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Numerous forms of anomalous particle statistics have been 
motivated by 2+1 dimensional anayons, the multifractal 
structure of non-extensive systems, and the possible bosonic-
fermionic nature of any fundamental particle. From recent 
studies in non-commutative geometry and previous studies in 
the discrete nature of space time we deduce that the unit cell in 
phase space is changed leading to a rescaling of Planck's 
constant. The rescaling in turn generates anomalous terms in 
the Planck distribution and the fermi energy of fermions which 
can be interpreted in terms of an anomalous statistics 
parameter. 

P.A.C.S., 03.65 Quantum Theory, Foundations 

Rescaling Planck's Constant 
After almost a century of quantum physics and two decades of string 
theory it has become apparent that space-time might not be a smooth 
differentiable manifold in which physics can be embedded 
[1,2,3,4,5]. Quite long ago Caldirola suggested that quantum 
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mechanics should embrace finite differences [6,7] and numerous 
authors have sought to suggest a primitive origin to space time in 
terms of graph theory, combinatorics and discreteness [8,9,10,11,12]. 
In particular we have sought to explore the consequences of discrete 
space-time in quantum mechanics (Q.M.) by studying electron spin 
resonance [13], electron spin polarization procession [14], spectral 
shifts in hydrogen 15] and internal transitions of elementary particles 
[16]. Recent studies in non-commutative geometry have suggested 
that time should be discretized [17] leading to an uncertainty principle 
for space-time forbidding space-time measurements beneath a certain 
limited scale [18,19]. If, for instance, we write for a modified 
uncertainty principle 
 ∆x∆P = h + (∆x∆P)DST 
(where (∆x∆P)DST = additional uncertainty due to discrete space-time 
effects), we have ∆x = L0 = discrete space interval, and for photons 
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In Eq. (2.1) we may think of this as a rescaling of Planck's 

constant, where 00
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In a separate branch of physics motivated by the statistics of 2+1 
dimensional anayons [20], multifractality [21] and the possible 
Boson-Fermion nature of any fundamental particle [22], anomalous 
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statistics have developed. To illustrate how the above notions of 
discrete space-time can describe any of these anomalous corrections 
to BE and FB statistics we write the energy density of photons as 
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If we let h → h + ∆h we find  
(2.3)
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From the approach of Ref. (20) we find [23]  
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(α = anomalous statistics parameter). Equating the correction term in 

Eq. (2.3) to the correction term in Eq. (2.4) we find for 1
kT
h

>
ν

, 
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leading to  
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with ν = 1014 sec−1, T = 100°K, L = 10−16 cm, τ0 = 10−12 sec. 
(2.6) α = 10−4 

Eq. (2.6) is within the experimental limits of measurable 
differences of the CMB [24] from a Planck distribution according to 
Eq. (2.4) and suggest that both discrete space-time effects and 
anomalous effects cannot be ruled out and might have a common 
underlying origin. 

Actually the above values for L0 and τ0 might be an overestimate 
of discrete space-time intervals. Roychowdhury and Roy [25] have 
pointed out that due to stochastic discrete space-time effects the 
energy levels of hydrogen might suffer a shift and Bracci et. al. [26] 
have suggested a discrete spatial interval of 10−5 fermi based on 
various experimental situations. In a separate paper, we have 
suggested a value of τ0 ≅ 1.25 × 10−18 sec by comparing hyperfine 
corrections in hydrogen spectra with discrete time corrections [27]. 
These values would give a value of α = 10−12 according to Eq. (2.5) 
which is too small to be measured in the C.M.B. spectra. 

As another application of the above ideas in a previous note [28] 
we have calculated the corrections of the fermi energy of fermions 
due to anomalous statistics. The corrected value for the fermi energy 
is (here α = 1-ε, α = 1 for fermi statistics). 
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(2.7) 
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If we interpret Eq. (2.7) as a discrete time correction to h as 

h → h0 + ∆h so that ( )hhh
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constant). Thus for fermions ∆h is negative. This would find 
application to neutron star stability. By balancing the gravitational 
attraction with the degeneracy pressure for a neutron star we find for 
the equilibrium radius [29]  
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Thus if τ0 is small it would diminish R by a factor of 
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RR . For L0 ≈ 10−18 sec. h0 ≅ 6.6 × 10−27 (CGS), 

m = 1.67 × 10−24 cgs τ0 = 10−33 sec. ∆R ≅ −R. Thus for small τ0 and 
thus large fluctuations in h we could shrink a neutron star below the 
corresponding radius for a black hole. Thus discrete space-time 
corrections to h could lead to the unexpected production of black 
holes. 

The above estimate serves to demonstrate that by combining 
effects due to anomalous statistics and discrete space-time effects we 
are lead to rather remarkable astrophysical phenomena in the C.M.B. 
and the physics of condensed astrophysical objects. 
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