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I. Intoduction 
According to Birkhoff’s theorem the Schwarzschild metric for a 
vacuum spherically symmetric gravitational field with Λ = 0 
(G=c=1), 
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and with 0≠Λ  the Schwarzschild- deSitter metric, 
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uniquely exhibit the spacetime of a point mass. Eq.(1) has a 
coordinate singularity at Mr 2= and an intrinsic singularity at 0=r , 
while Eq.(2) has two coordinate singularities at Mr 2≈ and Λ≈ 3r , 
and an intrinsic singularity at 0=r . The intrinsic singularity is 
irremovable and this is indicated by diverging the Riemann tensor 
scalar invariant [1]  
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The general enthusiasm for validity of uniqueness of (1) and (2) 
has been hesitated by providing an infinity of spacetimes that satisfy 
the postulates for a point mass in several frameworks. One is in the 
form of general solutions of the spherically symmetric vacuum 
Einstein field equations that are a one-parameter family physically 
differing in their limiting lower bound of the surrounding surface area 
of the source [2]. Other one is in the framework of general Birkhoff’s 
theorem that are a two-parameter family physically differing in their 
limiting lower bound of the hypersurfaces { == rt const.}[3]. 
Another one is known as alternative spacetime for point mass that are 
one-parameter family physically differing in their limiting 
acceleration of a radially approaching test particle [4,5]. 

For 0=Λ , among these works, a common general class of 
solutions may be expressed, in terms of a dimensionless parameter α , 
within the interval of 0≥r  by the following line element: 
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where the source is located at 0=r . 
We primarily discuss the apparent objection that (4) presents 

subspaces of the Schwarzschild space in Sec.II. Though it looks like a 
linear transformation of the radial coordinate, but it is not so and α  
does affect the curvature of spacetime. By deriving the equation of 
precession of perihelia and bending of light in a gravitational field 
given by Eq.(4) and comparing the obtained results with observations, 
we come to the conclusion that α  may take small as well as large 
values up to 310 . Even though 2>α  may solve both coordinate and 
intrinsic singularities, still we need to consider 0>Λ , because recent 
observations of type Ia supernovae do indicate its existence [6]. On 
the other hand it has been shown that in the presence of cosmological 
constant, using a coordinate system that asymptotically leads to a 
static metric cannot serve as a comoving frame [7]. Then a non-static 
solution of this system as an alternative for Eq. (2) has been proposed 
that has the following form [8]: 
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where tre 3
Λ

=ρ . Evidently this result is free of any singularity for 
0>r , and is singular at 0=r . We show in Sec.III that it is indeed an 

intrinsic singularity. By making use of the techniques presented in 
[2,3,7], a general class of non-static solutions will be obtained in 
Sec.IV that has the functional form of Eq. (5) except that 
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teMr 3)(
Λ

+= αρ . These solutions are smooth and finite everywhere 
even at 0=r . Obviously they should be checked for the completeness 
requirements before we may call them non-singular. 

The geodesic equations for a freely falling material particle in the 
general case are solved in Sec.V and results in a potential field that is 
very large but finite near the origin. Finally some concluding remarks 
will come at the end. 

II. Case Λ= 0, α ≠ 0 
Since Eq. (4) transforms to Eq. (1) by simply replacing Mrr α+=′  
with the range of Mr α≥′ , this may cause a confusion that (4) is a 
subspace of (1). Usually the proof of completenss for a pseudo-
Riemannian sapce is not an easy task. The flaw in this argument will 
be shown by a Riemannian counter-example. Let us consider a two-
space, 2R of all points with coordinates ),( θr  such that its line 
element is 2222 θdrdrds += where 0=θ  is identified with πθ 2=  
and 0=r  is included. This plane is complete and non-singular. Also 
consider another two-space, 2R′  of all points with coordinates ),( θr  
and the line element, 2222 )( θdardrds ++=  where the range of 

