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The small amplitude-to-thread ratio helical configuration of a 
vortex filament in the ideal fluid behaves exactly as a de 
Broglie wave. The complex-valued algebra of quantum 
mechanics finds a simple mechanical interpretation in terms of 
differential geometry of the space curve. The wave function 
takes the meaning of the velocity, with which the helix rotates 
about the screw axis. The helices differ in type of the screw—
right or left-handed. Two kinds of the helical waves deflect in 
the inhomogeneous fluid vorticity field in the same way as 
spin particles in the Stern-Gerlach experiment. The helix 
represents the low curvature asymptotics of a loop-shaped 
soliton, the latter being governed by the nonlinear 
Schroedinger equation. The length of the redundant segment, 
needed in order to form a curvilinear configuration on the 
originally straight vortex filament, measures the mass of a 
particle. The unique size of the loop on the vortex filament can 
be determined by the balance between the energy of the 
redundant segment and the energy due to the curvature of the 
loop. The translational velocity of the soliton has the 
maximum at a value, which is inversely proportional to the 
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length of the redundant segment. Insofar as the maximal 
velocity of a soliton is restricted from the above by the speed 
of the perturbation wave in the turbulent medium (i.e. the 
speed of light in vacuum), there must be a minimal redundant 
segment. Its length correlates with the Planck’s constant. In 
the stochastic environs a loop-shaped soliton disintegrates into 
the collection of the elementary asymptotic helices. An 
asymptotic helix obeys the linear Schroedinger equation with 
no dependence on mass. The mass of the particle appears 
explicitly when we describe the motion of the whole ensemble 
of the elementary splinters. 

Keywords: quantum physics, ideal fluid, line vortex, soliton. 

1. Introduction 
elow, the earlier suggested [1] mechanical analogy for 
quantum particle is further developed. A helical wave on a 
vortex filament in the ideal fluid is considered. It is shown to 

obey the linear Schroedinger equation. Other properties of a vortex 
filament also reproduce the specific features of a quantum object. 

This work is a constituent of the whole project aimed at 
constructing a regular mechanical analogy of physical fields and 
particles. The approach is based on the concept of a substratum for 
physics. The substratum is a universal medium serving to model the 
waves and action-at-a-distance in vacuum. This medium is viewed 
mesoscopically as a turbulent ideal fluid. Perturbations of the 
turbulence model physical fields. In this way the equations were 
derived that reproduce exactly [2] the Maxwell’s electromagnetic 
equations. The voids in the fluid give rise to dilatational inclusions, 
which serve as a model  [3, 4] of charged particles. Microscopically 
the turbulent substratum is seen as the vortex sponge. The latter is 
postulated as an ideal fluid pierced in all directions by the straight 

B
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vortex tubes [5]. The hollow vortex tubes will be treated further as 
vortex filaments. We will consider a one-dimensional model of the 
vortex sponge with some recourse to higher dimensions. The 
microscopic construction presented here agrees well with respective 
mesoscopic models. 

2. Vortex filament 
The motion of an isolated vortex filament is governed by a 
dependence of the velocity u  of the vortex filament’s liquid element 
on the local form of the curve. To express such a law analyt ically one 
needs to describe the vortex filament as a space curve in the usual 
Frenet-Serret frame. 

First, a point on a spatial curve is defined by the position vector r , 
which is a function ( )lr  of the length l  measured from a fiducial 
point along the curve. For a moving curve, there is a further 
dependence ( ),l tr  on the time t . Excluding information about the 
curve’s space position, the local form of the curve is fully specified by 
its curvature ( ),l tκ  and torsion ( ),l tτ . The latter are defined 
through the two unit vectors, a tangent 

 ( ),l t
l

∂=
∂
r

e  (2.1) 

and principal normal 

 ( ),l tn   

(Fig.1), by the Frenet-Serret formulae 

 
l

κ ∂=
∂
e

n  (2.2) 
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( )

l
τ

∂ ×
= −

∂
e n

n  (2.3) 

 1=e ,        1=n   

The motion of the vortex filament without stretching is described 
in these terms by the Arms’ equation 

 ( ),l t
t

ν κ∂= = ×
∂
r

u e n  (2.4) 

where ν  stands for the coefficient of local self-induction and e  is 
assumed to be parallel to the filament’s vorticity vector (Fig.1; for a 
rigorous derivation see [6]). Using (2.1), (2.2), equation (2.4) can be 
rewritten in the straightforward form 

