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The spacing intervals of adjacent Riemann zeta zeros (non-
trivial) exhibit fractal (irregular) fluctuations generic to 
dynamical systems in nature such as fluid flows, heart beat 
patterns, stock market price index, etc., and are associated 
with unpredictability or chaos. The power spectra of such 
fractal space-time fluctuations exhibit inverse power-law form 
and signify long-range correlations, identified as self-
organized criticality. A cell dynamical system model 
developed by the author for turbulent fluid flows provides a 
unique quantification for the observed power spectra in terms 
of the statistical normal distribution, such that the variance 
represents the statistical probability densities. Such a result 
that the additive amplitudes of eddies when squared, represent 
the statistical probabilities is an observed feature of the 
subatomic dynamics of quantum systems such as an electron 
or photon. Self-organized criticality is therefore a signature of 
quantum-like chaos in dynamical systems. The model 
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concepts are applicable to all real world (observed) and 
computed (mathematical model) dynamical systems. 

Continuous periodogram analyses of the fractal fluctuations of 
Riemann zeta zero spacing intervals show that the power 
spectra follow the unique and universal inverse power-law 
form of the statistical normal distribution. The Riemann zeta 
zeros therefore exhibit quantum-like chaos, the spacing 
intervals of the zeros representing the energy (variance) level 
spacings of quantum-like chaos inherent to dynamical systems 
in nature. The cell dynamical system model is a general 
systems theory applicable to dynamical systems of all size 
scales. 

Keywords: fractal structure of spacing intervals of Riemann 
zeta zeros, quantum-like chaos in Riemann zeta zeros, self-
organized criticality in Riemann zeta zeros 

1. Introduction 
he Riemann zeta function )s(ζ  is a function of the complex 
variable s (=x+iy) and is defined as a sum over all integers 
(Keating, 1990) 

 1xif.....514131211)s( ssss >+++++=ζ  (1) 
The analytic properties of the zeta function are also related to the 

distribution of prime numbers. It is known that there are an infinite 
number of prime numbers. Though the prime numbers appear to be 
distributed at random among the integers, the distribution follows the 
approximate law that the number of primes π(x) up to the integer x is 
equal to x/logx  where log is the natural logarithm. The actual 
distribution of primes fluctuates on either side of the estimated value 
and approach closely the estimated value for large values of x. 

T 
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In 1859 Bernhard Riemann gave an exact formula for the counting 
function π(x), in which fluctuations about the average are related to 
the value of s for which 0)s( =ζ , s being a complex number. Based 
on a few numerical computations Riemann conjectured that an 
important set of the zeros, namely the non-trivial zeros, all have real 
part equal to x = 1/2. This is the Riemann hypothesis (Keating, 1990; 
Devlin, 1997). Numerical computations done so far agree with 
Riemann’s hypothesis. However, a theoretical proof will establish the 
validity of numerous results in number theory, which assume that the 
Riemann hypothesis is true. 

A proof of Riemann hypothesis will also help physicists to 
compute the chaotic orbits of complex atomic systems such as a 
hydrogen atom in a magnetic field, to the oscillations of large nuclei 
(Richards, 1988; Gutzwiller, 1990; Berry, 1992; Cipra, 1996; 
Klarreich, 2000). It is now believed that the spectrum of Riemann 
zeta zeros represent the energy spectrum of complex quantum 
systems which exhibit classical chaos. 

A cell dynamical system model developed by the author shows 
that quantum-like chaos is inherent to fractal space-time fluctuations 
exhibited by dynamical systems in nature ranging from sub-atomic 
and molecular scale quantum systems to macro-scale turbulent fluid 
flows. The model provides a unique quantification for the fractal 
fluctuations in terms of the statistical normal distribution. The 
Riemann zero spacing intervals exhibit fractal fluctuations and the 
power spectrum exhibits model predicted universal inverse power-
law form of the statistical normal distribution. The distribution of 
Riemann zeros therefore exhibit quantum-like chaos. 
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2. Cell Dynamical System Model 
As mentioned earlier (Section 1: Introduction) power spectral 
analyses of fractal space-time fluctuations exhibit inverse power-law 
form, i.e., a self-similar eddy continuum. The cell dynamical system 
model (Mary Selvam, 1990; Selvam and Fadnavis, 1998, and all 
references contained therein) is a general systems theory (Capra, 
1996) applicable to dynamical systems of all size scales. The model 
shows that such an eddy continuum can be visualised as a hierarchy 
of successively larger scale eddies enclosing smaller scale eddies. An 
eddy or wave is characterised by circulation speed and radius. Large 
eddies of root mean square (r.m.s) circulation speed W and radius R 
form as envelopes enclosing small eddies of r.m.s circulation speed 
w* and radius r such that 

