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The small amplitude-to-thread ratio helical configuration of a
vortex filament in the ideal fluid behaves exactly as a de
Broglie wave. The complexvalued agebra of quantum
mechanics finds a simple mechanical interpretation in terms of
differential geometry of the space curve. The wave function
takes the meaning of the velocity, with which the helix rotates
about the screw axis. The helices differ in type of the screw—
right or left-handed. Two kinds of the helical waves deflect in
the inhomogeneous fluid vorticity field in the same way as
spin particles in the Stern-Gerlach experiment. The helix
represents the low curvature asymptotics of a loop-shaped
soliton, the latter being governed by the nonlinear
Schroedinger equation. The length of the redundant segment,
needed in order to form a curvilinear configuration on the
originaly straight vortex filament, measures the mass of a
particle. The unique size of the loop on the vortex filament can
be determined by the balance between the energy of the
redundant segment and the energy due to the curvature of the
loop. The translational velocity of the soliton has the
maximum at a value, which is inversely proportional to the
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length of the redundant segment. Insofar as the maximal
velocity of a soliton is restricted from the above by the speed
of the perturbation wave in the turbulent medium (i.e. the
speed of light in vacuum), there must be a minimal redundant
segment. Its length correlates with the Planck’s constant. In
the stochastic environs a loop-shaped soliton disintegrates into
the collection of the elementary asymptotic helices. An
asymptotic helix obeys the linear Schroedinger equation with
no dependence on mass. The mass of the particle appears
explicitly when we describe the motion of the whole ensemble
of the elementary splinters.

Keywords quantum physics, ideal fluid, line vortex, soliton.

1. Introduction

elow, the earlier suggested [1] mechanica analogy for
guantum particle is further developed. A helical wave on a

vortex filament in the idedl fluid is consdered. It is shown to
obey the linear Schroedinger equation. Other properties of a vortex
filament aso reproduce the specific features of a quantum object.
This work is a condtituent of the whole project amed at
constructing a regular mechanical analogy of physical fields and
particles. The approach is based on the concept of a substratum for
physics. The substratum is a universal medium serving to model the
waves and action-at-adistance in vacuum. This medium is viewed
mesoscopically as a turbulent ideal fluid. Perturbations of the
turbulence moddl physicd fields. In this way the equations were
derived that reproduce exactly [2] the Maxwell’s electromagnetic
equations. The voids in the fluid give rise to dilatationa inclusons,
which serve asamode [3, 4] of charged particles. Microscopically
the turbulent substratum is sen as the vortex sponge. The latter is
postulated as an ideal fluid pierced in all directions by the straight
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vortex tubes [5]. The hollow vortex tubes will be treated further as
vortex filaments. We will consider a one-dimensional model of the
vortex sponge with some recourse to higher dimensions. The
microscopic construction presented here agrees well with respective
mesoscopic models.

2. Vortex filament

The motion of an isolated vortex filament is governed by a
dependence of the velocity u of the vortex filament’s liquid element
on the local form of the curve. To express such alaw andytically one
needs to describe the vortex filament as a space curve in the usud
Frenet-Serret frame.

Firg, apoint on aspatid curve is defined by the position vector r ,

which is a function r (1) of the length | measured from a fiducial
point along the curve. For a moving curve, there is a further
dependence r (I,t) on thetime t. Excluding information about the
curve' s space position, the local form of the curve is fully specified by
its curvature k (I,t) and torsion t (I,t). The latter are defined
through the two unit vectors, a tangent

e(1,1) =¥T—: (21)

n(l,t)
(Fig.1), by the Frenet- Serret formulae

kn=Je 2.2)

l

and principa normd
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u

Fig. 1. The drift U of a bent vortex filament in relation to its
curvature KN and vorticity €.

1(e” n)
bl
=1, |n|=1

The motion of the vortex filament without stretching is described
in these terms by the Arms’ equation

(23)

i ,
[,t)=— =nk 2.4
u(l,t) e nke’ n (2.4)

where n gtands for the coefficient of local self-induction and e is
assumed to be paralld to the filament’s vorticity vector (Fig.1; for a
rigorous derivation see [6]). Using (2.1), (2.2), equation (2.4) can be
rewritten in the straightforward form
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3. Small disturbances

Let the filament be directed dong the x axis. We will seek asolution
to (2.5) in the form r(x,t) as small disturbances of the rectilinear
configuration. That implies