),( θr  is the same as 2R . If we transform arr +=′  this line element 
will transform to 2222 θdrrdds ′+′=  with ar ≥′  that apparently it 
means 22 RR ⊂′ . We will show that indeed this is a false conclusion. 
Consider a subspace of 2R  and 2R′  by restricting br < . The surface 
area of the open set )(2 brR <  is 2bπ  while the surface area of the 
open set )(2 brR <′  is )2( 2 abb +π . This means that for finite b  we 
always have )()( 22 brRbrR <′⊂< . If we take the limit ∞→b  this 
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leads to 22 )( RbrR →< , 22 )( RbrR ′→<′ and 22 RR ′⊂ . Since 
2R is complete and nonextendable then there is no way except to 

conclude that 22 RR ′= . This counter-example shows that how the 
conclusion that the spaces of (4) are subspaces of the Schwarzschild 
space may be impulsory. Indeed (1) is a special case of (4) for 0=α . 
However it is worth to notice that (1) and (4) both are in the same 
Schwarzschild coordinates, which manifestly have different forms. In 
the case of any transformation of (4) by Mrr α+=′  requiers that (1) 
be demonstrated in this new coordinate too, which means replacing r  
by Mr α−′  in (1). Thus in the new coordinate system also (1) and (4) 
have different forms.  

Next we show how the spaces of (4) for 2>α  are complete. A 
manifold endowed with an affine or metric is said to be geodesically 
complete if all geodesics emanating from any point can be extended 
to infinite values of the affine parameters in both directions. For a 
positive definite metric the geodesic completeness and metric 
completeness are equivalent [9]. Focusing on 2>α  which are the 
most likely values of it, in the line element (4), ttg  does not change 
sign in the whole range of 0≥r  so that t  always and everywhere is 
time coordinate. The hypersurfaces .constt =  are spacelike with a 
positive definite line element Ω++−= −

+ dMrdrd Mr
M 22122 )()1( ασ α  

that is a distance function. Consequently every Cauchy sequence with 
respect to this distance function converges to a point in the manifold, 
and this yields metrically completeness.  

Now by considering the bending of light we search an upper 
bound for α . Since 1919 there has been much studies on the 
gravitational deflection of light by the Sun and gravitational lensing 
(GL). Under the great vision of Zwicky [10], observation of a QSO 
showed the first example of the GL phenomena [11], and thereafter it 
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has become the most important tool for probing the universe. GL can 
give valuable information on important questions, such as masses of 
galaxies and clusters of galaxies, the existence of massive exotic 
objects, determination of cosmological parameters and can be also 
used to test the alternative theories of gravitation [12]. The gravitional 
deflection of light has now been measured more accurately at radio 
wavelenghts with using VLBI than at visible wavelenghts with 
available optical techniques. 

Invoking the spherically symmetric nature of the metric in the 
line element, Ω−−= DdAdrBdtds 222 , we consider the geodesics 
on the equatorial plane )( 2

πθ = , without lose of generality. Following 
Weinberg [13], we get the equation for the photon trajectories as: 

 [ ] [ ] drr rB
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The Einstein deflection angle is, πφφφ −−=∆ ∞)(2 0r . Using 

Eq. (4) makes the integral in (6) well-defined for .)3(0 Mr α−>  
Since α  merely takes positive values, different values of 0r  and α , 
yield different expansions for B  and D , so we get different 
expressions for deflection angle. Our investigation is on very small 
and sufficiently large values of α . We gave the details of calculations 
in [14] and here merely use the results. For 1<α , the Einstein 
deflection angle up to the second order is: 

 [ ] ...)1(44 16
152 ++−+=∆ αφ πxx  (7) 

where 
0r

Mx =  and the restriction imposed by the integral singularity is 

, α−<< 3
10 x , thus the closet approach is .)3(0 Mr α−≈ Putting 

0=α  recovers the well-known Schwarzschild results, which has 
been extensively examined(see [15] and references therein). However 
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cases with small values of α  are qualitatively similar to the case of 
Schwarzschild but are different quantitatively. Further calculations 
show that (7) is also valid for 1>α , but it may not contain the closest 
approach. Therefore for the weak field limit Mr >>0  and with all 
possible values of α , we rewrite the equation as: 

 ( )[ ] ...)1(1 16
15

0
++−+∆=∆ αφφ π

r
M

fo  (8) 

where 
0

4
r
M

fo =∆φ  is the first order deflection angle. The results of 
VLBI observations of extragalactic radio sources show radio-wave 
deflection by the Sun [16] as: 

 )0008.09998.0( ±∆≈∆ foφφ . (9) 

Since the order of magnitude of 
0r

M  for the sun is about 610− , (8) 

and (9) give an upper bound 310<α . For sufficiently large values of 
α  (actually 3>α ) we may obtain another expression for deflection 
angle (up to the second order) in the following form 

