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Fluid flows such as gases or liquids exhibit space-time 
fluctuations on all scales extending down to molecular scales. 
Such broadband continuum fluctuations characterise all 
dynamical systems in nature and are identified as selfsimilar 
fractals in the newly emerging multidisciplinary science of 
nonlinear dynamics and chaos. A cell dynamical system 
model has been developed by the author to quantify the fractal 
space-time fluctuations of atmospheric flows. The earth's 
atmosphere consists of a mixture of gases and obeys the gas 
laws as formulated in the kinetic theory of gases developed on 
probabilistic assumptions in 1859 by the physicist James 
Clerk Maxwell. An alternative theory using the concept of 
fractals and chaos is applied in this paper to derive the 
fundamental equation of the kinetic theory of ideal gases  and 
the Maxwell’s distribution of molecular speeds. 
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1.  Introduction 
The kinetic theory of ideal gases is a study of systems consisting of a 
great number of molecules, which are considered as bodies having a 
small size and mass (Kikoin and Kikoin, 1978). Classical statistical 
methods of investigation (Dennery, 1972; Yavorsky and Detlaf, 1975; 
Kikoin and Kikoin, 1978; Rosser, 1985; Guenault, 1988; Gupta, 
1990; Ruhla, 1992; Dorlas, 1999; Chandrasekhar, 2000) are 
employed to estimate average values of quantities characterizing 
aggregate molecular motion such as mean velocity, mean energy, etc., 
which determine the macro-scale characteristics of gases. The mean 
properties of ideal gases are calculated with the following 
assumptions. (1) The intra-molecular forces are completely absent 
instead of being small. (2) The dimensions of molecules are ignored, 
and considered as material points. (3) The above assumptions imply 
the molecules are completely free, move rectilinearly and uniformly 
as if no forces act on them. (4) The ceaseless chaotic movements of 
individual molecules obey Newton’s laws of motion. 

The observed nonlinear space-time fluctuations of microscopic 
objects such as atoms and molecules in an ideal gas are now (since 
1980s) identified as fractals generic to macro-scale real world 
dynamical systems in nature such as, fluid flows, stock market price 
fluctuations, heart beat patterns, etc. The apparently chaotic 
(nonlinear) fractal fluctuations however exhibit self-similarity, i.e., 
long-range space-time correlations. The identification of the physical 
laws governing fractal fluctuations is an intensive field of research in 
the newly (since 1980s) emerging science of Nonlinear Dynamics 
and Chaos (Gleick, 1987). Mary Selvam (1990) has developed a 
general systems theory for the simulation and prediction of the 
observed fractal space-time fluctuations in dynamical systems of all 
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size scales ranging from the microscopic scale of atoms and 
molecules to macro-scale turbulent fluid flows. The model concepts 
are applied to derive the following classical relationships for an ideal 
gas: (1) pressure exerted by an ideal gas (2) the Boltzmann 
distribution for molecular energies (3) the Maxwell distribution of 
molecular velocities. The derivation of the above relationships 
according to classical statistical methods is briefly described followed 
by a detailed discussion of the fractal concepts applied to derive the 
same equations.  

The important new contributions of the general systems theory 
applied to model ideal gases are as follows: (1) fractal fluctuations are 
signatures of quantum-like chaos on all scales ranging from 
subatomic dynamics of quantum systems to real world macro-scale 
fluid flows (2) quantum mechanical laws are applicable to dynamical 
systems of all size scales. 

The general systems theory concepts used in the derivation of the 
fundamental equations for the kinetic theory of gases have been 
applied earlier by the author for the simulation and prediction of both 
microscopic and macro-scale dynamical systems (Selvam, 1990; 
Selvam, 1993; Selvam, and Fadnavis, 1998; Selvam and Suvarna 
Fadnavis, 1999a; Selvam, and Suvarna Fadnavis, 1999b; Selvam, 
2001). 