Ty (1] (TPy| |T°z
™ [1x [ e
On this account, the corresponding quadratic terms will be further
neglected throughout. So, we have for the arc's element

1/2

2
Ty <1

ays aéTZo
+ dx » dx
31 §Tx Bﬂx :
and (2.5) can be rewritten as
T _ I 1
R L 3.1
it ﬂx Tx? (.1)
We have
r(xt)=x,+ y(x,t) i, + 2(x,t)i,
r_ z.
Tr_ T 7y ‘H Z;
o 0 2 g 's
That givesfor (3.1)
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Ir__..aly Tz 6
T =ni, o |2+'ﬂx2 |3;) (3.2

Insofar as
il' (yi2+2i3):_2i2+yi3 (3.3)

the right-hand side of (3.2) does not contain the i, component. That
enables us to drop the respective term in the left-hand side:

2 2,
ﬂl2+El3:nllla-[_>2ll2+El39
1t Tt é Tx % g

The latter form is convenient for further gpplications. So, it can be
taken as the basic equation for small disturbances of the vortex
filament in the ided fluid.

The simplest shape for the initia configuration of the filament is
given by a curve with constant curvature kK and t torsion. Below, it
will be treated in two representations, which are equivalent to each
other. First, we will discuss it in vector form as implied by the
equation (3.4).

(34)

4. Vector mechanics

We condder aright-hand screw hdlix positioned adong the x axis:

=acos(x/b
= acos(x/b) (4.)
z=asin(x/b)
where a> 0 isthe amplitude and b> 0 the thread (or pitch) of the
helix (Fig.2). This curve can be suggested as a small perturbation of
the straight line if we take

a<<b (4.2
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Fig. 2. The right-hand screw helix (bottom) and the left-screw
helix (top) in relation to the X axis. The XZ projection of (4.1) or
(13.1) is shown.

That givesfor (2.1)-(2.3) neglecting the small quantity a’ /b*:
r =xi, +acos(x/b)i,+asin(x/b) i,

di =|dr|=(1+a%/b?) " dx » dx
e=i, +%g- sin(x/b) i, +cos(x/b) i,]

a

kn=- Fgcos(x/b) i, +sin(x/b) i) (4.3)
e n=(a/b) i, +sin(x/b)i,- cos(x/b) i, (4.9
tn=- ﬂ(:““ n)_. %gcos(x/b) i, +sin(x/b) i,]
Therefrom, the curvature of the asymptotic hdlix is

k =alb? (4.5)
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and the torsion

t =1/b (4.6)
In these terms, the relation (4.2) looks as

K <<t (4.7)

It is implicit here that the direction of the filament’s vorticity
coincides with the vector e. Hence, the motion of the filament can be
caculated using (2.4). Subgtituting to it (4.4) with (4.5), (4.6) and
neglecting the small velocity component along the x axis, we get

u=ant *gsin(t x) i,- cos(tx) i, (4.8)
So, the helix rotates counterclockwise around the x axis (looking
aong the x axis) with the constant angular velocity
w =nt ? (4.9)
With account of the angular displacement, the initia relation (4.1)
should be improved

y = acos(t x- nt *t) @10
z:asin(tx - nt 2t)

This provides the solution to the basic equation (3.4).

5. Schroedinger equation

Y ou see from the above that when at << 1 the motion of the vortex
filament reduces itself to a plane vector mechanics. By virtue of this,
relations (4.10) can be represented as a complex function j (x,t) of

real variables:
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i (xt) :agcos(t X- nt 2t) +i sin(tx - nt 2t)gzaexpgi (t X- nt 2t)B(S.l
In this connection, the vector form (3.3)

i (yi,+4d,)=-27i,+Vi,
which the equation (3.4) is based on, corresponds to the relation for
complex values

i(y+iz) =- z+iy
That puts (3.4) into the form of the Schroedinger equation
. ”

(5.2)

where
i =y(xt)+iz(xt)

Equation (5.2), or (3.4), has the smple geometrical meaning. In a
helix the principd normd n laysin aplane, which is perpendicular to
the x axis, and it isdirected to the x axis (see (4.3)). When at << 1,
the tangent e isamost paralld to the x axis. So, in order to get from
it the self-induction velocity (2.4), we must merely rotate n at the

angle p /2 counterclockwise around the x axisif looking against this
axis. In terms of complex values, the curvature

2-
kn:ﬂt
fIx

The operation

ikn
corresponds to the above mentioned rotation of n. The self-induction
velocity is
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u=—

1t
Here] , n and u are complex valuesand x, t, Kk red values.

