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I. Intoduction

According to Birkhoff’s theorem the Schwarzschild metric for a
vacuum sphericaly symmetric gravitational fiedld with L =0
(G=c=1),
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ds? = (1- ZTM)dtZ - a- ZTM)'ldrz - r2dw (1)
andwith L 1 O the Schwarzschild- deSitter metric,

M M
r r
uniquely exhibit the spacetime of a point mass. Eq.(1) has a
coordinate singularity at r =2M and an intrinsic singularity a r =0,
while Eq,(2) has two coordinate singularities at r » 2M and r » |2,
and an intrindc sngularity a r =0. The intringc singularity is
irremovable and this is indicated by diverging the Riemann tensor

scaar invariant [1]

ds® =(1- %rz)dtz- (1- %rz)'ldrz- r’dw (2

. 48M 2
RsR™ = 50 ©)

The general enthusiasm for validity of uniqueness of (1) and (2)
has been hesitated by providing an infinity of spacetimes that satisfy
the postulates for a point mass in severd frameworks. One is in the
form of genera solutions of the spherically symmetric vacuum
Eingein fidd equations that are a one-parameter family physicaly
differing in their limiting lower bound of the surrounding surface area
of the source [2]. Other one isin the framework of genera Birkhoff's
theorem that are a two-parameter family physicaly differing in their
limiting lower bound of the hypersurfaces {t=r =const.}[3].
Another one is known as alternative spacetime for point mass that are
one-parameter family physicaly differing in  their limiting
acceleration of aradially approaching test particle [4,5].

For L =0, among these works, a common generd class of
solutions may be expressed, in terms of adimensionless parameter a ,
within theinterval of r 3 O by the following line element:
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M Yat® - (1- Z—I\/Il\/l)'ldr2 - (r+aM)’dw  (4)

r +aM r+
where the sourceislocated a r =0.

We primarily discuss the apparent objection that (4) presents
subspaces of the Schwarzschild space in Sec.Il. Though it looks like a
linear transformation of the radial coordinate, but it is not so and a
does affect the curvature of spacetime. By deriving the equation of
precession of perihelia and bending of light in a gravitationa field
given by Eq.(4) and comparing the obtained results with observations,
we come to the concluson that a may take small as wdll as large
values up to10°. Even though a > 2 may solve both coordinate and
intringc singularities, still we need to consider L >0, because recent
observations of type la supernovae do indicate its existence [6]. On
the other hand it has been shown that in the presence of cosmological
congtant, using a coordinate system that asymptotically leads to a
static metric cannot serve as a comoving frame [7]. Then anon-static
solution of this system as an alternative for Eq. (2) has been proposed
that has the following form [8]:

O e L0 M s ol ek L0 ORI
2
R L0 M S ol ke A0
2

ds® = (1-

Q)

) tdr? - r 2dw

where r = re‘Et. Evidently this result is free of any singularity for
r >0,andissingular a r =0. We show in Sec.lll that it isindeed an
intringc singularity. By making use of the techniques presented in
[2,3,7], a generd class of non-static solutions will be obtained in
SeclV that has the functionad form of Eg. (5) except that
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r =(r+aM )e‘lzst . These solutions are smooth and finite everywhere

evenatr =0. Obvioudy they should be checked for the completeness
reguirements before we may call them non-singular.

The geodesic equations for a fredly falling materia particle in the
genera case are solved in Sec.V and results in a potentid field that is
very large but finite near the origin. Finally some concluding remarks
will come at the end.

I[I. CaseL=0,a1 0

Since Eq. (4) transforms to Eq. (1) by smply replacing r(=r +aM

with the range of r(3 aM , this may cause a confusion that (4) is a
subspace of (1). Usualy the proof of completenss for a pseudo-
Riemannian sapce is not an easy task. The flaw in this argument will
be shown by a Riemannian counter-example. Let us consider a two-

space, R*of all points with coordinates (r,q) such that its line
glement is ds® = dr? +r2dg *where q =0 isidentified with g =2p
and r =0 isincluded. This plane is complete and non-singular. Also
consider another two-space, R€ of al points with coordinates (r,q)
and the line dement, ds® =dr?+(r +a)>dq® where the range of
(r,q) isthesameas R*. If wetransform r(=r +a thisline dement

will transform to ds? = dr¢ + rédqg? with r(3 a that apparently it
means R¢ 1 R2. We will show that indeed thisis a false conclusion.