 22 w
R
r2

W ∗=
ππ

 (2) 

Large eddies are visualised to grow at unit length step increments 
at unit intervals of time, the units for length and time scale increments 
being respectively equal to the enclosed small eddy perturbation 
length scale r and the corresponding eddy circulation time scale. 

Since the large eddy is but the average of the enclosed smaller 
eddies, the eddy energy spectrum follows the statistical normal 
distribution according to the Central Limit Theorem  (Ruhla, 1992). 
Therefore, the variance represents the probability densities. Such a 
result that the additive amplitudes of the eddies when squared, 
represent the probabilities is an observed feature of the subatomic 
dynamics of quantum systems such as the electron or photon 
(Maddox 1988a, 1993; Rae, 1988). The fractal space-time 
fluctuations exhibited by dynamical systems are signatures of 
quantum-like mechanics. The cell dynamical system model provides 
a unique quantification for the apparently chaotic or unpredictable 
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nature of such fractal fluctuations (Selvam and Fadnavis, 1998). The 
model predictions for quantum-like chaos of dynamical systems are 
as follows. (a) The observed fractal fluctuations of dynamical systems 
are generated by an overall logarithmic spiral trajectory with the 
quasiperiodic Penrose tiling pattern for the internal structure. (b) 
Conventional continuous periodogram power spectral analyses of 
such spiral trajectories will reveal a continuum of periodicities with 
progressive increase in phase. (c) The broadband power spectrum will 
have embedded dominant wavebands, the bandwidth increasing with 
period length. The peak periods (or length scales) En in the dominant 
wavebands are given by the relation 

 n
sn )2(TE ττ+=  (3) 

where τ is the golden mean equal to (1+√5)/2 [ ≅ 1.618] and Ts , the 
primary perturbation length scale. Considering the most 
representative example of turbulent fluid flows, namely, atmospheric 
flows, Ghil (1994) reports that the most striking feature in climate 
variability on all time scales is the presence of sharp peaks 
superimposed on a continuous background. The model predicted 
periodicities (or length scales) in terms of the primary perturbation 
length scale units are 2.2, 3.6, 5.8, 9.5, 15.3, 24.8, 40.1,and 64.9 
respectively for values of n ranging from –1 to 6. Periodicities close 
to model predicted have been reported in weather and climate 
variability (Burroughs 1992; Kane 1996). (d) The ratio r/R also 
represents the increment dθ in phase angle θ (Equation 2). Therefore 
the phase angle θ represents the variance. Hence, when the 
logarithmic spiral is resolved as an eddy continuum in conventional 
spectral analysis, the increment in wavelength is concomitant with 
increase in phase (Selvam and Fadnavis, 1998). Such a result that 
increments in wavelength and phase angle are related is observed in 
quantum systems and has been named ‘Berry’s phase’ (Berry 1988; 
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Maddox 1988b; Simon et al., 1988; Anandan, 1992). The relationship 
of angular turning of the spiral to intensity of fluctuations is seen in 
the tight coiling of the hurricane spiral cloud systems. The overall 
logarithmic spiral flow structure is given by the relation 

 zlog
k
w

W ∗=  (4) 

where the constant k is the steady state fractional volume dilution of 
large eddy by inherent turbulent eddy fluctuations. The constant k is 
equal to 1/τ2(≅0.382) and is identified as the universal constant for 
deterministic chaos in fluid flows (Selvam and Fadnavis, 1998). The 
steady state emergence of fractal structures is therefore equal to 

 62.2k1 ≅  (5) 

The model predicted logarithmic wind profile relationship such as 
Equation 4 is a long-established (observational) feature of 
atmospheric flows in the boundary layer, the constant k, called the 
Von Karman’s constant has the value equal to 0.38 as determined 
from observations (Hogstrom, 1985). 