In the following, Sections 2, 3 and 4 deal respectively with 
application of the model concepts to derive the following three 
classical relationships for an ideal gas: (1) pressure exerted by an 
ideal gas (2) the Boltzmann distribution for molecular energies (3) the 
Maxwell distribution of molecular velocit ies. The derivation of the 
above relationships according to classical statistical methods is briefly 
described followed by a detailed discussion of the fractal concepts 
applied to derive the same equations. In conclusion Section 5 
discusses the universal characteristics of fractal space-time 
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fluctuations, a signatures of quantum-like chaos exhibited by 
dynamical systems of all size scales ranging from sub-atomic 
dynamics of quantum systems to macro-scale turbulent fluid flows. 
The model shows that quantum mechanical laws are applicable to 
macro-scale real world dynamical systems and also provides 
physically consistent interpretations for wave-particle duality and 
non-local connection exhibited by microscopic-scale quantum 
systems which so far do not have a satisfactory explanation on the 
basis of current concepts in quantum mechanics. 

2. Pressure exerted by an ideal gas 

2.1 Classical statistical physics 
A brief summary of the method for calculating pressure based on 
classical statistical physics concepts is given in the following The 
molecular collisions exert a force on the walls of the vessel containing 
the gas and this force is measured by the parameter pressure, which is 
equal to the force per unit area perpendicular to the direction of the 
force. 

The pressure p is calculated as  

 2vnm
3
1

p =  

where n is the number of molecules per unit volume, m is the mass of 

one molecule and 
3
v2

 represents the mean square velocity in any one 

direction x, y or z. The pressure p may be written as 
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In Equation (1) Ek is equal to the mean kinetic energy 
2
vm 2

 of one 

molecule of a gas. Consequently the pressure of a gas equals two-
thirds of the mean kinetic energy of the molecules contained in a unit 
of its volume. This is one of the most important conclusions of the 
kinetic theory of an ideal gas. Equation (1) establishes a relationship 
between molecular quantities, i.e., quantities relating to a separate 
molecule, and the value of the pressure characterizing a gas as a 
whole – a macroscopic quantity directly measured in experiments. 
Equation (1) is sometimes called the fundamental equation of the 
kinetic theory of ideal gases. 

2.2 General systems theory  
One of the most convincing demonstrations that gases really are made 
up of fast moving molecules is Brownian motion, the observed 
constant jiggling around of tiny particles, such as fragments of ash in 
smoke. This motion was first noticed in 1827 by the British botanist, 
Robert Brown who initially assumed he was looking at living 
creatures, but then found the same motion in what he knew to be 
particles of inorganic material. Einstein showed how to use Brownian 
motion to estimate the size of atoms (Kikoin and Kikoin, 1978; 
Fowler, 1997; Lee and Kelvin). 

Chaotic fluctuations such as those executed by molecules in a gas 
are now identified as fractals generic to space-time fluctuations of 
dynamical systems in nature (Mandelbrot, 1977; 1983; Gaspard et al., 
1998). Identification of the physics of fractal fluctuations and 
quantification is an intensive field of research in the newly emerging 
(since 1980s) multidisciplinary science of Nonlinear Dynamics and 
Chaos (Gleick, 1987). It has been long supposed that the existence of 
chaotic behaviour in the microscopic motions of atoms and molecules 
in fluids or solids is responsible for their equilibrium and non-
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equilibrium properties. Recently this hypothesis of microscopic chaos 
has been verified experimentally by Gaspard et al. (1998) who found 
evidence for microscopic chaos in fluid systems, by the observation 
of Brownian motion of a colloidal particle suspended in water. 

Mary Selvam (1990) has developed a general systems theory 
(Capra, 1996) for the observed space-time fractal fluctuations in 
dynamical systems, which enable quantification of large-scale 
fluctuations in terms of inherent smaller scale fluctuation 
characteristics. The irregular fractal fluctuations occur on all space-
time scales and may be considered to result from the superimposition 
of a continuum of eddies or waves such as sine waves. An eddy is 
basically a circular motion characterized by the radius r and r.m.s 
(root mean square) circulation speed w∗ . Larger scale fluctuations 
result from the integration of enclosed smaller scale fluctuations. The 
relationship between the r.m.s circulation speeds W and w∗ of large 
and small eddy of respective radii R and r is given as (Townsend, 
1956; Mary Selvam, 1990) 

 
22 2
∗= w

R
r

W
π  (2) 

The above equation represents the growth of an eddy continuum 
with formation of a hierarchy of successively larger eddies from 
enclosed smaller scale eddies. The square of the eddy amplitude, i.e., 
W2 represents the eddy energy (kinetic). The large eddy energy is the 
integrated mean of the enclosed smaller scale eddy energies and 
therefore the eddy energy spectrum will follow statistical normal 
distribution according to the Central Limit Theorem  (Ruhla, 1992). 
Such a result that the additive amplitudes (W) of eddies, when squared 
(W2) represent the statistical normal distribution is exhibited by 
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subatomic dynamics of quantum systems such as the electron or 
photon (Maddox, 1998; 1993). 

