fluctuations implies long-range space-time 
correlations and is a signature of quantumlike chaos in macro-scale 
dynamical systems of all space-time scales. 

Inverse power-law form for power spectra of fluctuations in spatial 
distribution of bases A, C, G, T imply long-range spatial correlations, 
or in other words, persistence or long-term (length scale) memory of 
short-term fluctuations. The fine-scale structure of longer length scale 
fluctuations carry the signature of shorter length scale fluctuations. 
The cumulative integration of shorter length scale fluctuations 
generates longer length scale fluctuations (eddy continuum) with two-
way ordered energy feedback between the fluctuations of all length 
scales (Equation 1). The eddy continuum acts as a robust unified 
whole fuzzy logic network with global response to local 
perturbations. Increase in random noise or energy input into the short-
length scale fluctuations creates intensification of fluctuations of all 
other length scales in the eddy continuum and may be noticed 
immediately in shorter length scale fluctuations. Noise is therefore a 
precursor to signal. 
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Real world examples of noise enhancing signal has been reported 
in electronic circuits (Brown, 1996). Man-made, urbanisation related, 
greenhouse gas induced global warming (enhancement of small-scale 
fluctuations) is now held responsible for devastating anomalous 
changes in regional and global weather and climate in recent years 
(Selvam and Fadnavis, 1998). Noise and fluctuations are at the seat of 
all physical phenomena. It is well known that, in linear systems, noise 
plays a destructive role. However, an emerging paradigm for 
nonlinear systems is that noise can play a constructive role—in some 
cases information transfer can be optimized at nonzero noise levels. 
Another use of noise is that its measured characteristics can tell us 
useful information about the system itself. Problems associated with 
fluctuations have been studied since 1826 (Abbott, 2001). 

The apparently irregular fractal fluctuations of the frequency 
distribution of bases A, C, G, T in Drosophila DNA base sequence 
self-organize spontaneously to generate the robust geometry of 
logarithmic spiral with the quasiperiodic Penrose tiling pattern for the 
internal structure. Conventional power spectral analyses resolves such 
a logarithmic spiral geometry as an eddy continuum with embedded 
dominant wavebands, the peak periodicities being functions of the 
golden mean and the primary perturbation length scale equal to block 
length of 50 bases used in the present study. Power spectral analyses 
of the frequency distribution of bases A, C, G, T in Drosophila DNA 
base sequence also exhibit the model predicted dominant wavebands. 
These dominant periodicities are intrinsic to the selfsimilar fractal 
fluctuations (space-time) of dynamical systems in nature. Quantum 
systems are also characterised by continuous irregular space-time 
fluctuations analogous to fractal fluctuations of macro-scale 
dynamical systems (Hey and Walters, 1989). 

The quasicrystalline structure of the quasiperiodic Penrose tiling 
pattern underlies the apparently irregular distribution of the bases A, 
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C, G, T in Drosophila DNA base sequence. Historically, Schrodinger 
(1967) introduced a concept that the most essential part of a living cell 
- the chromosome fiber - may suitably called an aperiodic crystal 
(Gribbin, 1985). A periodic crystal, like one of common salt, can 
carry only a very limited amount of information. But an aperiodic 
crystal in which there is structure obeying certain fundamental laws, 
but no dull repetition can carry enormous amount of information 
(Gribbin, 1985). The space filling geometric figure of the Penrose 
tiling pattern has intrinsic local five-fold symmetry (Devlin, 1997) 
and also ten-fold symmetry. One of the three basic components of 
DNA, the deoxyribose is a five-carbon sugar and may represent the 
local five-fold symmetry of the quasicrystalline structure of the 
quasiperidic Penrose tiling pattern of the DNA molecule as a whole. 
The DNA molecule also shows tenfold symmetry in the arrangement 
of 10 bases per turn of the double helix (Watson and Crick, 1953). 
The study of plant phyllotaxis in botany shows that the 
quasicrystalline structure of the quasiperiodic Penrose tiling pattern 
provides maximum packing efficiency for seeds, florets, leaves, etc 
(Jean, 1994; Stewart, 1995; Mary Selvam, 1998). Quasicrystalline 
structure of the quasiperiodic Penrose tiling pattern may be the 
geometrical structure underlying the packing of 103 to 105 micrometer 
of DNA in a eukaryotic (higher organism) chromosome into a 
metaphase structure a few microns long. 