In Equation 4, W represents the standard deviation of eddy 
fluctuations, since W is computed as the instantaneous r.m.s. (root 
mean square) eddy perturbation amplitude with reference to the 
earlier step of eddy growth. For two successive stages of eddy growth 
starting from primary perturbation w* the ratio of the standard 
deviations Wn+1 and Wn is given from Equation 4 as (n+1)/n. 
Denoting by σ, the standard deviation of eddy fluctuations at the 
reference level (n=1), the standard deviations of eddy fluctuations for 
successive stages of eddy growth are given as integer multiple of σ, 
i.e., σ, 2σ, 3σ, etc. and correspond respectively to 
 .etc,3,2,1,0tdeviationdardtansnormalizedlstatistica =  (6) 
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The conventional power spectrum plotted as the variance versus 
the frequency in log-log scale will now represent the eddy probability 
density on logarithmic scale versus the standard deviation of the eddy 
fluctuations on linear scale since the logarithm of the eddy 
wavelength represents the standard deviation, i.e., the r.m.s. value of 
eddy fluctuations (Equation 4). The r.m.s. value of eddy fluctuations 
can be represented in terms of statistical normal distribution as 
follows. A normalized standard deviation t=0 corresponds to 
cumulative percentage probability density equal to 50 for the mean 
value of the distribution. Since the logarithm of the wavelength 
represents the r.m.s. value of eddy fluctuations the normalized 
standard deviation t is defined for the eddy energy as 

 1)TlogLlog(t 50 −=  (7) 

where L is the period in years and T50 is the period up to which the 
cumulative percentage contribution to total variance is equal to 50 and 
t = 0. The variable LogT50 also represents the mean value for the 
r.m.s. eddy fluctuations and is consistent with the concept of the mean 
level represented by r.m.s. eddy fluctuations. Spectra of time series of 
fluctuations of dynamical systems, for example, meteorological 
parameters, when plotted as cumulative percentage contribution to 
total variance versus t follow the model predicted universal spectrum 
(Selvam and Fadnavis, 1998, and all references therein). The 
literature shows many examples of pressure, wind and temperature 
whose shapes display a remarkable degree of universality (Canavero 
and Einaudi, 1987). 

The periodicities (or length scales) T50 and T95 up to which the 
cumulative percentage contribution to total variances are respectively 
equal to 50 and 95 are computed from model concepts as follows. 

The power spectrum, when plotted as normalised standard 
deviation t versus cumulative percentage contribution to total variance 
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represents the statistical normal distribution (Equation 7), i.e., the 
variance represents the probability density. The normalised standard 
deviation values t corresponding to cumulative percentage probability 
densities P equal to 50 and 95 respectively are equal to 0 and 2 from 
statistical normal distribution characteristics. Since t represents the 
eddy growth step n (Equation 6) the dominant periodicities (or length 
scales) T50 and T95 up to which the cumulative percentage 
contribution to total variance are respectively equal to 50 and 95 are 
obtained from Equation 3 for corresponding values of n equal to 0 
and 2. In the present study of fractal fluctuations of spacing intervals 
of adjacent Riemann zeta zeros, the primary perturbation length scale 
Ts is equal to unit spacing interval and T50 and T95 are obtained as 

 intervals  spacing6unit3(2T 0
50 .≅ττ)+=  (8) 

 intervals  spacingunit592(T 2
95 .≅ττ)+=  (9) 

