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The Dynamic Universe model(1) describes space as the surface 
of a four-dimensional sphere expanding in the direction of the 
4-radius. Instead of being defined as a physical constant the 
velocity of light becomes determined by the velocity of space 
in the fourth dimension. The changing velocity of light and the 
dynamics of space allow time to be defined as a universal 
scalar. Local mass centres modify space in the fourth 
dimension, giving a space geometry with features that are 
closely related to those of the Schwarzschild metrics based on 
four-dimensional space-time. In the modified space geometry 
the local velocity of light is a function of the local tilting of 
space in the fourth dimension. The precise geometry of space 
makes it possible to solve the effect of the 4-D topology on 
Kepler’s laws and the orbital equation. The perihelion shift of 
planetary orbits can be derived in closed mathematical form as 
the rotation of the main axis of Kepler’s orbit relative to the 
reference co-ordinate system. For a full revolution the rotation 
is ∆ϕ = 6πGM/c2a(1 − e2) like the corresponding prediction in 
the general theory of relativity . 
Keywords: Cosmology, zero-energy principle, Dynamic 
Universe, celestial mechanics, planetary orbits, perihelion shift  
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Introduction 
n the theory of general relativity (GR), the geometry of 
homogeneous space is described with a four-dimensional 
spherically symmetric squared line element 

 ( )2 2 2 2 2 2 2 2sinds c dt dr r d dθ θ ϕ= − + + +  (1) 

where cdt is considered as the time-like fourth dimension. 
When a central mass is introduced at the origin equation (1) can be 

expressed in the form of the Schwarzschild metrics as 

( ) ( )
2

2 2 2 2 2 2 2 2
21 2 sin

(1 2 )

dr
ds c GM/rc dt r d d

GM/rc
θ θ ϕ= − + + +

−
 (2) 

In the first term, factor (1 − 2GM/rc2) is regarded as the reduction 
in the flow of time due to the local gravitational centre. In the second 
term the same factor appears as the increase in the radial line element 
close to the mass centre. The final term shows the tangential line 
elements, which are affected by the mass centre through radius r as 
the integrated effect of the modified dr. The equation for a planetary 
orbit is obtained by the solution of geodesic equations derived from 
the Schwarzschild metrics. The solution for the inverse of distance r 
is(2) 

 ( ) ( )2 2 2

1 1 3
1 sin cos

1 1

GMe
W e W

r a e c a e
ϕ ϕ ϕ

 
 = = + ⋅ − + ∆

− −  
 (3) 

where 2a is the length of the major axis and e is the eccentricity of the 
elliptical orbit. Term ∆W is 

 2 2 2

2 2 2 2
cos 3

(1 )
GM

W e e
c a e

ϕ ∆ = + + −
 (4) 

I 
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The perihelion advance results from the third term in the square 
brackets in equation (3), which for the first revolution, with ϕ = 0 to 
2π , is 

 
2 2

6
(1 )
GM

c a e
π

ϕ∆ =
−

 (5) 

which is consistent with the observed perihelion shifts of Mercury and 
several binary pulsars. A detailed analysis of equation (3), however, 
shows that the orbit predicted for multiple revolutions (ϕ = n⋅2π) 
exhibits a decreasing perihelion advance and is associated with a 
cumulative increase of eccentricity (see FIG. 1). As clearly illustrated 
by orbits with high eccentricity and high gravitational factor, equation 
(3) leads to an increasing asymmetric orbit with a diminishing 

 
FIG. 1.  Development of a planetary orbit as predicted by GR according to 
equation (3) for δ = GM/ac2 = 4 ⋅ 10−3 and e = 0.6. Beyond twelve 
revolutions the orbit extends to infi nity. For the first revolution the perihelion 
shift is ∆ϕ2π(0) = 6πGM/[c2a(1 − e2)]. (The gravitational factor of Mercury is 
δ ≈ 2.6 ⋅10−8 and the binary pulsar PSR 1913+16 δ ≈ 4.6 ⋅10−6). 
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perihelion rotation. The orbit calculation does not take into account 
possible effects of the gravitational radiation predicted by GR. 