 
                                    u                                 u
                                            e

                                 n

 
Fig. 1. The drift u  of a bent vortex filament in relation to its 
curvature nκ  and vorticity e . 
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2

2t l l
ν∂ ∂ ∂= ×

∂ ∂ ∂
r r r

 (2.5) 

3. Small disturbances 

Let the filament be directed along the x  axis. We will seek a solution 
to (2.5) in the form ( ),x tr  as small disturbances of the rectilinear 
configuration. That implies 

 
y
x

∂
∂

,  
z
x

∂
∂

,  
2

2

y
x

∂
∂

,  
2

2

z
x

∂
∂

  <<  1  

On this account, the corresponding quadratic terms will be further 
neglected throughout. So, we have for the arc’s element 

 

1 / 22 2

1
y z

dl dx
x x

 ∂ ∂   = + +    ∂ ∂     
 ≈  dx   

and (2.5) can be rewritten as 

 
2

2t x x
ν∂ ∂ ∂= ×

∂ ∂ ∂
r r r

 (3.1) 

We have 

 ( ) ( ) ( )1 2 3, , ,x t x y x t z x t= + +r i i i   

 1 2 3

y z
x x x

∂ ∂ ∂= + +
∂ ∂ ∂
r

i i i  

 
2 2 2

2 32 2 2

y z
x x x

∂ ∂ ∂= +
∂ ∂ ∂

r
i i   

That gives for (3.1) 
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2 2

1 2 32 2

y z
t x x

ν
 ∂ ∂ ∂

= × + ∂ ∂ ∂ 

r
i i i  (3.2) 

Insofar as 

 ( )1 2 3 2 3y z z y× + = − +i i i i i  (3.3) 

the right-hand side of (3.2) does not contain the 1i  component. That 
enables us to drop the respective term in the left-hand side: 

 
2 2

2 3 1 2 32 2

y z y z
t t x x

ν
 ∂ ∂ ∂ ∂

+ = × + ∂ ∂ ∂ ∂ 
i i i i i  (3.4) 

The latter form is convenient for further applications. So, it can be 
taken as the basic equation for small disturbances of the vortex 
filament in the ideal fluid. 

The simplest shape for the initial configuration of the filament is 
given by a curve with constant curvature κ  and τ  torsion. Below, it 
will be treated in two representations, which are equivalent to each 
other. First, we will discuss it in vector form as implied by the 
equation (3.4). 

4. Vector mechanics 
We consider a right-hand screw helix positioned along the x  axis: 

 
( )

( )
cos /

sin /

y a x b

z a x b

=

=
 (4.1) 

where a > 0  is the amplitude and b > 0  the thread (or pitch) of the 
helix (Fig.2). This curve can be suggested as a small perturbation of 
the straight line if we take 
 a  << b  (4.2) 
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That gives for  (2.1)-(2.3) neglecting the small quantity 2 2/a b : 

 x=r ( )1 cos /a x b+i ( )2 sin /a x b+i 3i   

 ( )1 / 22 21 /dl d a b dx= = +r  ≈  dx   

 ( )1 sin /
a

x b
b

= + −e i 2i ( )cos /x b+ ]3i   

 ( )2 cos /
a

x b
b

κ = − n 2i ( )sin /x b+ ]3i  (4.3) 

 ( )/a b× =e n ( )1 sin /x b+i ( )2 cos /x b−i 3i  (4.4) 

 
( ) ( )1

cos /x b
l b

τ
∂ ×

= − = − ∂
e n

n 2i ( )sin /x b+ ]3i   

Therefrom, the curvature of the asymptotic helix is 

 2/a bκ =  (4.5) 

 
Fig. 2. The right-hand screw helix (bottom) and the left-screw 
helix (top) in relation to the x axis. The xz  projection of (4.1) or 
(13.1) is shown. 
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and the torsion 
 1/bτ =  (4.6) 
In these terms, the relation (4.2) looks as 
 κ  << τ  (4.7) 

It is implicit here that the direction of the filament’s vorticity 
coincides with the vector e . Hence, the motion of the filament can be 
calculated using (2.4). Substituting to it (4.4) with (4.5), (4.6) and 
neglecting the small velocity component along the x  axis, we get 

 ( )2 sina xντ τ= u ( )2 cos xτ−i ]3i  (4.8) 

So, the helix rotates counterclockwise around the x  axis (looking 
along the x  axis) with the constant angular velocity 

 2ω ντ=  (4.9) 
With account of the angular displacement, the initial relation (4.1) 
should be improved 

 
( )

( )
2

2

cos

sin

y a x t

z a x t

τ ντ

τ ντ

= −

= −
 (4.10) 

This provides the solution to the basic equation (3.4). 
 