3. Data and Analysis 
Details of the Riemann zeta zeros (non-trivial) used in the present 
study are given in the following: 
(a) The first 100000 zeros were obtained from: 
http://www.research.att.com/~amo/zeta_tables/zeros1  
(b) Riemann zeta zeros numbered 1012 + 1 through 1012 + 104 were 
obtained from: 
http://www.research.att.com/~amo/zeta_tables/zeros3  
[Values of gamma - 267653395647, where gamma runs over the 
heights of the zeros of the Riemann zeta numbered 1012 + 1 through 
1012 + 104. Thus 
zero # 1012 + 1 is actually 
1/2 + i * 267,653,395,648.8475231278... 
Values are guaranteed to be accurate only to within 10 -8]. 
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(c) Riemann zeta zeros numbered 1021 + 1 through 1021 + 104 were 
obtained from: 
http://www.research.att.com/~amo/zeta_tables/zeros4 
[Values of gamma - 144176897509546973000, where gamma runs 
over the heights of the zeros of the Riemann zeta numbered 1021 + 1 
through 1021 + 104. 
Thus zero # 1021 + 1 is actually 
1/2 + i * 144,176,897,509,546,973,538.49806962... 
Values are not guaranteed, and are probably accurate to within 10 -6]. 
(d) Riemann zeta zeros numbered 1022 + 1 through 1022 + 104 were 
obtained from: 
http://www.research.att.com/~amo/zeta_tables/zeros5  
[Values of gamma - 1370919909931995300000, where gamma runs 
over the heights of the zeros of the Riemann zeta numbered 1022 + 1 
through 1022 + 104. 
Thus zero # 1022 + 1 is actually 
1/2 + i * 1,370,919,909,931,995,308,226.68016095... 
Values are not guaranteed, and are probably accurate to within 10 -6]. 

3.1 Fractal structure of spacing intervals of adjacent 
Riemann zeta zeros 

The spacing interval between adjacent zeta zeros for a representative 
sample of 100 successive zeta zeros starting from the 80,000th value 
are plotted in Figure 1. The irregular zig-zag pattern of fluctuations of 
adjacent spacing intervals is identified as characteristic of fractal 
fluctuations exhibited by dynamical systems, such as, rainfall, river 
flows, stock market price index, etc. (Selvam and Fadnavis, 1998). 
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3.2 Continuous periodogram analyses of fractal 
structure of spacing intervals of adjacent 
Riemann zeta zeros 

The broadband power spectrum of space-time fluctuations of 
dynamical systems can be computed accurately by an elementary, but 
very powerful method of analysis developed by Jenkinson (1977) 
which provides a quasi-continuous form of the classical periodogram 
allowing systematic allocation of the total variance and degrees of 
freedom of the data series to logarithmically spaced elements of the 
frequency range (0.5, 0). The periodogram is constructed for a fixed 
set of 10000(m) periodicities Lm which increase geometrically as 
Lm=2 exp(Cm) where C=.001 and m=0, 1, 2,....m . The data series Yt 
for the N data points was used. The periodogram estimates the set of 
Amcos(2πνmS-φm) where Am, νm and φm denote respectively the 
amplitude, frequency and phase angle for the mth periodicity and S is 
the time or space interval. In the present study the adjacent spacing 
intervals for different ranges of zeta zeros were used. The cumulative 
percentage contribution to total variance was computed starting from 
the high frequency side of the spectrum. The period T50 at which 50% 
contribution to total variance occurs is taken as reference and the 
normalized standard deviation tm values are computed as (Equation 
7). 

 1)TlogLlog(t 50mm −=   

The cumulative percentage contribution to total variance, the 
cumulative percentage normalized phase (normalized with respect to 
the total phase rotation) and the corresponding t values were 
computed. The power spectra were plotted as cumulative percentage 
contribution to total variance versus the normalized standard 
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deviation t as given above. The period L is in units of number of class 
intervals, unit class interval being equal to adjacent spacing interval of 
zeta zeros in the present study. Periodicities up to T50 contribute up to 
50% of total variance. The phase spectra were plotted as cumulative 
percentage normalized (normalized to total rotation) phase . 

Five groups of data sets (zeros5, zeros4, zeros3, zeros1a and 
zeros1b) were used. Details of these five data sets are: (i) The first 
three data groups, namely, zeros5, zeros4, zeros3 consist of the 
following thirteen data sets of the same length located at same 
locations in the three data files zeros5, zeros4, and zeros3 respectively 
(1) 1 to100 (2) 1 to 500 (3) 1 to 1000 (4) 1 to 1500 (5) 1 to 2000 (6) 1 
to 3000 (7) 1 to 4000 (8) 1 to 5000 (9) 5000 to 5099 (10) 5000 to 
5499 (11) 5000 to 5999 (12) 5000 to 6499 (13) 1 to 9999. (ii) The 
data group zeros1a consists of the first twelve data sets shown above 
for the first three data groups at corresponding locations in data file 
zeros1. (iii) The data group zeros1b consists of the following eight 
data sets located in data file zeros1 (1) 5000 to 14999 (2) 5000 to 
9999 (3) 10000 to 19999 (4) 80000 to 89999 (5) 80000 to 80099 (6) 
98000 to 98049 (7) 98009 to 98049 (8) file zeros3, 5000 to 5049. 

