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The substratum for physics can be seen microscopically as an 
ideal fluid traversed in all directions by straight vortex 
filaments. Small disturbances of an isolated filament are 
considered. The Klein-Gordon equation without mass 
corresponds to elastic stretching of the filament. The wave 
function has the meaning of the curve’s position vector. The 
mass part of the Klein-Gordon equation describes the rotation 
of the helical curve about the screw axis due to the 
hydrodynamic self-induction of the bent vortex filament. 
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Vortex filament 
e consider the motion of an isolated vortex filament in an 
ideal fluid. The vortex filament appears as a microscopic 
constituent of the substratum for physics historically 

referred to as the vortex sponge. The latter is usually seen as an ideal 
fluid traversed randomly in all directions by straight vortex filaments. 
We are interested in small perturbations of the filament. There are two 
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kinds of perturbation. In stretching deformation the filament behaves 
as an elastic string. Because of hydrodynamic self-induction the bent 
vortex filament evolves, changing the form and position in the space. 

Let the filament be directed along the x  axis. Then a small 
perturbation of the filament can be specified by considering the 
position vector r  as a function of x  

 ( ) ( ) ( ) 321 ,,, iiir txztxyxtx ++=  (1) 

where dependence on the time t  is also included. 

Elasticity 
In small stretching deformation a vortex filament behaves as an 
elastic string. The motion of an elastic string is governed by the 
d’Alembert equations 
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Normally, this describes a plane wave propagating along the string 
with the speed c : 

 ( )tkxaf ω− , ck=ω  

Taking the phase shift for two sinusoidal transverse waves as 
2/π , a circularly polarized wave can be constructed: 
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This wave has the shape of a helix with the wave number k  taking 
the meaning of the curve’s torsion τ . The longitudinal motion of the 
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helix appears as rotation about the x  axis with the angular velocity 
ω . The circular wave can be conveniently expressed in the complex 
valued form 

 ( ) ( )[ ]tkxiatx ωϕ −= exp,  (3) 

It obeys the Klein-Gordon equation without mass 
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Self-induction 
The fluid element of the bent vortex filament moves in space due to 
the hydrodynamic interaction of the adjacent elements. In the local 
induction approximation the motion of the filament is described by 
the equation 
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where const=ν  and l  is the length measured along the filament. For 
small perturbations xl ≈ . Using this and (1) in (5) gives[1], 
neglecting quadratic terms 
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The latter can be conveniently rewritten in complex valued form 
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where 

 ( ) ( )txiztxy ,, +=ϕ   
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The Schroedinger equation (6) is satisfied by the helical curve 

 ( ) ( )[ ]txiatx 2exp, νττϕ −=  (7) 

where const=τ  is the torsion of the helix and the curvature is given 
by 2τκ a= . The helix rotates around the x  axis with the angular 
velocity 2ντ . 

Klein-Gordon equation 
The motion of a stretched vortex filament combines both self-
induction and elasticity. For an isolated filament the solution must 
have the form of a helix (7), or (3), although a correction to the 
frequency must be made. 

Notice that the left-hand part of the dynamic equation (4) has the 
meaning of the acceleration and the right-hand part, of the force. 
Differentiating (7) twice with respect to the time t  we find the 
acceleration in the self-induction circular motion 

 ϕτν 42−   

It is just this quantity which corrects the elastic equation (4): 

 ϕτνϕϕ 42
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Next, we will express the coefficient 42τν  from (8) in physical 
terms. For this case the relations found earlier in [1] will be taken into 
account. First, a soliton on a vortex filament moves along the x  axis 
with the velocity [2] 
 ντυ 2=  
Alternatively, the latter is the group velocity for the small amplitude 
self-induction wave on a vortex filament [1]. In order to use this in (8) 
we choose for υ  the maximal value c . As was shown in [1], the 
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smaller the amplitude a  of the soliton, the greater its translational 
velocity υ . This implies the concept of minimal amplitude given by 

 ca /20 ν=   

and the corresponding elementary helix. The notions of the soliton’s 
mass, momentum and the energy have also been introduced. For the 
mass this leads to 

 00 am ς=   

where ς  is the linear density of the fluid along the filament. By 
comparing the mechanical model of the wave-particle with the 
standard description [1] the Planck constant has been found to be: 

 02 aνς=h   

Now, using the above relations in (8) we come to the standard form of 
the Klein-Gordon equation 
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It was stated before [1] that the mass particle requires an extra 
segment of the vortex filament added to its linear configuration. Here 
we deal solely with the stretching of a filament. Hence, no real mass 
can be associated with the disturbance thus formed. Parameter m0 in 
(9) corresponds to the controversial fictitious mass of the photon. 

Maxwell’s equations 
The equation for the electromagnetic wave is a trivial consequence of 
(2). In the elastic model [3] the magnetic vector potential corresponds 
to the displacement field of the quasisolid aether, i.e., 
 yA ∝1  , zA ∝2   
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In the turbulent aether it is modeled [4] by the perturbation of the 
average fluid velocity: 

 uA δ∝  

or rather by the average velocity, since the background value vanishes 
in the averaging. The perturbation of the fluid velocity field due to the 
torsional wave on the vortex filament can be found by substituting (1) 
with (3) in the Biot-Savart law for hydrodynamic induction: 
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where Γ  is the circulation of fluid velocity around the filament, s  is 
the radius vector from a point on the filament to the point in the fluid, 
h is the least distance from the latter to the filament. Here the complex 
wave function (3) has been treated as a vector quantity. For 1<<ka , 
(10) can be evaluated as 
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where the velocity has been treated as a complex value. 
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