 [ ] ...)1(548 16
152 +−−+=∆ αφ πyy  (10) 

where M
ry )2(
0

−= αα  and the range of validity is 10 −<< αy , thus the 
closest approach is 00 ≈r . Eqs. (7) and (10) that contain the closest 
approach, can be used for testing the general theory of relativity in a 
strong gravitational field. Although, no test for the theory is known in 
this region, but there is an open room for such investigations. Several 
possible observational candidates have been proposed to test the 
Einstein’s theory of relativity in the vicinity of a compact massive 
object. One of the current topics is the study of point source lensing in 
the strong gravitational field regions when the deflection angle can be 
very large [17]. Our calculations confirm that the deflection angle 
may take any small as well as large values depending on α  and it 
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would provide a good tool for the gravitational lensing studies. 
Consequently bending of light phenomena in the regions of weak and 
strong field both confine the values of α  up to 310 . 

Next we would like to use observational data of the precession of 
perihelia measurements, in order to find a better bound for α . 
Following Weinberg [18], for a test particle moving on a timelike 
geodesic in the plane 2

πθ = , the angle swept is given by: 
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where )( ±± = rDD  and )( ±± = rBB . The orbit precesses in each 
revolution by an angle πφφφ 2)()(2 −−=∆ −+ rr . By using the 
metric components of (4), we have gotten the expression for the 
precession per revolution (up to the second order), the details are 
given in Appendix B of [14]. So we may write: 

 ( )[ ] ...)1(21 2
46

19 2
++−++∆=∆ ee

L
M

fo αφφ  12) 

where L  and e  are the semilatus rectum and eccentericity 
respectively, and L

M
fo

πφ 6=∆  is the well-known first order 
approximation. Fortunately developments of Long-Baseline Radio 
Interferometry and analysis of Radar Ranging Data, provided accurate 
measurements of precession that typically show [19] 
 )005.0003.1( ±∆≈∆ foφφ . 13) 

Thus matching the theory with observation, using typical values of L
M  

and e , we get an upper bound of 510<α . 
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We conclude that measurments of these two tests of the general 
theory of relativity in the weak field limit restrict the allowed values 
of α  to 310 . Observational data of the GL phenomena would support 
our presented metric components’ role in a strong gravitational field 
and would also give a more accurate bound for α . 

By calculating the Riemann tensor scalar invariant, we receive 
useful information about the existence of singularities. For the line 
element (4), it is: 

 6
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2

)(
4848
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D
M

RR bcd
abcd

a
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As it is evident, the presence of α  makes the scalar finite in the whole 
range of r , meaning that the solutions are free of any intrinsic 
singularity. Meanwhile there may be a coordinate singularity at 

Mr )2( α−=  according to the gotten upper bound. 
We would like to mention two points concerning this work. 

Usually in the literature for discussing this problem coordinate r  is 
defined so that the area of the surfaces .constr = , to be 24 rπ [20]. 
This generally is not the case, since before fixing the metric there is 
no possibility of speaking the distance, so in the same way, there is no 

possibility of speaking the area. Here we take 222 zyxr ++= , 
where ),,( zyx  are usual Cartesian space coordinates. 

The other point worthy enough to be taken with caution 
concerning r  is that, while at first r  is taken as a space radial 
coordinate with the range from zero to infinity and the particle is 
supposed to be at 0=r , at the end we come to the conclusion that r  
is merely a space coordinate in the interval ( )∞− ,)2( Mα . For the 
rest of the interval ( )M)2(,0 α− , it is standing as a time coordinate. 
This contradiction or at least ambiguity raises the question that while 
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the location of the particle is not well-defined, how may we speak of 
the value of D  at this position? This ambiguity particularly needs to 
have a satisfactory explanation and the criterion of this defination 
should be justified. 

III. Case Λ ≠ 0, α = 0 
Recently for vaccum spherically symmetric space, non-static solution 
of Einstein field equations with cosmological constant in the form of 
the Eq. (5) has been proposed [8]. This result shows a singularity at 
the origin where the intrinsic nature of it may be checked by 
calculating the Riemann tensor scalar invariant. This has been 
calculated in Sec.III of [14] and it is: 

 2
66

2

3
8

)(
48

Λ+=
tRr

M
RR bcd

abcd
a  (15) 

where 3
Λ=R

R& . This evidently exhibits the existence of an intrinsic 
singularity at the origin. Removing this deficiency leads us to the 
general form that comes next. As it is expected, (15) with R(t) =1 
gives the result of the static case [21]. 