The results of power spectral analyses for all the data sets are 
shown in Figures 2 to 9. The variance and phase spectra along with 
statistical normal distributions are shown in Figures 2 and 3 for two 
representative data sets of Riemann zeta zero spacing intervals. Also, 
for these two representative data sets, the cumulative percentage 
contribution to total variance and the cumulative (%) normalized 
phase (normalized with respect to. the total rotation) for each 
dominant waveband is computed for significant wavebands and 
shown in Figures 4 and 5 to illustrate Berry’s phase, namely the 
progressive increase in phase with increase in period and also the 
close association between phase and variance (see Section 2)  
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Figure 6 shows the following: (a) details of data files (b) data 
series location in the data file (c) number of data values in each series 
(d) the value of T50 which is the length scale up to which the 
cumulative percentage contribution to total variance is equal to 50 (in 
unit spacing intervals of Riemann zeta zeros). (e) whether the 
variance and phase spectra follow statistical normal distribution 
characteristics. The length of the data sets ranged from 50 to 10,000 
values. 

Figures 7 to 9 give the following additional results for the same 
data sets grouped according to frequency of occurrence of dominant 
wavebands with peak periodicities in class intervals 2 - 3, 3 - 4, 4 - 6, 
6 - 12, 12 - 20, 20 - 30, 30 - 50, 50 – 80. These wavebands include the 
model predicted (Equation 3) dominant peak periodicities (or length 
scales) 2.2, 3.6, 5.8, 9.5, 15.3, 24.8, 40.1, and 64.9 (in unit spacing 
intervals of Riemann zeta zeros) for values of n ranging from -1 to 6. 
Figures 7a and 7b show the percentage number of dominant 
wavebands. Figures 8a and 8b show the percentage number of 
statistically significant (less than or equal to 5% level) dominant 
wavebands. Figures 9a and 9b show the percentage number of 
dominant wavebands, which exhibit Berry’s phase, namely, the 
variance spectrum follows closely the phase spectrum (see Section 2). 

3.3 Results of power spectral analyses 
Results of power spectral analyses of Riemann zeta zero spacing 

intervals agree with the following model predictions: (a) almost all 
variance spectra follow statistical normal distribution (Figure 6) (b) 
The magnitude of T50 values (Figure 6) are very close to model 
predicted value of 3.6 unit spacing intervals (see equation 8). 

The ‘goodness of fit’ (statistical chi-square test) between the 
variance spectrum and statistical normal distribution is significant at 
less than or equal to 5% level for the two representative spectra 
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shown in Figures 2 and 3 and also for almost all the data sets shown 
by the symbol S in Figure 6. The phase spectrum is close to the 
statistical normal distribution, but the ‘goodness of fit ’ is not 
statistically significant in a majority of cases as shown by the symbol 
N in Figure 6. However, the ‘goodness of fit  ‘ between variance and 
phase spectra illustrating Berry’s phase is statistically significant (chi-
square test) for individual dominant wavebands, particularly for 
longer periodicities (Figures 4 and 5 and Figures 9a and 9b). The 
frequency of occurrence of shorter dominant periodicities up to 5 
spacing interval units is a maximum as compared to longer 
periodicities (Figures 7a and 7b). Also a majority of shorter dominant 
periodicities up to 5 spacing interval units are found to be statistically 
significant (Figures 8a and 8b). The predominance of shorter 
dominant periodicities is consistent with model predicted and 
observed (Figure 6) value of about 3.6 for the value of T50 which is 
the period up to which the cumulative percentage contribution to total 
variance is equal to 50. 



 Apeiron, Vol. 8, No. 4, October 2001 24 

© 2001 C. Roy Keys Inc. 

Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7a 
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Figure 7b 
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Figure 8a 
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Figure 8b 
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Figure 9a 
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Figure 9b 
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4. Discussions and Conclusions 
The spacing intervals of adjacent Riemann zeta zeros (non-trivial) 
exhibit fractal fluctuations ubiquitous to dynamical systems in nature 
(Figure 1). Fractal fluctuations are irregular or chaotic and a search 
for the physics of their origin has emerged (since 1980s) as a subject 
of intensive study in the new multidisciplinary science of Nonlinear 
Dynamics and Chaos (Gleick, 1987; Gutzwiller, 1990; Jurgen et al., 
1990; Bassingthwaighte and Beyer, 1991; Deering and West 1992; 
Stewart, 1998). Power spectra of fractal fluctuations exhibit inverse 
power-law form indicating long-range space-time correlations 
identified as self-organized criticality (Bak et al., 1987; 1988; Bak 
and Chen, 1989; 1991; Goldberger et al., 1990; Schroeder, 1991; 
Stanley, 1995; Ghashghaie et al., 1996; Buchanan, 1997; Newman, 
2000). Also, inverse power-law form for power spectra indicate that 
an eddy continuum underlies the apparently irregular (or chaotic) 
fractal fluctuations, i.e., the superimposition of an ensemble of eddies 
(e.g., such as sine waves) generates the observed fractal fluctuations. 
A cell dynamical system model developed by the author provides 
unique quantification for the power spectra of fractal fluctuations in 
terms of the statistical normal distribution such that the variance 
represents the probabilities. In summary, fractal fluctuations imply 
quantum-like chaos in dynamical systems for the following reasons: 
(a) The superimposition of an ensemble of eddies or waves results in 
the observed fluctuation pattern. (b) The additive amplitudes of the 
eddies when squared gives the variance which represents the 
probability densities. Fractal fluctuations therefore exhibit quantum-
like chaos in macro-scale dynamical systems. 

Continuous periodogram analyses of Riemann zeta zero spacing 
intervals show that the power spectra follow the universal and unique 
inverse power-law form of the statistical normal distribution (Figures 
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2, 3, 6). Riemann zeta zero spacing intervals therefore exhibit 
quantum-like chaos and is consistent with similar studies by the 
author, which have shown that prime number distribution also 
exhibits quantum-like chaos (Selvam and Fadnavis, 2001; Selvam, 
2001). Riemann had shown that the zeta function represents prime 
number distribution. Observational and computed values of energy 
level distributions of excited quantum systems appear to follow 
closely the Riemann zeta zeros and also prime number distribution 
(Cipra, 1996). The results are consistent with cell dynamical system 
model prediction that fractal fluctuations are signatures of quantum-
like chaos in dynamical systems of all sizes ranging from the sub-
atomic quantum systems to macro-scale fluid flows. The Heisenberg 
uncertainty principle for quantum systems implies unpredictable 
fluctuations, i.e., fractal space-time fluctuations (Hey and Walters, 
1989), which is a signature of quantum-like chaos. 

Results of all the data sets (ranging in length from 50 to 10000 
values) show that starting from the high frequency side, periodicities 
up to model predicted value of about 3.6 unit spacing intervals 
contribute up to 50% to the total variance (Figure 6). A possible 
physical explanation for the observed close relationship between the 
Riemann zeta zeros and energy levels of quantum systems is given in 
the following: 

The individual fractions 1/2, 1/3, 1/4, 1/5, etc., in the expression 
for the Riemann zeta function (Equation 1) may represent (a) the 
length scale ratio (r/R) of the enclosed primary eddy to the large eddy, 
which represents the probabilities of occurrence of the primary 
perturbation in successive growth stages in unit length steps of the 
large eddy. As shown in Equation 2, this length scale ratio (r/R) 
represents the variance or eddy energy. Graphically, in the x - y plane 
(complex plane), the above fractions raised to the power of the 
complex number s (=x+iy) represent fractional probabilities 
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corresponding to the phase angle represented by the location co-
ordinates x and y (Argand diagram). 

Therefore the Riemann zeta function represents the energy 
spectrum of quantum systems at any location (x, y). The Riemann zeta 
zeros on the y-axis at x=1/2, therefore represent the eddy energy 
minima. An angular rotation by 90 degrees of these Riemann zeta 
zero locations will give the energy (maximum) spectrum of the 
quantum system. An eddy or wave circulation is bi-directional by 
concept and is associated with bimodal, namely formation and 
dissipation respectively of phenomenological form for manifestation 
of energy (Mary Selvam, 1990). Since manifestation of energy in 
phenomenological form occurs only in one-half cycle, the 
corresponding energy levels occur at x=1/2. 
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