5. Schroedinger equation 
You see from the above that when aτ << 1 the motion of the vortex 
filament reduces itself to a plane vector mechanics. By virtue of this, 
relations (4.10) can be represented as a complex function ( ),x tϕ  of 
real variables: 
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( ) ( ) ( ) ( )2 2 2, cos sin expx t a x t i x t a i x tϕ τ ντ τ ντ τ ντ   = − + − = −    (5.1)

In this connection, the vector form (3.3) 

 ( )1 2 3 2 3y z z y× + = − +i i i i i   

which the equation (3.4) is based on, corresponds to the relation for 
complex values 

 ( )i y iz z iy+ = − +   

That puts (3.4) into the form of the Schroedinger equation 

 
2

2i
t x
ϕ ϕν∂ ∂=

∂ ∂
 (5.2) 

where 

 ( ) ( ), ,y x t iz x tϕ = +   

Equation (5.2), or (3.4), has the simple geometrical meaning. In a 
helix the principal normal n  lays in a plane, which is perpendicular to 
the x  axis, and it is directed to the x  axis (see (4.3)). When  aτ << 1, 
the tangent e  is almost parallel to the x  axis. So, in order to get from 
it the self-induction velocity (2.4), we must merely rotate n  at the 
angle 2/π  counterclockwise around the x  axis if looking against this 
axis. In terms of complex values, the curvature 

 
2

2n
x
ϕκ ∂=

∂
  

The operation 
 i nκ   
corresponds to the above mentioned rotation of  n . The self-induction 
velocity is 
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 u
t
ϕ∂=

∂
  

Here ϕ , n  and u  are complex values and x , t , κ  real values. 

6. The wave packet 
So, the asymptotic solution above discussed can be represented in the 
form of the hypercomplex value r : 

 ( ) ( )1, ,r x t i x x tϕ= +   

where x , t  are real values. According to the above found, the 
complex-valued function ( ),x tϕ  can be expanded into the sum of 
harmonics 

 ( ) ( ) ( )2, expx t c i x tϕ τ τ ντ = − ∫ dτ   

As usual, taking this integral in the range [ ]0,oτ τ τ τ∆ ∆− + , we get 
the wave packet 

 
( )

( ) ( )0 2

0 0
0

2

2

sin
exp

x
a i x t

x

ντ τ
τ ντ

ντ τ
∆

∆

−    − −
 (6.1) 

(Fig.3). The hump of the wave packet moves translationally with the 
velocity 

 02υ ντ=  (6.2) 

The remarkable feature of this phenomenon is that the motion of 
the hump is owing to the rotation of an individual helix with the 
angular velocity 2ντ  but not because of its longitudinal motion. This 
is the effect of a screw! A bolt is screwed into a nut due to rotation. In 
general, the velocity υ  of screwing in depends on the thread b  as 



 Apeiron, Vol. 8, No. 2, April 2001 11 

© 2001 C. Roy Keys Inc. 

ω b . From (4.9), (4.6), for the vortex helix ω  ~ 21/b . Therefore, υ  
~ 1/ b , that is in accord with (6.2). 

As you will see further, the wave packet gives us an approximation 
for asymptotic solution to nonlinear equation (2.5) constructed from 
the solutions to corresponding linear equation (3.4). 

7. Soliton 

The equation (2.5) possesses [7] the following exact solution ( ),l tr : 

 1 2 3x y z= + +r i i i   

 tanhx l a η= −  (7.1) 

 y iz a+ = sechη ( )exp iθ   

0

5 0

1 0 0

1 5 0

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

 
Fig. 3. A wave packet (6.1). 
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where 

 ( )2 2ˆ ˆ2 /a κ κ τ= +  (7.2) 

 ˆ 2l tη κ ν τ = −  
 (7.3) 

 ( )2 2ˆlθ τ ν κ τ= + − t   

 constτ =   

 ˆ constκ =   
As before, ν  is the self-induction coefficient of the vortex filament. 