The instability of the orbit predicted by equation (3) is inconsistent 
with observation, which indicates a problem either in the 
Schwarzschild metrics or in approximations made in solving the 
geodesic equations. 

The Dynamic Universe model(1) describes three-dimensional space 
as a spherically symmetric structure closed through the fourth 
dimension. As a consequence of the balance of the energies of motion 
and gravitation in the structure space, the surface of the expanding 
four-dimensional sphere is in motion along the radius in the fourth 
dimension. The velocity of the motion in the fourth dimension 
appears as the maximum velocity obtainable in space. As a result of 
the conservation of the total energy, space is tilted in the fourth 
dimension near mass centres, which makes the direction of the local 
fourth dimension deviate from the direction of the fourth dimension in 
non-tilted, apparent homogeneous space. In tilted space the line 
element can be expressed as 

 ( )
( )

( )
2

22 2 2 2 2 2 20
0 021 sin

1

dr
ds c dt r d dδ

δ δδ θ θ ϕ
δ

= − + + +
−

 (6) 

where 2GM/rcδ = is the local gravitational factor, c0δ is the 
imaginary velocity of space in non-tilted space, r0δ the line element in 
the direction of the non-tilted space and φ the tilting angle at 
gravitational state δ ,cos (1 )φ δ= − . 

The first term in equation (6) describes the motion of space and in 
the direction of the local fourth dimension showing the effect of the 
reduction of the local velocity of light due to the tilting of space near a 
mass centre. The tilting of space also results in a lengthening of the 
line element dr in the radial direction (towards the mass centre). The 
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second term shows the effect of tilting on the line element dr 
[ 0 /cosdr drδ δ φ= ]. In contrast to the Schwarzschild metrics, the 
fourth dimension, in the DU, is purely geometrical in nature. Other 
differences to the Schwarzschild metrics are that the line element dr0δ 
in the second term of equation (6) and distance r0δ in the last term are 
measured in the direction of non-tilted, apparent homogeneous space 
(see FIG. 2). 

The Dynamic Universe model allows the solution of planetary 
orbits in closed mathematical form following the procedure used in 
deriving the Kepler’s orbital equations. The solution is first derived as 

M

Im0δ

Im0δ

Imδ

drδ

dr0δ

φ

φ

homogeneous, “flat” space

cδ

c0δ

c0δ

 

FIG. 2. In the DU model space is a dynamic structure moving at velocity c0δ in 
the direction of the fourth dimension. In the vicinity of a mass centre the fourth 
dimension of local space is tilted by angle φ relative to apparent homogeneous 
space. The velocity of space in the local fourth dimension, cδ, is 

0 cosc cδ δ φ= and the length of the local radial line element drδ is 

0 /cosdr drδ δ φ=  where distance dr0δ is measured in the direction of apparent 

homogeneous space. 
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a plane projection of the obit on a plane in the direction of apparent 
homogeneous space, “flat space” (see FIG. 3). The radial acceleration 
needed in the derivation is the flat space component of the 
acceleration of free fall in locally tilted space. The acceleration of free 
fall in locally tilted space, like the curvature itself are derived from the 
conservation of total energy. 

A complete orbital equation is obtained by adding the z-co-
ordinate, the distance from a selected reference plane in the direction 
of apparent homogeneous space, to the planar solution. 

 

φ
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m
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FIG. 3. The cylinder co-ordinate system used in orbital calculations. The local 
complex co-ordinate system, Im δ−Reδ at object m , is also illustrated. The radial 
line element dr0δ in the DU metrics has the direction of r0δ. 



 Apeiron, Vol. 8, No. 3, July 2001 71 

© 2001 C. Roy Keys Inc. 