Consider asubspace of R? and R¢ by redtricting r < b. The surface
area of the open set R?*(r <b) is pb? while the surface area of the

open set RE(r <b) is p(b*+ 2ab) . This means that for finite b we
dwayshave R%(r <b) 1 R€(r <b).If wetakethelimit b® ¥ this
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leads to R*’(r <b)® R?, R€(r<b)® R€and R*1 R€. Since
R?is complete and nonextendable then there is no way except to
conclude that R? = R€. This counter-example shows that how the
conclusion that the spaces of (4) are subspaces of the Schwarzschild
space may be impulsory. Indeed (1) is a specia case of (4) for a =0.
However it is worth to notice that (1) and (4) both are in the same
Schwarzschild coordinates, which manifestly have different forms. In
the case of any transformation of (4) by r(=r +aM requiersthat (1)
be demonstrated in this new coordinate too, which means replacing r
by r¢- aM in (1). Thusin the new coordinate system also (1) and (4)
have different forms.

Next we show how the spaces of (4) for a > 2 are complete. A
manifold endowed with an affine or metric is said to be geodesicaly
complete if al geodesics emanating from any point can be extended
to infinite values of the affine parameters in both directions. For a
positive definite metric the geodesic completeness and metric
completeness are equivalent [9]. Focusing on a > 2 which are the
most likely values of it, in the line element (4), g,, does not change

sggn in the wholerange of r 3 0 sothat t aways and everywhere is
time coordinate. The hypersurfaces t = const. are spacdlike with a

positive definite line element ds ? =(1- -24)*dr? +(r +aM)*dwW
that is a distance function. Consequently every Cauchy sequence with
respect to this distance function converges to a point in the manifold,
and this yields metrically completeness.

Now by considering the bending of light we search an upper
bound for a. Since 1919 there has been much sudies on the
gravitationa deflection of light by the Sun and gravitationa lensing
(GL). Under the great vision of Zwicky [10], observation of a QSO
showed the first example of the GL phenomena[11], and thereafter it
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has become the most important tool for probing the universe. GL can
give vauable information on important questions, such as masses of
gdaxies and clusters of galaxies, the existence of massive exotic
objects, determination of cosmological parameters and can be also
used to test the aternative theories of gravitation [12]. The gravitiona
deflection of light has now been measured more accurately at radio
wavelenghts with using VLBI than a visble wavelenghts with
available optica techniques.

Invoking the spherically symmetric nature of the metric in the
line lement, ds® = Bdt*- Adr?- DdW, we consider the geodesics
on the equatoria plane (q =%), without lose of generdity. Following
Weinberg [13], we get the equation for the photon trgjectories as:

-1, =gl fasm- o ©
The Eingtein deflection angle is, Df =2ff (r,)- f |- p . Using
Eqg. (4) makes the integrd in (6) well-defined for ry >(3-a)M.

Since a merely takes positive vaues, different values of r, and a ,

yield different expansons for B and D, so we get different
expressions for deflection angle. Our investigation is on very small
and sufficiently large valuesof a . We gave the details of caculations

in [14] and here merely use the results. For a <1, the Einstein
deflection angle up to the second order is:

Df = 4x+4x2[12 - (1+a)]+.. (7)
where x = and the restriction imposed by the integral singularity is
,0<x <3, thus the closet approach is r, » (3- a)M.Putting
a =0 recovers the well-known Schwarzschild results, which has
been extensively examined(see [15] and references therein). However
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cases with small values of a are qualitatively smilar to the case of
Schwarzschild but are different quantitatively. Further calculations
show that (7) isdso vaid for a >1, but it may not contain the closest
approach. Therefore for the weak field limit r, >>M and with all

possible values of a , we rewrite the equation as:
Df =Df L+ (% - 1+a))|+.. (8)

where Df (, =4% is the first order deflection angle. The results of

VLBI observations of extragaactic radio sources show radio-wave
deflection by the Sun [16] as.

Df » Df ,(0.9998:+ 0.0008) . )

Since the order of magnitude of L for the sun is about 10 . (8)

and (9) give an upper bound a < 103 : For sufficiently large values of
a (actually a >3) we may obtain another expression for deflection
angle (up to the second order) in the following form

Df =8y+4y?[- 5@ - 1]+.. (10)

where y = ;=% and the range of validity is 0<y <a ™, thusthe

closest gpproach is r, » 0. Egs. (7) and (10) that contain the closest

approach, can be used for testing the generd theory of relativity in a
strong gravitationa field. Although, no test for the theory is known in
this region, but there is an open room for such investigations. Severa
possible observational candidates have been proposed to test the
Eingtein’s theory of relativity in the vicinity of a compact massive
object. One of the current topics is the study of point source lensing in
the strong gravitationa field regions when the deflection angle can be
very large [17]. Our calculations confirm that the deflection angle
may take any small as well as large values depending on a and it
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would provide a good tool for the gravitationa lensing studies.
Consequently bending of light phenomena in the regions of weak and

strong field both confinethe valuesof a upto 10°.