In order to form the curvilinear configuration on the straight line, 
one needs an extra segment of the filament, which will be further 
referred to as the redundant segment. Its length is easily found 
integrating the differential of (7.1) all over the x  axis 

 tanhdx dl a d η= −∫ ∫ ∫   

whence 

 [ ] 2l x a
+∞

−∞
− =  (7.4) 

Substituting ( ),l tr  to (2.2) we find that the curvature of the line is 
described by the bell-shaped function 

 ( ) ˆ, 2l tκ κ= sechη  (7.5) 

Its parameter ˆ1/κ  from (7.3) can be used as a measure of the 
disturbance’s delocalization. So, the more the line is curved, the more 
the inclusion of the redundant segment (7.4) is localized. 

Substituting ( ),l tr  to (2.3), we find that the parameter τ  has the 
meaning of the curve’s torsion. 
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According to (7.3) the soliton moves steadily along the vortex 
filament with the velocity 
 2υ ντ=  (7.6) 
The curve rotates around the x  axis with the angular velocity 

 
( )

( )1
2 2 2

/y iz t

y z

∂ + ∂
=

+
ù   

We may rewrite (7.2) in a more convenient form 

 ( )2 2 2ˆ 1/ 1/a aκ τ− + =   

 

    τ

                                                                                                      κ̂

-10

0

10

0 10 20

 
Fig. 4. The torsion τ  in relation to curvature parameter κ̂  plotted 
by (7.2) with =a const. Solid line: =a 0.1; dashed line: =a 0.01. 
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Now, assuming that a  is constant, it is easily seen (Fig.4) how the 
longitudinal extension of the disturbance, measured by ˆ1/κ , affects 
the curve’s torsion and the corollaries. 

When the disturbance is most localized i.e. the curvature is 
maximal ˆ 2 / aκ = , then 0τ =  (Fig.4). That is, the curve is plane. It 
has the form of a loop. In accord with (7.6) the plane loop is 
translationally at rest. It rotates steadily around the x  axis with the 
angular velocity 2ˆω νκ= . 

As the disturbance’s spread increases from / 2a  to a  i.e. as the 
curvature decreases to ˆ 1/ aκ = , the torsion τ  grows to its maximal 
value 1/ a  (Fig.4). It corresponds to maximal value of the soliton’s 
translational velocity (7.6): 
 υ  ≤  2 / aν  (7.7) 

0

5

1 0

1 5

2 0

0

5

1 0

1 5

2 0

0

5

1 0

1 5

2 0

 
Fig. 5. The loop-shaped soliton on a vortex filament at 

=κτ ˆ/ 0.23 (bottom) and =κτ ˆ/ 1.1 (top). 
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In this range of the delocalization 
 ˆ/τ κ  < 1  
The filament is convolved into the loop (Fig.5, bottom) and the 
direction of its rotation coincides with that of the vorticity of the 
unperturbed filament. 

Further, as the disturbance delocalizes from a  to ∞ , the torsion 
drops from 1/ a  to the zero (Fig.4). In this range 
 ˆ/τ κ  > 1  
The loop is unfolded (Fig.5, top) and thus the rotation becomes 
opposite to the vorticity. 

When ˆ 0κ → , we have 0τ → . In this event 
 << τ  (7.8) 
and, in accord with (4.7), the curve tends to an asymptotic helix. This 
is the humped helix approximated by the wave packet (6.1). The 
asymptotic helix rotates steadily around the x  axis with the angular 
velocity (4.9) 2ω ντ= . 

Differentiating (2.5) with respect to l  and using formula (2.1), we 
get a positionally invariant form of the motion law 

 
2

2t l
ν

∂ ∂
= ×

∂ ∂

e e
e   

It was shown rigorously [7] that with (2.2), (2.3) this equation can be 
transformed to the nonlinear Schroedinger equation 

 
2

2
1

22

i
t lν

∂Φ ∂ Φ− = + Φ Φ
∂ ∂

 (7.9) 

under the substitution 
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0

exp
l

i dl tκ τ ω
  

Φ = −  
   

∫  (7.10) 

where constω =  is the energy integral of motion. 
When 

 κ  << τ   
the second term in the right-hand side of (7.9) can be neglected and 
the equation linearized to (5.2). In this event 

 Φ → ( )2exp i x tϕ κ τ ντ = −   (7.11) 

where 2aκ τ→ . So, the wave function takes the meaning of the helix 
rotation velocity (4.8). 