Acceleration in locally curved space 
Kepler’s laws are based on Newtonian mechanics in the orbital plane. 
In Newtonian mechanics the equation of motion for mass m in the 
local gravitational frame around mass M is expressed as 

 
2

2 3

d r r
a

dt r
µ

= = −
r rr

 (7) 

where µ is obtained as 
 ( )G M mµ = +  (8) 

when the gravitational constant is combined with the effect of the two 
masses. Equation (7) states the connection between radial acceleration 
and the Newtonian gravitational force. 

According to the DU model, the orthogonal sum of the velocities 
of free fall vff and the local imaginary velocity of space cδ is equal to 
the imaginary velocity of apparent homogeneous space c0δ (see 
FIG.2). Accordingly, vff can be expressed in terms of c0δ and the 
gravitational factor δ as 

 2 2 2
0 0 1 (1 )ffv c c cδ δ δ δ= − = − −  (9) 

The acceleration of free fall can be expressed as 

 0
(0 )

0 0 0

(1 )ff ff ff ff
ff ff ff

dv dv dv dvdr
a v v

dt dr dt dr dr
δ

δ
δ δ δ

δ= = ⋅ = = −  (10) 

where vff(0δ) is the component velocity vff in the direction of 
r0δ, (0 ) (1 )ff ffv vδ δ= − . 

As solved from (10) acceleration aff in the direction of local space 
is 
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 2
2

0

(1 )ff

GM
a

r δ

δ= −  (11) 

and the component aff(0δ) in the direction of flat space 

 3
(0 ) 2

0

(1 ) (1 )ff ff

GM
a a

rδ
δ

δ δ= − = −  (12) 

(see FIG. 4). 
Applying acceleration (0 )ffa δ

r
 in equation (12) for a

r
 in equation 

(7), the DU flat space substitute of the Newtonian equation (7) can be 
expressed as 

 
2 3

0
(0 ) 02 3

0

(1 )
'ff

d r
a r

dt r
δ

δ δ
δ

δ
µ

−
= = −

rr r
 (13) 
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FIG. 4. Acceleration (0 )ffa δ

r
 is the flat space component of acceleration ffa

r
. 

Acceleration (0 )ffa δ

r
 has the direction of r0δ . 
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By expressing the gravitational factor δ  in terms of the critical 
radius rc, 

 2
0

'
wherec

c

r
r

r cδ

µ
δ = ≡  (14) 

equation (13) can be expressed in form 

 
2 3

0 0 0
02 3 3

0 0 0

(1 / ) 3
' ' 1c cd r r r r r

r
dt r r r

δ δ δ
δ

δ δ δ

µ µ
 −

= − ≈ − − 
 

r rr
 (15) 

Equation (15) is the equation of motion to be used in the derivation 
of the orbital equation on the base plane in the direction of apparent 
homogeneous space. 

The eccentricity vector 
The angular momentum per mass unit (related to the orbital velocity 
in the direction of the base plane) is denoted as 

 0 0 0k r rδ δ δ= ×
r r r&  (16) 

The time derivative of 0k δ

r
 is 

 0 0 0 0 0 0 0k r r r r r rδ δ δ δ δ δ δ= × + × = ×
r r r r r r r& && & & &&  (17) 

which, in order to conserve angular momentum, must be equal to 
zero. Substituting (15) for 0r δ

r&&  in (17) we get 

 0
0 0 0 3

0

'(1 3 / )
0cr r

k r r
r

δ
δ δ δ

δ

µ− −
= × =

r r r&  (18) 

To determine vector 0e δ

r
 we form the vector product 0 0k rδ δ×

r r&&  
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 0
0 0 0 0 0 3

0

'(1 3 / )
( ) cr r

k r r r r
r

δ
δ δ δ δ δ

δ

µ− −
× = × ×

r r r r r&& &  (19) 

which can be expressed in the form 

 0
0 0 0 0 0 0 0 03

0

'(1 3 / )
( ) ( )cr r

k r r r r r r r
r

δ
δ δ δ δ δ δ δ δ

δ

µ− −  × = ⋅ − ⋅ 
r r r r r r r r&& & &  (20) 