The important result of the present study is that the observed 
fractal frequency distributions of the bases A, C, G, T of Drosophila 
DNA base sequence exhibit long-range spatial correlations or self-
organized criticality generic to dynamical systems in nature. 
Therefore, artificial modification of base sequence structure at any 
location may have significant noticeable effect on the function of the 
DNA molecule as a whole. Further, the presence of introns may not 
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be redundant, but may serve to organise the effective functioning of 
the exons in the DNA molecule as a complete unit. 

In summary, the precise geometrical pattern of the quasiperiodic 
Penrose tiling pattern underlies the apparently chaotic fractal 
frequency distribution of base sequence in Drosophila DNA. The 
spatial geometry of the DNA is therefore organized into a hierarchy 
of helical structures (vortices) such as those seen in turbulent fluid 
flows. Such a concept may explain the observed loops of DNA in 
metaphase chromosome (Grosveld and Fraser, 1997) and also the 
characteristic and reproducible banding pattern of polytene 
chromosome (Corces and Gerasimova, 1997). It is believed that the 
loop organization of chromatin is important not only for compaction 
and spatial organization of the chromatin, but also for the regulation 
of gene expression. Each loop domain may represent an independent 
unit of chromatin structure and gene activity (Luderus and van Driel, 
1997). Audit et al. (2002) discuss analyses of results (wavelet 
transform) with regard to possible interpretations of the observed 
long-range correlations in terms of mechanisms that might govern the 
positioning and the dynamics of the nucleosome along the DNA 
chain through cooperative process. Shiba et al. (2002) assessed the 
significance of periodicities of DNA in the origin of genes by 
constructing such periodic DNAs. Herzel et al. (1999) show that 
correlations within proteins affect mainly the oscillations at distances 
below 35 bp. The long-ranging correlations up to 100 bp reflect 
primarily DNA folding. Since the topological state of genomic DNA 
is of importance for its replication, recombination and transcription, 
there is an immediate interest to obtain information about the 
supercoiled state from sequence periodicities (Herzel et al., 1998; 
1999). Fourier transform analysis applied to a DNA sequence offers a 
great new avenue for extracting information on the evolution of a 
DNA sequence (Nagai et al., 2001). Ordered patterns organized in 
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hierarchical periodicities were identified in DNA subtelomeric 
sequences from two lower eukaryotes, P.falciparum and S.cerevisiae 
(Pizzi et al., 1990). Identification of dominant periodicities in DNA 
sequence will help understand the important role of coherent 
structures in genome sequence organisation (Chechetkin and Turygin, 
1995; J. Widom, 1996). Li (2002) has discussed meaningful 
applications of spectral analyses in DNA sequence analysis. 

In the present study the author made use of single bases such as A, 
C, G or T rather than dimers AA, AG, AC, AT, GA, GG, etc. or 
trimers AAA, AAT, AAC, AAG, AGA, AGT, etc. Hence the results 
of the study may have some limitations in their interpretation that can 
be made in terms of biology. For example, biologists would like to 
know whether A+T-rich sequences appear nonrandomly every 5000 
bp (base pair)? Or if AA/TT dimers appear nonrandomly every 200 
bp (as nucleosomal linkers)? Or if other sequences appear once every 
50 kb (as loop-attachment sites)? However the fractal results could 
still be of importance to biologists. For example, the average class-
interval wise distribution of dominant periodicities show a peak in the 
wavelength interval 4-6 in units of 50bp, i.e. 200 to 300bp for all the 
four bases (see Figure 4 and Section 3.4.2 ). This predominant 
wavelength interval 200 to 300 bp may correspond to the first stage of 
DNA coiling (condensation) to form the basic nucleosome unit of the 
chromatin fibre. Further, the wavelength T50 up to which the 
cumulative percentage contribution to total variance is equal to 50 is 
shown in Figure 9 for all the 50 data sets used in the study. The value 
of T50 ranges from 5 to 15 in units of 50bp, i.e. from 250 to 750bp. 
However the value of T50 is close to 250 for a majority of data sets 
(Figure 9) indicating again the predominance of the first stage of 
DNA coiling to form nucleosomes. In view of the above the author is 
studying longer sequences to examine the ramifications of the results 
in biology. 
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