8. Integrals of motion 
With (7.10) equation (7.9) can be presented in the quasihydrodynamic 
form 

 
( )

0
t l

ρυρ ∂∂ + =
∂ ∂

 (8.1) 

 
( ) 2

2 2 2 21
22

ln
0

t l l

ρυ ρ
ρυ ν ρ ν ρ

∂  ∂ ∂
+ − − = ∂ ∂ ∂ 

 (8.2) 

where 

 
22ρ κ= = Φ  (8.3) 

 2υ ντ=  (8.4) 
Through (2.4), the part ε  of the kinetic energy of the fluid due to 

distortion of the vortex filament is given by 
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 ε = 21
2 u dlς =∫ 2 21

2 dlςν κ =∫ 21
2ςν ρ∫ dl  (8.5) 

where ς  stands for linear density of the fluid along the filament and 
(8.3) was used. The energy ε  has the meaning of the self-energy of 
the disturbance and can be interpreted as the mass mε  of this 
disturbance. By virtue of the continuity equation (8.1), this quantity is 
conserved: 

 
t

ρ∂
∂ ∫ 0dl =   

Thus, the density of the distribution of the distortion energy along the 
vortex filament corresponds to the linear density of the space 
distribution of the soliton’s mass mε : 

 
21

2 u
mε

ς
ε

=   
21

2mε
ςν ρ
ε

 (8.6) 

In these terms, the flow of the distortion energy along the filament 

 21
2ςν ρυ   

acquires the meaning of the soliton’s local momentum. From the 
dynamic equation (8.2) you see that the total momentum of the 
soliton is conserved: 

 
t

ρυ∂
∂ ∫ 0dl =  (8.7) 

Next, using (8.6), the soliton’s translational energy can be considered 

 
21

221
2tE m dlε

ςν ρ υ
ε

= ∫  (8.8) 

The contribution of the diffusion flow 
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 w
l
ρρ ν ∂= −

∂
  

should be also taken into account. In the nonlinear case, we must 
include into the integral the term from (8.2) of the binding energy 

 2 21
2ν ρ−   

Then the total energy is conserved: 

 ( )2 2 21
2 w

t
ρ υ ν ρ∂ + −

∂ ∫ 0dl =   

We may also add to the dynamic equation (8.2) the density of the 
external force. For the potential force it looks as 

 
( ) 2

2 2 2 21
22

ln
0

U
t l l l

ρυ ρ
ρυ ν ρ ν ρ ρ

∂  ∂ ∂ ∂
+ − − + = ∂ ∂ ∂ ∂ 

  

When the potential ( )U l does not depend on the time, the following 
quantity is conserved 

 ( )2 2 21
2 w Uρ υ ν ρ + − + ∫ dl   

Thence, the nonlinear Schroedinger equation with the potential 
energy U  should be written as 

 
2

2
1

22 2

1i
U

t lν ν
∂Φ ∂ Φ− = + Φ Φ − Φ
∂ ∂

 (8.9) 

Substituting (7.5) to the second integral in (8.5), we get the 
soliton’s self-energy: 

 ε = 2 ˆ4ςν κ  (8.10) 

The soliton’s translational energy tE  is easily found substituting (8.4) 
with constτ =  to (8.8): 
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2 2

21
2t

2
E mε

ν τ ςν ρ
ε

= ∫ dl   

Then, using in this expression (8.5), we get 

 2 2
t 2E mεν τ=  (8.11) 

In asymptotics, when ˆ / 0κ τ → , relation (7.2) reduces itself to 

 2ˆ2 aκ τ=  (8.12) 
Then we have for (8.10) 

 2 22 aε ςν τ=  (8.13) 

You see that the expression (8.13) for the fluid energy coincides with 
that (8.11) for the soliton’s kinetic energy if we take for the mass of 
the asymptotic soliton 

 m aε ς=  (8.14) 

That enables us to identify the energy integral of motion of the 
asymptotic soliton with the real energy of the fluid motion, and the 
mass of the soliton – with the real mass (8.14) of the fluid. 