Given that the time derivative of distance 0r δ , 0r δ& , is the 

component of 0r δ

r&  in the direction of 0r δ

r
, it is possible to express the 

scalar time derivative 0r δ&  in form of the point product 

 0
0 0

0

r
r r

r
δ

δ δ
δ

= ⋅
r r&&  (21) 

and, accordingly, the point product in the second term in the square 
brackets in equation (20) can be expressed as 

 0 0 0 0r r r rδ δ δ δ⋅ =
r r& &  (22) 

Equation (20) can now be expressed as 

 0
0 0 0 0 02

0 0

1
'(1 3 / )c

r
k r r r r r

r r
δ

δ δ δ δ δ
δ δ

µ
 

× = − − − 
 

r &r r r&& &  (23) 

where the expression in parenthesis can be identified as the time 
derivative 

 0 0 0 0
02

0 0

( / )r r d r r
r

r r dt
δ δ δ δ

δ
δ δ

 
− = 

 

r r& & r
 (24) 

Equation (23) can now be expressed as 

 
( ) ( )0 0 0 0

0 0

0

/ /3 '
' cd r r d r rr

k r
dt r dt
δ δ δ δ

δ δ
δ

µ
µ× = − +

r rr r&&  (25) 
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As shown in equation (18) 0k δ

r& , is zero, which means that 

 0 0
0 0

( )d k r
k r

dt
δ δ

δ δ

×
× =

r r&r r&&  (26) 

Combining equations (25) and (26) gives 

 0 0 0 0 0 0

0

( ) ( / ) 3 ' ( / )
' cd k r d r r r d r r

dt dt r dt
δ δ δ δ δ δ

δ

µ
µ

×
+ =

r r r r&
 (27) 

which can be written in the form 

 
0 0 0 0 0 0

0

( ) ' / 3 ' ( / )c
d k r r r r d r r

dt r dt
δ δ δ δ δ δ

δ

µ µ × +  =

r r r r&
 (28) 

The expression in parenthesis on the left hand side of the equation 
is equal to the eccentricity vector 0 'e δ µ−

r
 showing the direction of the 

perihelion or periastron radius in Kepler’s orbital equation. Applying 

0 'e δ µ−
r

 in equation (28) we get the time derivative 

 0 0 0

0

3 ( / )cde r d r r
dt r dt

δ δ δ

δ

= −
r r

 (29) 

which in Newtonian mechanics is equal to zero. Equation (29) 
indicates that the eccentricity vector 0e δ

r
 changes with time. By 

solving the derivative of the product in (29) we get 

 0 0 0 0
2

0 0 0

3 1cde r dr r dr
dt r r dt r dt

δ δ δ δ

δ δ δ

 
= − − 

 

r r r
 (30) 

where dr0δ is the differential of the length of radius r0δ. In polar co-
ordinates on the flat space plane, vector 0dr δ

r
 can be expressed as 

 0 0 ( ) 0 (||)ˆ ˆdr r d r dr rδ δ δϕ ⊥= +
r

 (31) 
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where ( )r̂ ⊥  and (||)r̂  are the unit vectors perpendicular to 0r δ

r
 and in the 

direction of 0r δ

r
, respectively. Substituting (36) into (35) and applying 

(||) 0 0ˆ /r r rδ δ=
r

 gives 

0 0 0
( ) (||) (||) ( )

0 0 0 0

3 31 1
ˆ ˆ ˆ ˆc cde r dr dr rd d
r r r r

dt r dt r dt r dt r dt
δ δ δ

δ δ δ δ

ϕ ϕ
⊥ ⊥

 
= − + − = − 

 

r
(32) 

As shown by (32), the change of 0e δ

r
 occurs as rotational change 

only, which means that the orbit conserves its eccentricity but is 
subject to a rotation of the main axis. The condition 0 / 0de dtδ =

r
 

required by Kepler’s orbital equation is achieved in a co-ordinate 
system with rotation dψ/dt, 

 0

0

3
0cde rd d d

dt dt r dt dt
δ

δ

ψ ϕ ψ
+ = − + =

r
 (33) 

where the rotational velocity of the co-ordinate system relevant with 
the Kepler’s solution is 