6. The wave packet

So, the asymptotic solution above discussed can be represented in the
form of the hypercomplex vaue r :

r(x,t) =ix+j (xt)
where x, t are real vaues. According to the above found, the

complex-valued function j (x,t) can be expanded into the sum of
harmonics

i (xt)=¢p(t)expd (tx-nt %)yt
As usud, taking this integral in the range [t - Dt ,t,+0t |, we get
the wave packet
sing(x- Mt ,)ot
(x- nt,)ot

(Fig.3). The hump of the wave packet moves trandationaly with the
velocity

exp§ (tox- nt Ozt)g (6.1)

u=t, (6.2)

The remarkable feature of this phenomenon is that the motion of
the hump is owing to the rotation of an individua helix with the
angular velocity nt ? but not because of its longitudinal motion. This
isthe effect of ascrew! A bolt is screwed into anut due to rotation. In
generd, the velocity u of screwing in depends on the thread b as
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-1 0

Fig. 3. A wave packet (6.1).

w b. From (4.9), (4.6), for the vortex helix w ~ 1/b”. Therefore, u

~ 1/ b, that isin accord with (6.2).

Asyou will seefurther, the wave packet gives us an approximation
for asymptotic solution to nonlinear equation (2.5) constructed from
the solutions to corresponding linear equation (3.4).

7. Soliton
The equation (2.5) possesses [ 7] the following exact solution r (1,t):
r=xi+yi,+1z,
x=I1- atanhh (7.2)
y+iz=asechh exp(iq)
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where
a=X/(K*+t?) (7.2)
h=k&F- ntt9 (7.3)
g 5

q=t I+n(l€2-t2)t
t =const
K =const
Asbefore, n isthe saf-induction coefficient of the vortex filament.
In order to form the curvilinear configuration on the straight line,
one needs an extra segment of the filament, which will be further

referred to as the redundant segment. Its length is easily found
integrating the differential of (7.1) al over the x axis

(‘)jx: (‘jil -a(‘ytanhh
whence
[I- x|, =2a (7.4)

Substituting r (1,t) to (2.2) we find that the curvature of the line is
described by the bell-shaped function

k (I,t) =2K sechh (7.5)
Its parameter 1/K from (7.3) can be used as a measure of the

disturbance' s ddocdization. So, the more the line is curved, the more
the inclusion of the redundant segment (7.4) is localized.

Substituting r (I,t) to (2.3), we find that the parameter t has the
meaning of the curve storsion.
© 2001 C. Roy Keys Inc.
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K
Fig. 4. The torsion t in relation to curvature parameter K plotted
by (7.2) with a=const. Solid line: a=0.1; dashed line: a=0.01.

According to (7.3) the soliton moves steadily aong the vortex
filament with the velocity

u==nt (7.6)
The curve rotates around the x axis with the angular velocity
q ( y+ iZ) /it
( y2 + 2 )%
We may rewrite (7.2) in amore convenient form
(K-1/a)° +t?=1/a2
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5
0 0

Fig. 5. The loop-shaped soliton on a vortex filament at
t /K =0.23 (bottom) and t /K =1.1 (top).

Now, assuming that a is congtant, it is easly seen (Fig.4) how the
longitudinal extension of the disturbance, measured by 1/K , affects
the curve' storsion and the corollaries.

When the disturbance is most locdlized i.e. the curvature is
maximal K =2/a,then t =0 (Fig.4). That is, the curve is plane. It
has the form of a loop. In accord with (7.6) the plane loop is
trandationally at rest. It rotates steadily around the x axis with the
angular velocity w =nkK °.

As the disturbance's spread increases from a/2 to a i.e asthe
curvature decreasesto K =1/a, thetorsion t grows to its maximal
vaue 1/a (Fig.4). It corresponds to maxima vaue of the soliton's
trandationd velocity (7.6):

ufna 7.7)
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In this range of the delocalization
t/k <1
The filament is convolved into the loop (Fig.5, bottom) and the
direction of its rotation coincides with that of the vorticity of the

unperturbed filament.
Further, as the disturbance delocdizes from a to ¥ , the torson

dropsfrom 1/a to the zero (Fig.4). In thisrange

t/k >1
The loop is unfolded (Fig.5, top) and thus the rotation becomes
opposite to the vorticity.
When K ® 0,wehavet ® 0. Inthisevent
<<t (7.8

and, in accord with (4.7), the curve tends to an asymptotic helix. This
is the humped helix gproximated by the wave packet (6.1). The
asymptotic helix rotates steadily around the x axis with the angular
velocity (4.9) w=nt ?.
Differentiating (2.5) with respect to | and using formula (2.1), we

get apostionaly invariant form of the motion law

fe_ . T%

—=ne —

It ql2

It was shown rigoroudly [7] that with (2.2), (2.3) this equation can be
transformed to the nonlinear Schroedinger equation