Let us emphasize some features of Eq. (5) and Eq. (15). Firstly, 
the existence of a nonzero cosmological constant regardless of its 
actual value, is sufficient to prevent from occuring of coordinate type 
singularity at Mr 2≈ . Recent observations of type Ia supernovae 
indicating a universal expansion, put forward the possible existence of 
a small positive cosmological constant [6]. These evidences persuade 
us that in a cosmological constant dominated universe, we would 
have no trouble in describing the whole space. Secondly, since there 
is no singularity for 0>r , then there is no ambiguity in defining 
coordinate r , that mentioed at the end of Sec.II. It is a space 
coordinate in the whole interval ),0( ∞  and we may speak of the 
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value of D  at 0=r  without any problem. Thirdly a coordinate 
transformation transforms (5) to (2) [8]. The metric of Eq. (2) has 
some deficiencies that we would like to discuss briefly. Despite of an 
intrinsic singularity at the origin similar to the Eq.(5) case, it has a 
coordinate type singularity at Λ≈ 3r  in a Λ -dominated universe. 
Though the presence of cosmological constant removes the 
coordinate type singularity from metric of Eq.(5), but in the 
Schwarzschild-deSitter metric it increases the number of coordinate 
singularities to two, so the problem of exchanging the meaning of 
space and time remain. On the other hand when 0=M , the assumed 
FRW background due to homogenity and isotropy of space could not 
be revisited. More importantly, this metric shows a redshift-
magnitude relation that contradicts the observational data [7]. 

Therefore it is adequate to discard the Schwarzschild-deSitter 
metric, in favor of our presented metric as a proper frame of reference 
in the presence of Λ , because it is free of all of the mentioned 
deficiencies. The metric asymptotically approaches to the non-static 
deSitter metric that is appropriate for a Λ -dominated universe. 
Furthermore as we will show next, the presented metric has the 
suitability eventually to remove the intrinsic singularity. 

IV. Case Λ ≠ 0, α ≠ 0 
Since it turns out that there is an intrinsic singularity with the choice 

0=α , we would like to solve the problem by using general form of 
the line element. In this section we find out the expressions for metric 
coefficients asymptotically approching to the FRW universe and 
getting an analytic metric everywhere. To start we choose the line 
element in terms of the coordinates ),,,( φθrt  to be: 

 [ ]2222222 sin)((),()(),( φθθ ddrDdrtrAtRdttrBds ++−=  (16) 
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The nonvanishing components of the metric are 

 Bg tt −= , 2ARgrr = , 2DRg =θθ , θφφ
22 sinDRg =  (17) 

The nonvanishing components of the connection are given in Eq.(45) 
of [14], and the nonvanishing components of the Ricci tensor are : 
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 θθφφ θRR 2sin=  

where (′) and (.) denote derivatives with respect to r  and t  
respectively. 

To solve the vacuum field equations 0=Λ+ µνµν gR , we first 

begin with 0=trR  and introduce a new variable )()( 2
1 rDtR=ρ . 

From this and Eq.(19) we obtain: 

 0)( **
2
1 2

1

=+′ −
B
B

A
ADDR&  (22) 

where (*) means differentiation with respect to ρ . Since 0, ≠′DR& , 
we have 0** =+ B

B
A
A . Integrating with respect to ρ  and imposing 

boundary condition at large distances yields 1=AB , in agreement 
with the FRW background. In the next step, let us consider 
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 02 =+
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Now by inserting Eq.(18) and Eq.(20) in Eq.(23) we have 
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Integrating Eq.(24) with respect to r  gives 

 MrD α+=2
1

 or 2)( MrD α+=  (25) 

where α  is the familiar dimensionless positive constant in the range 
3100 << α . 

Finally from 0=Λ+ θθθθ gR , and by inserting Eq. (17) and Eq. 
(21) in it, we obtain the functional form of ),( trA  as follows: 
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Integration of Eq. (26) with respect to ρ  yields: 
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where c  is integration constant and the post-Newtonian limit gives 
Mc 2= . Our final result is 
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As it is evident from the functional form of BA,  and D  this metric 
has no apparent singularity and a straightforward calculation gives the 
Riemann tensor scalar invariant in the form 
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If we set 0=Λ , 1)( =tR  in (29), (14) will be obtaind, and 
furthermore with 2rD = , (3) is recovered. 

It is remarkable that when 0≠α , we may have a well-defined 
metric in the whole space that asymptotically approaches to the non-
static deSitter metric, i.e. the appropriate metric for a Λ -dominated 
universe. 