By analogy with quantum mechanics the square of the eddy 
amplitude W2 represents the kinetic energy E given as (from Equation 
2)  
 νHE =   

In the above Equation the parameter ν (proportional to 1/R) is the 

frequency of the large eddy and H is a constant equal to 22
∗rw

π
 for 

the growth of large eddies sustained by constant energy input 
proportional to w∗

2 from fixed primary small scale eddy fluctuations. 
Energy content of eddies is therefore similar to quantum systems 
which can possess only discrete quanta or packets of energy content 
hν where h is a universal constant of nature (Planck's constant) and ν 
is the frequency in cycles per second of the electromagnetic radiation. 

The macro-scale eddy continuum represented by Equation (2) 
obeys quantum-like mechanical laws, a manifestation of quantum-like 
chaos. The apparent paradox of wave-particle duality exhibited by 
microscopic scale quantum systems such as an electron or photon is 
however physically consistent in the context of real world macro-
scale dynamical systems as explained in the following. The bi-
directional energy flow intrinsic to eddy circulations is associated 
with bimodal, i.e., formation and dissipation respectively of 
phenomenological form for manifestation of energy such as the 
formation of clouds in updrafts and dissipation of clouds in adjacent 
downdrafts resulting in the observed discrete cellular geometry to 
cloud structure. The commonplace occurrence of clouds in a row is a 
manifestation of wave-particle duality in macro-scale atmospheric 
flows. By analogy, the molecules (atoms) of an ideal gas may be 
visualised as the manifestation of matter during a half-cycle of an 
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eddy circulation (Mary Selvam, 1990; Selvam and Fadnavis, 1999a). 
The primary perturbation of r.m.s circulation speed w∗  and eddy 
radius r represents the wave-like structure of a molecule or atom in 
the ideal gas, the manifestation of matter of molecular mass m 
occurring during half a cycle of the complete circulation as explained 
above.  

The length scale ratio R/r in the above Equation (2) represents the 
fractional volume intermittency of occurrence of small-scale (fractal) 
structures (Mary Selvam, 1993) across unit area of large eddy surface 
as shown in the following. 

Considering two large eddy circulations of respective radii R1 and 
R2 (R2 being greater than R1) and corresponding r.m.s circulation 
speeds W1 and W2 which grow from the same small-scale primary 
perturbation of radius r and r.m.s circulation speed w∗, we have from 
Equation (2) 

 2
2

2
1

1

2

W
W

R
R =  (3) 

Introducing the factor 3
2

3
1

R
R

 representing eddy volumes on both 

sides of the above equation we have 
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Substituting for R1/ R2 on the right hand side from Equation (3) we 
have the following relation for fractional volume intermittency of 
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occurrence of small-scale fluctuations given by the fourth moment 
about the mean for the relative eddy transports as 

 3
1

3
2

4
1

4
2

1

2

R
R

W
W

R
R =  (6) 

The length scale ratio R2/R1 is equal to the transport of fractional 
volume of small-scale fluctuations in the environment of the large 
eddy (per unit volume of large eddy), basically by eddy mixing 
process. Considering large and small eddies of respective radii R and 
r and r.m.s circulation speeds W and r the corresponding mass 
transport M of gas across unit area for half cycle of large eddy 

circulation in terms of molecular mass is equal to nm
r
R

2
W

. The 

molecular mass m corresponds to the small-scale primary eddy 
perturbation. Multiplying both sides of Equation (2) by nm/2 and 
rewriting 

 
2

2
2

2
∗== mw

nMWnmW
r
RW

π
 (7) 

In the above equation the large eddy circulation speed W 
represents the acceleration since it is computed as an incremental 
value relative to its earlier stage of eddy growth. The pressure p 
exerted by the gas is given by the product MW equal to the rate of 
change of momentum due to molecular impact across unit area of the 
large eddy surface. Equation (7) may now be written as 

 
2

2 2
∗== mw

npMW
π

 (8) 

The r.m.s eddy circulation speed w∗ represents by concept the 
average molecular speed in any direction and the average kinetic 
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energy of one molecule designated by Ek is equal to 
2

mw2
∗ . The 

above Equation (8) may now be written as 

 knEp
π
2=  (9) 

Equation (9) is almost the same as Equation (1), the fundamental 

equation of the kinetic theory of ideal gases, namely, knE
3
2

p = . 