_'__:_+}/2|F| F (7.9)

under the substitution
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¢ i
F =kexp§|§ di- wt (7.10)
8 eo 4
where w = const isthe energy integra of motion.
When
k <<t

the second term in the right-hand side of (7.9) can be neglected and
the equation linearized to (5.2). In this event

F®j =kexp§(tx-nt’t)d (7.11)
where k ® at *. So, the wave function takes the meaning of the helix
rotation velocity (4.8).

8. Integrals of motion

With (7.10) equation (7.9) can be presented in the quasihydrodynamic
form

a0 g (8.1)
It 1
T(ru) 1¢ ., , Tinr 5 ,0_
ﬂt +ﬁgr u 1_“—2 }/Zn r H_ (82)
where
r =k ? =|F[ (83)
u=ont (8.4)

Through (2.4), the part e of the kinetic energy of the fluid due to
distortion of the vortex filament is given by
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e= }gv(‘}fdl = %\,hzd@dl = }g\,hzc‘j dl (8.5)

where V gands for linear dendity of the fluid dong the filament and
(8.3) was used. The energy e has the meaning of the self-energy of

the disturbance and can be interpreted as the mass m, of this

disturbance. By virtue of the continuity equation (8.1), this quantity is
conserved:

1.
—q@ d =0
‘th

Thus, the density of the distribution of the distortion energy dong the
vortex filament corresponds to the linear dendity of the space

distribution of the soliton’'s mass m, :

W2 Vh2r
m 2 = g 20T 66
e e
In these terms, the flow of the distortion energy along the filament
“BWru

acquires the meaning of the soliton’s loca momentum. From the
dynamic eguation (8.2) you see that the total momentum of the
soliton is conserved:

7.
—cyud =0 8.7
it (6:7)
Next, using (8.6), the soliton’ s trandational energy can be considered
2
E = 4 om 20y (89
e

The contribution of the diffusion flow
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rw=-n—
q
should be also taken into account. In the nonlinear case, we must
include into the integral the term from (8.2) of the binding energy

_}éan 2
Then the total energy is conserved:
ﬂ—'"t(‘j/zr (u?+w -n?r)di =0

We may aso add to the dynamic equation (8.2) the density of the
external force. For the potertia force it looks as

2| N
fi(r ) ‘He ru?-n?r ) r;r AN ZE+I’ Moo
it ﬂl m a1
When the potentia U (1) does not depend on the time, the following

quantity is conserved
O §4(u+w - n’r )+udd

Thence, the nonlinear Schroedinger equation with the potentia
energy U should be written as

H 2
AT T g F-iUF (8.9)
Substituting (7.5) to the second mtegral in (85), we get the
soliton’'s self-energy:
e=4%XK (8.10)
The soliton’strandational energy E, iseasly found substituting (8.4)
with t =const to (8.8):
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2
e=m 2y d
Then, using in this expression (8.5), we get
E =2mn?? (8.11)
In asymptotics, when K /t ® 0, relation (7.2) reducesitsdlf to
XK=a? (8.12)
Then we have for (8.10)
e=2h%at? (8.13)

Y ou see that the expression (8.13) for the fluid energy coincides with
that (8.11) for the soliton’s kinetic energy if we take for the mass of
the asymptotic soliton

m, =Va (8.14)

That enables us to identify the energy integra of motion of the
asymptotic soliton with the real energy of the fluid motion, and the
mass of the soliton — with the real mass (8.14) of the fluid.

9. Particle

In this section we will demonstrate with a simplified model that there
exists a singular unique size of the loop-shaped soliton on a vortex
filament. The redundant segment (7.4) of the filament, needed in
order to form the curvilinear configuration on the originally straight
line, brings with itsalf the energy of the fluid motion

2ax (9.1)

where x isthe energy dendity on aunit length of the filament. The

energy of distortion associated with the loop is given by (8.10). For the
plane configuration of the loop it equalsto
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8\h?
a

where (7.2) with t =0 was used. Summing (9.1) and (9.2), we find
the total energy of the fluid associated with the loop as a function of
the redundant length 2a:

e= (9.2

(9.3)

This function has a minimum at

a5
a=2
8Xz

which determines the singular size of the loop. The sameis vaid with
respect to the vortex ring obtained from the loop by reconnection of
the filament at the point of intersection.