 
0

3 crd d
r δ

ψ ϕ=  (34) 

relative to the reference co-ordinate system at rest. 
Applying Kepler’s equation 

 
2

0

(1 )
(1 cos )

a e
r

eδ ϕ
−

=
+ ⋅

 (35) 

for r0δ in (34) we can express dψ0δ as 

 
2

3 (1 cos )
(1 )

cr e
d d

a e
ϕ

ψ ϕ
+ ⋅

=
−

 (36) 
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The rotation of the co-ordinate plane relative to the non-rotating 
reference co-ordinate plane can now be obtained by integrating (36) 
as 

 2 2
0

3 (1 cos ) 3 ( sin )
(1 cos )

(1 ) (1 )
c cr e r e

e d
a e a e

ϕϕ ϕ ϕ
ψ ϕ ϕ

+ ⋅ + ⋅
∆ = + ⋅ =

− −∫  (37) 

In the non-rotating reference co-ordinate system, relative to the 
reference axis at ψ0δ(0) = 0, the orbital equation can now be expressed 
as 

 [ ]
2

0

(1 )
1 cos( )

a e
r

eδ ϕ ψ
−

=
+ ⋅ − ∆

 (38) 

which is the Kepler’s equation with a perihelion advance by angle 
∆ψ(ϕ). 

Setting ϕ = 2π  and substituting (14) for rc in (37), the perihelion 
advance for a full revolution can be expressed as 

 
2 2

6 '
(2 )

(1 )ac e
πµ

ψ π∆ =
−

 (39) 

∆ψ0δ

M

ϕr0δ

 
FIG. 5. Perihelion advance results in a rotation of the main axis by ∆ψ(2π) in 
each revolution. 
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which is the same result as given by the theory of general relativity 
for perihelion advance as the first approximation in equation (3) (see 
FIG. 5). 

Kepler’s energy integral 
To complete the analysis of the orbit on the base plane we now study 
the energy integral derived from the point product of the velocity and 
the acceleration: 

 

0 0
0 0 0 3

0

0 0 0
0 (0 )3 2 3

0 0 0

'(1 3 / )

'(1 3 / ) 3 ''

c

c c
r

r r r
r r r

r

r r r dr r
r v

r r dt r

δ δ
δ δ δ

δ

δ δ δ
δ δ

δ δ δ

µ

µ µµ

− −
⋅ = ⋅

− − −
= = +

rr r r& && &

&
 (40) 

where (0 ) 0 /rv dr dtδ δ=  means the radial velocity on the flat space 
plane. The first term in the last form of equation (40) can be written in 
the form 

 0
02

0

( '/ )' d r
r

r dt
δ

δ
δ

µµ−
=&  (41) 

Substituting (41) into (40) we can write 

 0
0 0 03

0

( '/ ) 3 ' cd r r
r r r

dt r
δ

δ δ δ
δ

µ µ
⋅ = +

r r& && &  (42) 

The point product of the velocity and the acceleration can also be 
expressed as 

 
2
(0 )0 0

0 0

( /2)(1/2 ) rd vd r r
r r

dt dt
δδ δ

δ δ

⋅
⋅ = =

r r& &r r& &&  (43) 

Combining equations (42) and (43) gives 
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2
(0 ) 0

03
0

( / 2 '/ ) 3 'r c
d v r r

h r
dt r

δ δ
δ

δ

µ µ−
= =& &  (44) 

In Kepler’s formalism, the expression in parenthesis on the right 
hand side is referred to as the energy integral h. In the case of 
Newtonian mechanics the time derivative of h is zero, which means 
that the sum of the Newtonian kinetic and gravitational energies is 
conserved. 