Next we would like to use observationa data of the precession of
perihdia measurements, in order to find a better bound for a .
Following Weinberg [18], for a test particle moving on a timelike

geodesicin the plane g = %, the angle swept is given by:

f(-1()=
¢, 6D (BY(n- BY-D.(B'()-BY 1 0% argry
07¢ D.D (B - B) DO D)

where D, =D(r,) and B, =B(r,). The orbit precesses in each
revolution by an angle Df =2 (r,)-f(r.)- 20. By using the
metric components of (4), we have gotten the expresson for the

precession per revolution (up to the second order), the details are
given in Appendix B of [14]. So we may write;

Df =Df  Ji+2t{2+- 2a(1+e))+.. 12)

where L and € ae the semilatus rectum and eccentericity
respectively, and  Df ., =84 s the well-known first order

fo
approximation. Fortunately developments of Long-Basdline Radio
Interferometry and analysis of Radar Ranging Data, provided accurate
measurements of precession that typicaly show [19]

Df » Df , (1.003+ 0.005). 13)

Thus matching the theory with observation, using typica valuesof X
and €, we get an upper bound of a <10°.

© 2002 C. Roy Keys Inc.



Apeiron, Vol. 9, No. 3, July 2002 9

We conclude that measurments of these two tests of the genera
theory of relativity in the weak field limit restrict the allowed vaues
of a to 10°. Observationa data of the GL phenomena would support
our presented metric components' role in a strong gravitational field
and would aso give a more accurate bound for a .

By calculating the Riemann tensor scalar invariant, we receive
useful information about the existence of singularities. For the line
element (4), itis
48M*? __48M 2

D®  (r+aM)®
Asit isevident, the presence of a makes the scalar finite in the whole
range of r, meaning that the solutions are free of any intrinsic
singularity. Meanwhile there may be a coordinate singularity at
r =(2- a)M according to the gotten upper bound.

We would like to mention two points concerning this work.
Usudly in the literature for discussing this problem coordinate r is
defined so that the area of the surfaces r =const., to be 4pr?[20].
This generaly is not the case, since before fixing the metric there is
no possihility of gpeaking the distance, so in the same way, thereis no

possibility of speaking the area. Here we take r =\/x2 +y?+27°,
where (X,y,2) areusua Cartesian space coordinates.

The other point worthy enough to be taken with caution
concerning r is that, while a firt r is taken as a space radia
coordinate with the range from zero to infinity and the particle is

supposed to be at r =0, at the end we come to the conclusion that r

is merely a space coordinate in the interva ((2- a)M ,¥). For the
rest of the interval (O,(2- a)M ) , It is standing as a time coordinate.
This contradiction or at least ambiguity raises the question that while

Rabcd Rade — ( 1 4)

© 2002 C. Roy Keys Inc.



Apeiron, Vol. 9, No. 3, July 2002 10
the location of the particle is not well-defined, how may we speak of
thevaueof D at this postion? This ambiguity particularly needs to
have a satisfactory explanation and the criterion of this defination
should be justified.

1. CaseL 1 0,a=0

Recently for vaccum spherically symmetric space, non-static solution
of Eingtein field equations with cosmological congtant in the form of
the EQ. (5) has been proposed [8]. This result shows a singularity at
the origin where the intringc nature of it may be checked by
caculating the Riemann tensor scalar invariant. This has been
caculated in Sec.lll of [14] and it is.

48M? 8 ,

Rabcd R.\de — +2 L

r°rP(t) 3 15)

where & = J% . This evidently exhibits the existence of an intrinsic

singularity at he origin. Removing this deficiency leads us to the
general form that comes next. As it is expected, (15) with R(t) =1
givesthe result of the static case [21].

Let us emphasize some features of Eq. (5) and Eq. (15). Firstly,
the existence of a nonzero cosmologica constant regardiess of its
actual vaue, is sufficient to prevent from occuring of coordinate type
sngularity a r » 2M . Recent observations of type la supernovae
indicating a universal expansion, put forward the possible existence of
a smal postive cosmologica constant [6]. These evidences persuade
us that in a cosmologica constant dominated universe, we would
have no trouble in describing the whole space. Secondly, since there
is no sngularity for r >0, then there is no ambiguity in defining
coordinate r, that mentioed at the end of Secll. It is a space
coordinate in the whole interva (0,¥) and we may speak of the
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vaue of D a r =0 without any problem. Thirdly a coordinate
transformation transforms (5) to (2) [8]. The metric of Eq. (2) has
some deficiencies that we would like to discuss briefly. Despite of an
intrinsic singularity at the origin similar to the Eq.(5) case, t has a
coordinate type singularity at r » \/LE ina L -dominated universe.