For visudlity, let us reproduce the whole argumentation for the
vortex ring. The fluid energy associated with the length is evaluated
by

2p Rx
where R istheradius of thering. Its curvatureis given by

k==
R

So, the energy of distortion associated with the ring can be found
from the integral in (8.5) as

\’hza%]-O a:)R
&Ry

Then thetota energy is given by
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2

p\h
X R+
» R

Comparing it with (9.3), wee seethat a has the meaning of theloop’s
diameter.

The filament is taken in the current modd as the idedlization of the
vortex tube. In the perfect fluid the vortex tube is hollow inside. So,
the curvilinear configuration of the tube — the helix, the loop or the
vortex ring — just corresponds to the inclusion of a redundant void in
the discrete structure of the vortex sponge. That agrees well with the
mesoscopic mechanical modd of a particle [3, 4]. Although, the mass
V2a of the redundant segment (7.4) of the vortex tube appears to be
twice the mass of the disturbance that is computed using the formula
(8.14) for asymptotic helix.

As you see, provided that the strength of the vortex tube is fixed,
the construction described ensures the discreteness of a nonlinear
configuration in the structure of the vortex sponge.

A plane loop on a vortex filament can't be split into smaler plane
loops without the input of some fluid energy. Indeed, let it be divided
intotwo patsa and 1- a ,wherel> a > 0. Asyou seefrom (9.1),
(7.4) the energy of the background is additive and thus does not
change in splitting. Whereas the energy of disturbance computed with
(9.2) will incresse:

£+i >1

a 1l-a
However, the plane loop can be split into non-planar solitons i.e.
into waves. This process needs some increase in the secondary
integra of energy (8.8). Thus, we have from (7.2) that the plane loop
with the curvature k (7.5) can be split into m waves with the
curvature k /m and for m >> 1 withthetorsion t »K . According to
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(7.6), a non-planar soliton moves trandaiondly with the velocity

nt . Requiring the conservation (8.7) of the momentum, we find that
the splinters will move in opposite directions.

In asymptotics, when k /t ® 0, we have (8.13) instead of (9.2).

Now the distortion energy is additive with respect to divison of the

redundant segment (7.4). So, the helix can be split asaclassical mass

body.

10. Elementary helix

Asyou seein (7.7), the velocity of the given soliton is restricted from
the above by

U, =2n/a

(Fig4). Initsturn, u_, isredtricted by some fundamental constant c,
which must be the speed of the perturbation wave in the turbulent
medium:

u_£ c

That implies

as nlc
Thus we come to the concept of the eementary incluson, having the
minimal size of the redundant segment

a,=a/c

It probably exists only as an asymptotic helix. In this modd c
corresponds [2] to the speed of light in vacuum.
On the other side, the condition (7.8) of the asymptotic case can be
written as
% £b<<1
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where b is an upper bound for the asymptoticity. Combining it with
(8.12), (7.6) gives

uf &b
a

That shows that the domain of velocities, for which the linear
Schroedinger equation is valid, broadens with the decrease in the
length of the redundant segment (Fig.4, the left Side).

So, in order to increase the maximal velocity of the disturbance,

we must divide the inclusion of the redundant segment 2a into parts.

11. Thermalization

Supposedly, under the action of the stochastic medium the soliton on
avortex filament splitsinto the elementary helices above mentioned.

We see the thermalized soliton as a system of m identica
segments a, =a/m each of which obeys the linear Schroedinger
equation (5.2). From it a single many-body equation can be formally
composed

m 2
W_nd TV (11.2)
ﬂt n=1 ﬂxn
wherethefunction Y isgiven by the product of the forms (7.11)
Py,
= : -nt &)U
Y (n?lknexpgi(tnxn nt ’t)d (11.2)
Passing in (11.1) to the center point variable
X= 1 ax, (11.3)
m

n=1

we may get via the well-known procedure the equation
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Ty _in Ty (11.4)

qt m ﬂx
This rather a forma result can be visualized if we consider the
phase of the wave function (11.2), which is taken for m helices with

equal valuest A =t of thetorson:

g ' e _ n 2, _ n, ,
21(tnxn-ntn2t)®tna:_1xn- e 2=t ) x- ()t = ke Kt
(11.5)

where
k =nt (11.6)

and x isgiven by (11.3).