The important differences in the physical concepts underlying the 
derivation of the fundamental equation of the kinetic theory of ideal 
gases by classical statistical physical methods and the general systems 
theory for fractal space-time fluctuations are as follows: (1) The 
general systems theory visualises molecules or atoms as manifestation 
of matter during half a cycle of eddy circulation. Classical physics 
visualises molecules and atoms as point objects. (2) The r.m.s 
velocity w∗  represents the average velocity for computation of mean 
molecular kinetic energy in the general systems theory. The mean 
square velocity of the molecule or atom in any one direction (x, y or z) 

equal to
3
v2

 is used for computing the molecular kinetic energy in 

classical physics. 

3. Boltzmann distribution for molecular 
energies in an ideal gas 

3.1 Classical physics 
For any system large or small in thermal equilibrium at temperature T, 
the probability P of being in a particular state at energy E is 
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proportional to Tk

E

Be
−

 where kB is the Boltzmann’s constant . This is 
called the Boltzmann distribution and may be written as 

 Tk

E

BeP
−

∝  (10) 

3.2 General systems theory 
The physical concepts of the general systems theory enables to show 
that precise ordered mathematical patterns underlie the apparently 
chaotic space-time fluctuations of dynamical systems. The irregular 
fractal fluctuations of dynamical systems may be visualized to result 
from the superimposition of an ensemble of eddies, namely an eddy 
continuum. An eddy continuum by concept consists of a hierarchy of 
eddies, the larger scale eddies enclosing smaller scale eddies. The 
larger scale eddies grow by the spatial integration of enclosed smaller 
scale eddies and the growth trajectory traces an overall logarithmic 
spiral flow path with the quasiperiodic Penrose tiling pattern for the 
internal structure (Mary Selvam, 1990; Selvam and Fadnavis, 1998). 
The ratio of radii (R2/R1) or r.m.s. circulation speeds (W2/W1) 
corresponding to the successive growth steps of the large eddy 
generating the geometry of the quasiperiodic Penrose tiling pattern is 
equal to the golden mean τ (≅ 1.618). 
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The r.m.s circulation speed W of the large eddy follows a 
logarithmic relationship with respect to the length scale ratio z equal 
to R/r as given below 

 zlog
k
w

W ∗=  (12) 

In Equation (12) the variable k represents for each step of eddy 
growth, the fractional volume dilution of large eddy by turbulent eddy 
fluctuations carried on the large eddy envelope and is given as  

 
WR

rw
k ∗=  (13) 

Incidentally, Equation (12) represents the observed logarithmic 
spiral air flow structure in the planetary atmospheric boundary layer 
and the constant k called the von Karman’s constant  is determined 
from observations to be equal to about 0.38 (Mary Selvam, 1990; 
Selvam and Fadnavis, 1998). 

From Equations (11) and (13) it is seen that, for successive large 
eddy growth steps generating the quasiperiodic Penrose tiling pattern, 
the value of k is equal to 1/τ2 (≅ 0.38) where . τ is the golden mean (≅ 
1.618). Substituting for k in Equation (12) we have 

 

zlog
R
r

and

zlog
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zlog

rw
WR
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==
∗

∗

 (14) 

Therefore 
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The ratio r/R represents the fractional probability P of occurrence 
of small-scale fluctuations (r) in the large eddy (R) environment. 
Considering two large eddies of radii R1 and R2 (R2 greater than R1) 
and corresponding r.m.s circulation speeds W1 and W2 which grow 
from the same primary small-scale eddy of radius r and r.m.s 
circulation speed w∗ we have from Equation (2)  

 2
1

2
2

2

1

W
W

R
R =  (16) 

From Equations (15) and (16) 
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W

W
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1 ee
R
R −−

==  (17) 

The square of r.m.s circulation speed W2 represents eddy kinetic 
energy. Following classical physical concepts (Kikoin and Kikoin, 
1978) the primary (small-scale) eddy energy may be written in terms 
of the eddy environment temperature T and the Boltzmann’s constant 
kB as 

 TkW B
2

1 ∝  (18) 

Representing the larger scale eddy energy as E 

 EW 2
2 ∝  (19) 
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The length scale ratio R1/R2 therefore represents fractional 
probability P of occurrence of large eddy energy E in the environment 
of the primary small-scale eddy energy kBT (Equation 18). The 
expression for P is obtained from Equation (17) as 

 Tk

E

BeP
−

∝  (20) 

The above Equation (20) is the same as the Boltzmann’s equation 
(Equation 10). 