Though the presence of cosmological congstant removes the
coordinate type singularity from metric of Eq.(5), but in the
Schwarzschild-deSitter metric it increases the number of coordinate
sngularities to two, so the problem of exchanging the meaning of
gpace and time remain. On the other hand when M =0, the assumed
FRW background due to homogenity and isotropy of space could not
be revisted. More importantly, this metric shows a redshift-
magnitude relation that contradicts the observational data[7].

Therefore it is adequate to discard the Schwarzschild-deSitter
metric, in favor of our presented metric as a proper frame of reference
in the presence of L, because it is free of al of the mentioned
deficiencies. The metric asymptotically approaches to the nonstatic
deSitter metric that is appropriate for a L -dominated universe.
Furthermore as we will show next, the presented metric has the
suitability eventualy to remove the intringc singularity.

IV.CaseL 1 0,a1l0

Since it turns out that there is an intrinsic singularity with the choice
a =0, we would like to solve the problem by using genera form of
the line eement. In this section we find out the expressions for metric
coefficients asymptotically approching to the FRW universe and
getting an anadytic metric everywhere. To start we choose the line
element in terms of the coordinates (t,r,q,f ) to be:

ds? = B(r,t)dt? - RZ(t)|A(r,t)dr 2 + D(r)(dg ? +sin?qdf 2| (16)
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The nonvanishing components of the metric are

gtt =- B! grr :ARZ’ gqq = DRZ’ gff :DRZS'nzq (17)

The nonvanishing components of the connection are given in Eq.(45)
of [14], and the nonvanishing components of the Ricci tensor are :

—_B | B¢ Bt(A¢, Bey_ BOC[L A _ A (AL B
Rt_AR?[ %t (a T 280l T 2A 4A(A+B)

+38- B 2 (19)
R, =- 4% - &% (19)
R, =B+ BB+ HE+D

S EAlE G R- B) A A+ D)] (20)

R =-L+5(%- 59+ 85 p[e+ 2+ 4- 5] @)

Rf :S'nzq%q
where (§ and () denote derivatives with respect to r and t

respectively.
To solve the vacuum field equations R, +Lg,, =0, we first

begin with R, =0 and introduce a new variadble r = R(t)D}é(r).
From this and Eq.(19) we obtain:

1ROD (5 +85)=0 (22)
where (') means differentiation with respect to r . Since R,D¢ 0,
we have £ +E& =0. Integrating with respect to r and imposing

boundary condition at large distances yields AB =1, in agreement
with the FRW background. In the next step, let us consider
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T+ =0, (23)
Now by inserting Eq.(18) and Eq.(20) in Eq.(23) we have
é - -
) 2A%2R2 Aggz =0 or (D® )¢ (29)

Integrating Eq.(24) with respect to r gives
D?=r+aM or D =(r +aM)? (25)
where a isthe familiar dimensionless positive constant in the range
O<a <10°.
Findly from R, +Lg,, =0, and by inserting Eq. (17) and Eq.
(22) init, we obtain the functional form of A(r,t) asfollows:

-l+d-r & Lr®(A-1)- 5r°A =0

or
£[ra- Dl+selra-n)=o. (26)

Integration of Eq. (26) with respectto r yields:
ra-4+5r’(A-9=c 27)

where ¢ is integration constant and the post-Newtonian limit gives
c=2M . Our find result is

B=A'=4{,/d- 2L- Lr?)?+4r?+(1-20-Lr?). 28)

Asi it is evident from the functiona form of A B and D this metric
has no apparent singularity and a straightforward caculation gives the
Riemann tensor scalar invariant in the form

RieaR, ™ = 48" 48] 2 29)

DR (1)
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If we se¢ L =0,R(t)=1 in (29), (14) will be obtaind, and

furthermorewith D =r?, (3) is recovered.

It is remarkable that when a * O, we may have a well-defined
metric in the whole space that asymptotically approaches to the non-
satic deSitter metric, i.e. the appropriate metric for a L -dominated
universe.