In Kepler’s orbital equation 

 
2 2

0

/ ' (1 )
(1 cos ) (1 cos )

k a e
r

e eδ

µ
ϕ ϕ

−
= =

+ ⋅ + ⋅
 (45) 

constants µ, e, h, and k are related as 

 
2 2

2

' (1 )
2

e
h

k
µ− −

=      and      
2 2

2 ' (1 )
2

e
k

h
µ− −

=  (45) 

In order to see the effect of the time-dependent energy integral h in 
the orbital equation we solve for the time derivative of k2 

 
2 2 2 2 2 2

2

' (1 ) ( 1) ' (1 )
2 2

dk e e h k
h h

dt h h h h
µ µ− − − −

= = = −
&& &  (46) 

Substituting (44) for dh/dt in (46) gives 

 
2 2

03
0

3 ' crdk k
r

dt h r δ
δ

µ
= − &  (47) 

and substituting (45) for h in (47) we get 

 
42

03 2
0

6
' (1 )

ck rdk
r

dt r e δ
δµ

= −
−

&  (48) 

By substituting (45) for r0δ in (48) we get 
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2 32

02 2

6 ' (1 cos )
(1 )

cr edk
r

dt k e δ

µ ϕ+ ⋅
= −

−
&  (49) 

and by substituting the time derivative of r0δ obtained from equation 
(45) in (49) we get 

 
2

2

6 '(1 cos )
sin

(1 ) c

dk e d
r e

dt e dt
µ ϕ ϕ

ϕ
+ ⋅

= ⋅
−

 (50) 

Further applying equation (45) for the differential increase of r0δ 
gives us 

 
2

0 '(1 cos )
dk

dr
eδ µ ϕ

=
+ ⋅

 (51) 

By applying dk2, obtained by multiplying (50) by dt, to (51) we 
can express the differential of dr0δ in terms of the differential of dϕ as 

 0 2

6 sin
(1 )
cr e

dr d
eδ

ϕ
ϕ

⋅
=

−
 (52) 

and the total increase (see FIG. 6) as 

 0 2 2
0

6 6 (1 cos )
( ) sin

(1 ) (1 )
c cr e r e

r d
e e

ϕ

δ

ϕ
ϕ ϕ ϕ

−
∆ = =

− −∫  (53) 

∆ϕ

M

r0δ+∆r0δ
ϕ

 
FIG. 6. Kepler’s orbit perturbated by distance ∆r0δ given in equation (53). 
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The increase of r0δ, ∆r0δ, is zero at perihelion and achieves its 
maximum value at aphelion 

 perihelion: 0 (0) 0r δ∆ =  (54) 

 aphelion: 0 2

12
( )

(1 )
cr e

r
eδ π∆ =

−
 (55) 

Combining equations (38) and (53) gives the complete orbital 
equation of the flat space projection of the orbit: 

 
[ ]

[ ]2

0 2

6 1 cos( )(1 )
1 cos( ) (1 )

cr ea e
r

e eδ

ϕ ϕ
ϕ ψ

− − ∆−
= +

+ ⋅ − ∆ −
 (56) 

DU, eq. (56)

∆ϕ

GR, eq. (3)

∆ϕ(0)

 
FIG. 7. The development of planetary orbits for the first ten revolutions 
according to the DU and GR for δ = 4 ⋅10−3 and e = 0.6. For the first revolution 
in the GR solution, according to equation (3), and for all revolutions in the DU 
solution the perihelion shift is 2 2(2 ) 6 '/ (1 )ac eψ π πµ∆ = − . In the DU soluti on 
the perihelion shift stays constant during the rotation of the main axis and the 
slightly deformed elliptic orbit conserves its shape. In the GR solution, 
according to equation (3), the shape of the orbit changes due to a reduction of 
the radius in the 1st and 2nd quarters and an increase of the radius in the 3rd 
and 4th quarters in the polar co-ordinate system. The deformation of the orbit, 
as predicted by equation (3), is accompanied by a degrading perihelion shift. 
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where, as expressed in equation (37), the perihelion advance ∆ϕ is 

 
2

3 ( sin )
(1 )

cr e
a e
ϕ ϕ

ψ
+ ⋅

∆ =
−

 (57) 

Equation (56) is applicable in gravitational potentials δ << 1 where 
the approximation (1−δ)3 ≈ (1−3δ) is sufficiently accurate. 