9. Particle 
In this section we will demonstrate with a simplified model that there 
exists a singular unique size of the loop-shaped soliton on a vortex 
filament. The redundant segment (7.4) of the filament, needed in 
order to form the curvilinear configuration on the originally straight 
line, brings with itself the energy of the fluid motion 
 2aξ  (9.1) 

where ξ  is the energy density on a unit length of the filament. The 
energy of distortion associated with the loop is given by (8.10). For the 
plane configuration of the loop it equals to 
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28

a
ςνε =  (9.2) 

where (7.2) with 0τ =  was used. Summing (9.1) and (9.2), we find 
the total energy of the fluid associated with the loop as a function of 
the redundant length 2a : 

 
28

2a
a

ςνξ +  (9.3) 

This function has a minimum at 

 

1
2

2a
ςν
ξ

 
=  

 
  

which determines the singular size of the loop. The same is valid with 
respect to the vortex ring obtained from the loop by reconnection of 
the filament at the point of intersection. 

For visuality, let us reproduce the whole argumentation for the 
vortex ring. The fluid energy associated with the length is evaluated 
by 
 2 Rπ ξ   

where R  is the radius of the ring. Its curvature is given by 

 
1
R

κ =   

So, the energy of distortion associated with the ring can be found 
from the integral in (8.5) as 

 
2

21
2

1
2 R

R
ε ςν π =   

  

Then the total energy is given by 
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2

2 R
R

πςνπξ +   

Comparing it with (9.3), wee see that a  has the meaning of the loop’s 
diameter. 

The filament is taken in the current model as the idealization of the 
vortex tube. In the perfect fluid the vortex tube is hollow inside. So, 
the curvilinear configuration of the tube – the helix, the loop or the 
vortex ring – just corresponds to the inclusion of a redundant void in 
the discrete structure of the vortex sponge. That agrees well with the 
mesoscopic mechanical model of a particle [3, 4]. Although, the mass 

2aς  of the redundant segment (7.4) of the vortex tube appears to be 
twice the mass of the disturbance that is computed using the formula 
(8.14) for asymptotic helix. 

As you see, provided that the strength of the vortex tube is fixed, 
the construction described ensures the discreteness of a nonlinear 
configuration in the structure of the vortex sponge. 

A plane loop on a vortex filament can’t be split into smaller plane 
loops without the input of some fluid energy. Indeed, let it be divided 
into two parts α  and 1 α− , where 1 > α  > 0. As you see from (9.1), 
(7.4) the energy of the background is additive and thus does not 
change in splitting. Whereas the energy of disturbance computed with 
(9.2) will increase: 

 
1 1

1α α
+

−
 > 1  

However, the plane loop can be split into non-planar solitons i.e. 
into waves. This process needs some increase in the secondary 
integral of energy (8.8). Thus, we have from (7.2) that the plane loop 
with the curvature κ  (7.5) can be split into m  waves with the 
curvature / mκ  and for m  >> 1 with the torsion ˆτ κ≈ . According to 



 Apeiron, Vol. 8, No. 2, April 2001 22 

© 2001 C. Roy Keys Inc. 

(7.6), a non-planar soliton moves translationally with the velocity 
2ντ . Requiring the conservation (8.7) of the momentum, we find that 
the splinters will move in opposite directions. 

In asymptotics, when / 0κ τ → , we have (8.13) instead of (9.2). 
Now the distortion energy is additive with respect to division of the 
redundant segment (7.4). So, the helix can be split as a classical mass 
body. 

10. Elementary helix 
As you see in (7.7), the velocity of the given soliton is restricted from 
the above by 

 max 2 / aυ ν=   

(Fig.4). In its turn, maxυ  is restricted by some fundamental constant c , 
which must be the speed of the perturbation wave in the turbulent 
medium: 

 maxυ ≤  c   

That implies 
 a  ≥  2 / cν   
Thus we come to the concept of the elementary inclusion, having the 
minimal size of the redundant segment 

 0 2 /a cν=   

It probably exists only as an asymptotic helix. In this model c  
corresponds [2] to the speed of light in vacuum. 

On the other side, the condition (7.8) of the asymptotic case can be 
written as 

 
ˆ2κ

τ
 ≤  β  << 1  
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where β  is an upper bound for the asymptoticity. Combining it with 
(8.12), (7.6) gives 

 υ  ≤  
2
a
ν β   

That shows that the domain of velocities, for which the linear 
Schroedinger equation is valid, broadens with the decrease in the 
length of the redundant segment (Fig.4, the left side). 

So, in order to increase the maximal velocity of the disturbance, 
we must divide the inclusion of the redundant segment 2a  into parts. 

11. Thermalization 
Supposedly, under the action of the stochastic medium the soliton on 
a vortex filament splits into the elementary helices above mentioned. 