The derivation of Boltzmann’s equation from general systems 
theory concepts visualises the eddy energy distribution as follows: (1) 
The primary small-scale eddy represents the molecules whose eddy 
kinetic energy is equal to kBT as in classical physics. (2) The energy 
pumping from the primary small-scale eddy generates growth of 
progressive larger eddies (Mary Selvam, 1990). The r.m.s circulation 
speeds W of larger eddies are smaller than that of the primary small-
scale eddy (Equation 2). (3) The space-time fractal fluctuations of 
molecules (atoms) in an ideal gas may be visualised to result from an 
eddy continuum with the eddy energy E per unit volume relative to 
primary molecular kinetic energy (kBT) decreasing progressively with 
increase in eddy size. 

4. Maxwell-Boltzmann distribution of 
molecular speeds 

4.1 Classical physics 
The distribution of molecular speeds was derived by Maxwell 

based on the probabilistic assumptions, namely (i) uniform 
distribution in space, (ii) mutual independence of the three velocity 
components and (iii) isotropy as regards the directions of the 
velocities (Ruhla, 1992). These assumptions were also used in 
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deriving the fundamental gas law at Equation (1) for a perfect gas. 
Maxwell's distribution of molecular speeds is given by the following 
equation. 

 2
2

2
exp

2
4)(

2
3

ν
ν

π
πνρ 














−





=

Tk
m

Tk
m

BB

 (21) 

where ρ(v) is the probability density assigned to the speed v, T is the 
absolute temperature of the perfect gas, m is the mass of a molecule 
and kB is the Boltzmann's constant . For a given gas at a fixed 
temperature T, the probability density ρ(v) may be written as 

 22)exp()( νννρ −∝  (22) 

A graph of Maxwell's distribution of molecular speeds is shown in 
Figure 1. 

4.2 General systems theory 
The steady state upward transport of small-scale fluctuation of speed 
w∗ and size scale r in the environment of larger scale fluctuation of 
speed W and size R is given as (Mary Selvam, 1990; Selvam and 
Fadnavis, 1998) 

 z
z

f log
2

π
=  (23) 

In Equation (23) z is the length scale ratio equal to R/r. 
Considering three-dimensional fluctuations the fractional contribution 
(probability density) of smaller length scale r fluctuations in the 
environment of the larger length scale R fluctuation is given by f 3. 
The eddy circulation speeds follow the logarithmic law with respect 
to the length scale ratio z (Equation 12), namely  
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 zlog
k
w

W ∗=   

The eddy circulation speeds are therefore proportional to log z, that 
is  
 zlogW ∝  (24) 

A graph of f 3 versus log z will give the probability density 
distribution for molecular speeds. The cell dynamical system model 
predicted molecular speed distribution in a perfect gas is shown as 
crosses in Figure 1. The distributions (Maxwell's and model 
predicted) are normalized with respect to the maximum speed. There 
is close agreement between the Maxwell's and model-predicted 
distributions for molecular speeds in a perfect gas. 
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5. Conclusions 
Dynamical systems of all size scales ranging from microscopic scale 
quantum systems to macro-scale turbulent fluid flows exhibit self-
similar fractal space-time fluctuations. Self-similarity implies long-
range space-time correlations or non-local connections such as that 
observed in quantum systems. A general systems theory developed by 
the author enables to show quantitatively that the observed fractal 
space-time fluctuations generic to dynamical systems in nature are 
signatures of quantum-like chaos. The model concepts for Cantorian 
fractal space-time fluctuations is applied to derive the fundamental 

gas law, namely knE
3
2

p =  and also the Maxwell’s molecular 

speed distribution for a perfect gas. The model predictions are in 
agreement with Maxwell's kinetic theory of gases developed in 1859 
on probabilistic assumptions. 
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