For stable mass centres, the DU orbit conserves its shape, size, and 
perihelion advance. FIG. 7 compares the developments of the orbits 
according to equations (56) and (3) corresponding to the DU and GR 
predictions, respectively. 

The fourth dimension 
The orbital co-ordinates are completed by adding the co-ordinate z 
which extends the orbital calculation made as the base plane 
projection to actual space curved in the fourth dimension. With 
reference to [1], the co-ordinate z, the distance from the base plane (in 
the direction of apparent homogeneous space) crossing the orbiting 
surface at ϕ = ±π/2 can be expressed as 

 2
0 0 0 0( ) 2 2 (1 )cz r r r a eδ δ δ δ

 = − −
 

 (58) 

where r0δ is the flat space distance from the centre of the gravitational 
frame given in equation (56). Expression 2

0 0(1 )a eδ δ−  in equation (58) 

is the value of r0δ at ϕ0δ = π/2, which is used as the reference value for 
the z-co-ordinate. Equations (56) and (58) give the 4-dimensional co-
ordinates of an orbiting object as the function of angle ϕ0δ determined 
relative to the perihelion direction in the flat space projection of the 
orbit (see FIG. 8). 
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The differential of a line element in the z0δ-direction can be 
expressed in terms of the differential in the r0δ-direction as 

 0 0 0 0" tandz dR dr Bdrδ δ δ δφ= = =  (59) 

where 

 
21 (1 )

tan
(1 )

B
δ

φ
δ

− −
= =

−
 (60) 

ϕ
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M
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y0δ

m

z0δ (Im0δ)
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x0δ

r(2)0δ
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FIG. 8. Projections of an elliptical orbit on the x0δ−y0δ and x0δ−y0δ planes in a 
gravitational frame around mass centre M. 
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where 2
0 0/ '/cr r r cδ δδ µ= =  and dr0δ can be solved from equations 

(56) as 

 0 0dr Adδ δϕ=  (61) 

where 

 
[ ]

2

2 2

6 sin( )(1 ) sin( )
(1 )1 cos( )

cr eae e
A

ee

ϕ ψϕ ψ

ϕ ψ

− ∆− ⋅ − ∆
= +

−+ ⋅ − ∆
 (62) 

The total differential of the path can be expressed in cylindrical co-
ordinates as 

 0 (0 ) 0 0 (0 ) 0 (0 )ˆ ˆ ˆ ˆr zds dr u r d u dz uδ δ δ δ ϕ δ δ δϕ= + +  (63) 

where (0 ) (0 ) (0 )ˆ ˆ ˆ, ,r zu u and uδ ϕ δ δ  are unit vectors in the radial and 

tangential direction of the orbit on the base plane and in the z0δ-
direction. 

The squared line element ds2 of an orbit around a mass centre can 
now be expressed as 

 2 2 2 2 2 2
0 0( )ds r A A B dδ δϕ= + +  (64) 

and the scalar value of the line element as 

 2 2 2
0 0(1 )ds r A B dδ δϕ= + +  (65) 

The length of the path along the orbit from ϕ1 to ϕ2 can be 
obtained by integrating (65) as 

 
1

2 2 2
0 0

2

(1 )s r A B d
ϕ

δ δ

ϕ

ϕ= + +∫  (66) 

FIG. 9 shows the x0δ−z0δ profile of the orbit of Mercury in the solar 
gravitational frame. 
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Conclusions 
The DU model predicts a perihelion shift equal to the shift predicted 
by the theory of general relativity for the first orbital revolution. A 
planetary orbit including a z-co-ordinate in the fourth dimension, the 
perihelion shift, and the perturbation of the radial distance can be 
presented in closed mathematical form in a cylindrical co-ordinate 
system with the base-plane lying in the direction of the apparent 
homogeneous space of the gravitational frame of interest. 
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FIG. 9. The z0δ−x0δ profile of the orbit of the planet Mercury. Note the different 
scales in the z0δ- and x0δ- directions. 
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