We see the thermalized soliton as a system of m  identical 
segments 0 /a a m=  each of which obeys the linear Schroedinger 
equation (5.2). From it a single many-body equation can be formally 
composed 

 
2

2
1

m

n n

i
t x

ν
=

∂Ψ ∂ Ψ=
∂ ∂∑  (11.1) 

where the function Ψ  is given by the product of the forms (7.11) 

 ( )2

1

exp
m

n n n n
n

i x tκ τ ντ
=

 Ψ = − ∏  (11.2) 

Passing in (11.1) to the center point variable 

 
1

1 m

n
n

x x
m =

= ∑  (11.3) 

we may get via the well-known procedure the equation 
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2

2i
t m x
ψ ν ψ∂ ∂=
∂ ∂

 (11.4) 

This rather a formal result can be visualized if we consider the 
phase of the wave function (11.2), which is taken for m  helices with 
equal values nτ τ=  of the torsion: 

 

( ) ( ) ( )22 2 2

1 1

m m

n n n n
n n

x t x m t m x m t kx k t
m m
ν ντ ντ τ ντ τ τ

= =

− → − = − = −∑ ∑
 (11.5) 
where 
 k mτ=  (11.6) 
and x  is given by (11.3). 

Provided that the length 02a  of an elementary segment is constant, 
the number m  of elementary constituents involved in soliton can be 
taken as a measure of the soliton’s mass, the real mass being 

 0m a m aε ς ς= =   

where (8.14) was used. Then the quantity k  above defined (11.6) can 
be taken as a measure of the soliton’s momentum 

 0 02 2p a a m a kς υ ς ν τ νς= = =   

where (8.4) was used. The frequency term in the phase (11.5) of the 
wave function acquires the meaning of the soliton’s kinetic energy 
(8.11) 

 
2 2

0

0

2
2

p k
E a

m a m
ννς

ς
= =   

In quantum mechanics the constant analogous to ν  is usually 
designated as 
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 0 2
aνς = h

  

12. Collapse 
A fluctuation of the fluid pressure may cause the spatial distribution 
of splinters to re-collect into the original soliton. We describe this 
process phenomenologically adding to (11.1) the pairwise attraction 
between the elementary helices 

 
2

2 2
1

1m

n n

i U
t x

ν
ν=

 ∂Ψ ∂ Ψ
= − Ψ ∂ ∂ 

∑  (12.1) 

where the mass density of the potential 

 ( )
2 ˆ4

ä
m

s q
s q

U x x
m
ν κ

<

= − −∑  (12.2) 

In (12.1) the potential was introduced in the same way as it was done 
in (8.9). In (12.2) the coefficient before the ä- function was chosen in 
accord with (8.10) assuming that the self-energy of the fragment is 
1/ m  of the self-energy (8.10) of the original soliton. 
Equation (12.1) with (12.2) can be resolved exactly. However, it will 
be illuminative to give the scheme based on Hartree approximation 

 ( )
1

,
m

n n
n

x tϕ
=

Ψ = ∏  (12.3) 

where nϕ  is the wave function of a splinter: 

 
2

2
n n

n

i
t x

ϕ ϕν∂ ∂=
∂ ∂
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Compare (12.3) with (11.2). By (8.5), (8.3), the self-energy of the 
splinter is computed via 
 

 
221

2 n ndxςν ϕ∫   

It was taken in (12.2) to be 1/ m  of the self-energy (8.10) of the 
original soliton: 

 2 ˆ4 / mςν κ   

That implies the following normalization of nϕ  

 
2 ˆ8 /n ndx mϕ κ=∫  (12.4) 

 1,2,...n m=   

Substituting (12.3) to (12.1) with (12.2), multiplying it by 

 ( )*

2

,
m

n n
n

x tϕ
=

∏ ndx   

and then integrating over all nx , where 1n ≠ , we get 
 

 ( ) ( )( )2
2 4

1
22

1 2
1

ˆ32

m m mi
m dx

t x
ϕ ϕ ϕ ϕ ϕ ϕ

ν κ
− −∂ ∂− = + − +

∂ ∂ ∫   

Taking 

 ( ) ( )1
21 exp om i tφ ϕ ω= − −  (12.5) 

where 

 
( ) ( ) 4

0

1 2
ˆ32

m m m
dxω ν ϕ

κ
− −

= ∫   

we come to 
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2

2
1

22

i
t x
φ φ φ φ

ν
∂ ∂− = +
∂ ∂

  

This equation coincides with (7.9) when l x→  i.e. when κ  << τ . 
Take notice that for 
m  >> 1 (12.5) with (12.4) gives the following normalization of the 
wave function φ : 

 
2

1
2 ˆ4dxφ κ=∫   

Compare it with (8.10) obtained from (8.5), (8.3) with (7.5) 

 ε = 221
2 dlςν Φ∫ = 2 ˆ4ςν κ   

So, the quantum definition of the particle’s mass given in section 11 
agrees with its mechanical definition given in section 8. 