V. Geodesic Equations 
Our next task is to obtain and solve the geodesic equations of a freely 
falling material particle. We have 
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Using the nonvanishing components of affine connection, given by 
Eq (46) in [14] and by putting them in (30) we get 
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Since the field is isotropic, we may consider the orbit of our particle 
to be confined to the equatorial plane, that is 2

πθ = . Then Eq.(33) is 
satisfied and we may forget about θ  as a dynamical variable. 

By taking Rr=ρ  and 3
Λ=R

R& , Eqs. (31), (32), (34) become: 
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Integration of Eq. (37) with respect to s  gives 2−= ρφ Jds
d  where J  is 

the constant of integration. Using this relation we may rewrite Eq.(31) 
in the following form: 
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Substituting Eq. (32) in Eq.(38) yields: 
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Eq. (39) may be integrated and in term of integration constant 1c  
gets 

13
2

3
1 )( cAA ds

d
ds
dt

A =+− ΛΛ ρρρ . (40) 

Derivation of ρ with respect to s  gives ds
dr

ds
dt

ds
d R+= Λ ρρ

3 . By 

imposing the boundary condition at infinity for a free fall, 0=ds
dr  and 

1=ds
dt  we may fix 11 =c  in Eq.(40) and it becomes: 

12
3

1
3 ))(1( −ΛΛ −−= AA Ads

d
ds
dt ρρ ρ . (41) 
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The line element in terms of ρ  provide us another equation 

1)()(2))(( 222
3

22
3

1 =−−+− ΛΛ
ds
d

ds
d

ds
d

ds
dt

ds
dt

A AAA φρρ ρρρ  (42) 

Inserting (37), (41) in (42) gives 

)1)((1)( 2

22
3

12
ρ

ρ ρ J
Ads

d A +−−= Λ  (43) 

Using Eq.(27) and differentiating Eq.(43) with respect to s  
yields: 

 ρ
ρ

ρ
322

2
Λ+−= M

ds
d  (44) 

The rhs of Eq.(44) may be considered as gradient of a potential field 

 2
6 ρρ
Λ−−=Φ M . (45) 

Although the potential Φ  at 0=r , i.e. )(tMRαρ =  is very 
large, but it is finite. It seems likely that the potential field of massive 
stars show this behavior and models of collapses of massive objects 
help us to find a physical mechanism for fixing α . 

It will be a great success if observing extra high energy 
phenomena in AGN’s and cosmic rays. It will provide a lower limit 
for α . 

VI. Remarks 
1- The fact that a boundary condition for 0→r is just as necessary as 
the one for ∞→r was first realized by Brillouin [24]. 
2- A spacetime is said to be spherically symmetric if it admits the 
group SO(3) as a group of isometries, with the group orbits spacelike 
two surfaces. A coordinate transformation like Mrrr α+=′→  
which translates the center of symmetry and thereby breakdowns 
spherical symmetry does not belong to SO(3). 
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3- Our choice MD α=)0(2
1

 may be justified by this fact that the only 
fundamental lenght available in the theory of gravitation is M . 
4- α  should be fixed in a more developed theory of gravitation and 
comparison with more accurate data would be a test for it. 
5- In the light of these new considerations the documents in the 
litrature on the observation of black holes should be revisited. 
Statements as “Evidence has been progressively mounting and the 
case is now rather strong for saying that black holes have indeed been 
observed [25]”, should be taken with more caution. We think the 
observational data will find a satisfactory explantion and will help us 
to investigate the nature of α  and understanding this concept. 
5- It should be emphasized as it was pointed out by the referee, α  is a 
dimensionless fundamental constant of theory and nature like 
hyperfine structure constant or intractions coupling constants. It is not 
a particular property of a coordinate system rather it is a measurable 
quantity of the theory of gravitation. While it could be fixed by 
comparison with observational data at the same time may be 
considered as a test for the theory. 
6- As it has been mentioned new observations of ultra high energy 
astrophysical phenomena in the form of gamma rays are very crucial 
to determine a lower bound for α . 
7- The most serious objection that can be raised against the 
conceptual possibilities presented in this article is from the viewpoint 
of Hawking and Penrose singularity theorems [26]. A primary 
assumption for proving these theorems is the existence of closed 
trapped surfaces. Trapped surfaces (closed or not) are 2-dimensional 
imbeded spatial surfaces such that any portion of them has, at least 
initially, a decreasing area along any future evolution direction [27]. 
In the presented metric and the case of Eq. (5) it can be checked this 
does not necessarily occur. 
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