V. Geodesic Equations

Our next task is to obtain and solve the geodesic equations of afreey
faling materia particle. We have

d2xm + @M X — 30)

ds? | ds ds
Using the nonvanishing components of affine connection, given by
Eq (46) in [14] and by putting them in (30) we get

L) RS (RS

31)
RRD«F%) +dn’q(4)°) =0
S+ B () + 2R+ ) S+ 2R (D)° -
2((4)* +dn’q(§)°) =0 (32)
94 +2R4 % + B4 A - §nq coq (g)° =0 (33)
+2R A G+ B G +200tq 25 =0 (34)

Since the field is isotropic, we may consider the orbit of our particle
to be confined to the equatorial plane, that is g = 4. Then Eq.(33) is
satisfied and we may forget about q asadynamicd variable.

By teking r = Rt and & =./% , Egs. (31), (32), (34) become:
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Apeiron, Vol. 9, No. 3, July 2002 15
dzt+\/7r(A+LrA2+Lr2AA)( )2 (A +2LrAZ+Lr 2AN L0

+ 5 (A2 +3r AN )2 + 1 2AE)2) =0 (35)
G BT (A by 2A ()24 £ (42 r(d)2 =0 (36)
ErEEE=0 37)

Integration of Eq. (37) with respect to s gives 5 = Jr "> where J is
the congtant of integration. Using this relation we may rewrite Eq.(31)
in the following form:

gl s s for AT ST @)

+ 5 (A+5 A)(E)2 =0 (38)
Substituting EQ. (32) in Eq.(38) yields:
sl sremal Bl Al (arrA)G)]=0
or
2|- srem e+ fEraL|=o (39)
Eqg. (39) may be integrated and in term of integration constant ¢,
gets
- 5rEA R[5 AL =6 (40)
Derivation of r with respect to s gives 5 :er 4 +R4L . By
|mposmg the boundary condition at infinity for afreefall, <=0 and
a =1 wemay fix ¢, =1 in Eq.(40) and it becomes:
= (1- /5T AL)(4- 51 2A) . (40)
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Thelineement intermsof r provide us another equation

Ge- 51 2’ + 251 Ao A - 1 2(5)° =1 (42)
Inserting (37), (41) in (42) gives
) =1 (k- 5riAA+L) 439
Usng Eq.(27) and differentiating EQ.(43) with respect to <
yields:
R AR L (44)

ds?
The rhs of Eq.(44) may be considered as gradient of a potentia field
F=-2-4rf, (45)

Although the potentidl F a r =0, i.e. r =aMR(t) is very
large, but it isfinite. It seems likely that the potentia field of massive
stars show this behavior and models of collapses of massive objects
help usto find a physical mechanism for fixing a .

It will be a great success if observing extra high energy
phenomena in AGN’s and cosmic rays. It will provide a lower limit
fora.

VI. Remarks

1- Thefact that a boundary condition for r ® 0Oisjust as hecessary as
theonefor r ® ¥ wasfirst redlized by Brillouin [24].

2- A spacetime is said to be spherically symmetric if it admits the
group SO(3) as a group of isometries, with the group orbits spacelike
two surfaces. A coordinate transformation like r ® r(=r+aM
which trandates the center of symmetry and thereby breskdowns
spherical symmetry does not belong to SO(3).
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3- Our choice D%(O) =aM may bejudtified by this fact that the only
fundamental lenght available in the theory of gravitationis M .

4- a should be fixed in a more developed theory of gravitation and
comparison with more accurate data would be atest for it.

5- In the light of these new consderations the documents in the
litrature on the observation of black holes should be revisited.
Statements as “Evidence has been progressively mounting and the
case is now rather strong for saying that black holes have indeed been
observed [25]”, should be taken with more caution. We think the
observationd data will find a satisfactory explantion and will help us
to investigate the nature of a and understanding this concept.

5- It should be emphasized as it was pointed out by thereferee, a isa
dimensionless fundamental constant of theory and nature like
hyperfine structure constant or intractions coupling constants. It is not
a particular property of a coordinate system rather it is a measurable
quantity of the theory of gravitation. While it could be fixed by
comparison with observationa data at the same time may be
consdered as atest for the theory.

6- Asit has been mentioned new observations of ultra high energy
astrophysical phenomena in the form of gammarays are very crucia
to determine alower bound for a .

7- The most serious objection that can be raised againg the
conceptua possibilities presented in this article is from the viewpoint
of Hawking and Penrose singularity theorems [26]. A primary
assumption for proving these theorems is the existence of closed
trapped surfaces. Trapped surfaces (closed or not) are 2-dimensiona
imbeded spatid surfaces such that any portion of them has, at least
initialy, a decreasing area along any future evolution direction [27].
In the presented metric and the case of Eq. (5) it can be checked this
does not necessarily occur.
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