Similar results can be obtained in a simpler model: if we take in 
(12.2) 1,s =  2,...,q m= . 

The choice of the place or splinter, where the soliton will be re-
collected, is the competence of a more general model of the 
measurement, which the above scheme should be included in. One 
may expect that it is probabilistic and the probability density is 
proportional to local decrease in the fluid pressure. By hydrodynamics 
[3] the decrement of the pressure equals to the increase in the energy 

density i.e. it is proportional to
2ψ  from (11.4) or similar equation. 

13. Spin 
There are two kinds of the helix differed in the sign of the torsion τ . 
The right-hand screw helix (Fig.2, bottom) is described by (4.1) 
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( )

( )
cos

sin

y a x

z a x

τ

τ

=

=
 (13.1) 

with τ  > 0. The left-hand screw one (Fig.2, top) is described by 
(13.1) with τ  < 0. According to  (4.8), the helix rotates around the x  
axis with the velocity 

 ( )2 sina xντ τ= u ( )2 cos xτ−i ]3i  (13.2) 

As you can see from it, both kinds rotate in one and the same 
direction—counter to the direction of the filament’s vorticity, which 
in (13.2) was chosen such as to coincide with direction of the x  axis. 

According to (7.6), or (6.2), the helix moves translationally with 
the velocity 
 2υ ντ=   
That is, the right-hand screw helix travels in the direction, which the 
filament’s vorticity points to. While the left-hand screw helix goes in 
the opposite direction. 

In three dimensions we deal with the ideal fluid pierced in all 
directions by the vortex filaments [5]. Macroscopically (to be fine, 
mesoscopically) this system looks as a turbulent ideal fluid. 
Perturbations of the turbulence was shown [2] to reproduce the 
electromagnetic fields. In particular, the average fluid velocity u  
corresponds to the magnetic vector-potential. The rotation of the 
soliton is seen macroscopically as a singularity—the center of torsion 
in the quasielastic  medium. It corresponds to a magnetic dipole ì . 
The energy of its interaction with the external vorticity field is given 
by 

 curl− ⋅ì u  (13.3) 
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The fluid vorticity curl u  just corresponds to the magnetic field. 
Let two kinds of the helices move in the turbulent substratum from 

the left to the right. The first helix (Fig.6, bottom) is right-hand screw 
and hence it moves along a filament whose vorticity is also directed to 
the right. The other helix (Fig.6, top) is left-hand screw. So, it moves 
to the right along a filament whose vorticity is directed opposite to 

ì

v

ì

v >< ucurl

 
Fig. 6. A right-hand screw helix (bottom) and left-hand screw helix 
(top) traveling from the left to the right in the vortex sponge 
through an inhomogeneous field of fluid vorticity curl u . Arrows 
on the filaments indicate the direction of their vorticity, v  shows 
the direction of the translational motion and ì  the rotational 
moment of the helices. 
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direction of the motion. The question is how an observer may 
distinguish between these two cases? 

It can be done imposing on them the external field of fluid 
vorticity curl u . So, we have the conditions of the Stern-Gerlach 
experiment. The vertical arrow at Fig.6 just shows the fluid vorticity 
directed and growing from the bottom to the top. This 
inhomogeneous vorticity field will deflect the traveling helices such 
as to diminish their energy in accord with formula (13.3). In order to 
change somewhat the direction of its motion, a helix must jump over 
to the adjacent filament with similar but slightly different direction of 
vorticity. Thus, the helices will behave themselves in the same way 
(see Fig.6) as spin particles in the real Stern-Gerlach experiment. 

14. Concluding remark 
The mechanical model above constructed reproduces the main 
features of a microparticle including its discreteness. However, there 
is a point that should be still elucidated. This is the discrete structure 
of the vortex sponge i.e. the fixed strength of the intrinsic vortex tube, 
or filament. At the time being, it is taken as a postulate. 
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