Provided that the length 2a, of an elementary segment is constant,
the number m of elementary congtituents involved in soliton can be
taken as a measure of the soliton’s mass, the real mass being

m, =Va =mVa,
where (8.14) was used. Then the quantity k above defined (11.6) can
be taken as a measure of the soliton’s momentum
p =Vau =Va,2nnt = hVak

where (8.4) was used. The frequency term in the phase (11.5) of the
wave function acquires the meaning of the soliton’s kinetic energy
(8.12)

In quantum mechanics the congtant anaogous to n is usualy
designated as
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nV.

12. Collapse

A fluctuation of the fluid pressure may cause the spatial distribution
of splinters to re-collect into the origina soliton. We describe this
process phenomenologically adding to (11.1) the pairwise attraction
between the elementary helices
W oineg 10 AANEITV. (12.1)
ﬂt en=1 ﬂ n (4]

where the mass dengity of the potential

2
K g £y a(x. - x,) (12.2)
s<q

In (12.1) the potentia was introduced in the same way as it was done
in (8.9). In (12.2) the coefficient before the & function was chosen in
accord with (8.10) assuming that the self-energy of the fragment is
1/ m of the self-energy (8.10) of the origina soliton.
Equation (12.1) with (12.2) can be resolved exactly. However, it will
be illuminative to give the scheme based on Hartree approximation

Y =i, (%.0) (123

n=1

Us=-

where j | isthe wave function of a splinter:
. ”
T“_” =in 1 2"
it X,

© 2001 C. Roy Keys Inc.



Apeiron, Vol. 8, No. 2, April 2001 26

Compare (12.3) with (11.2). By (8.5), (8.3), the f-energy of the
gplinter is computed via

g | dx,

It was taken in (12.2) to be 1/m of the sdf-energy (8.10) of the
origina soliton:

AVIE AN
That implies the following normaization of j
g . dx, =8&/m (12.4)
n=12,.m
Substituting (12.3) to (12.1) with (12.2), multiplying it by
'm . %
Oij o (x1) dx,
n=2

and then integrating over dl x ,wheren?! 1, we get

BT e [+ gk(m' 2 § I ox

Taking
t =(m-1)%j exp(-iwt) (125)
where
w, =n m(m- 1)( )d|dx
we come to
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i R ki 2
B
X

This equation coincides with (7.9) when | ® x i.e when K <<t .
Take notice that for

m >> 1 (12.5) with (12.4) gives the following normalization of the
wave function f :

%Y |2 dx = &K
Compare it with (8.10) obtained from (8.5), (8.3) with (7.5)
e= 2G| d = An%k

So, the quantum definition of the particle’s mass given in section 11
agrees with its mechanical definition given in section 8.

Similar results can be obtained in a smpler modd: if we take in
(12.2) s=1, g=2,...,m.

The choice of the place or splinter, where the soliton will be re-
collected, is the competence of a more genera modd of the
measurement, which the above scheme should be included in. One
may expect that it is probabilistic and the probability density is
proportional to loca decrease in the fluid pressure. By hydrodynamics
[3] the decrement of the pressure equals to the increase in the energy

density i.e. it is proportiondl toly " from (11.4) or similar equation.

13. Spin

There are two kinds of the hdlix differed in the sign of thetorsion t .
The right-hand screw helix (Fig.2, bottom) is described by (4.1)
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= acos(t x

y _ ( ) (13.1)

z=asin(t x)

with t > 0. The left-hand screw one (Fig.2, top) is described by

(13.1) with t < 0. According to (4.8), the helix rotates around the x
axis with the velocity

u=ant > gin(t x) i,- cos(t x) i,] (13.2)

As you can see from it, both kinds rotate in one and the same
direction—counter to the direction of the filament’s vorticity, which
in (13.2) was chosen such as to coincide with direction of the x axis.

According to (7.6), or (6.2), the helix moves trandationaly with
the velocity

u=nt
That is, the right-hand screw hdlix travels in the direction, which the
filament's vorticity points to. While the Ieft-hand screw hdix goesin
the opposite direction.

In three dimensions we ded with the ided fluid pierced in al
directions by the vortex filaments [5]. Macroscopically (to be fine,
mesoscopicaly) this system looks as a turbulent ided fluid.
Perturbations of the turbulence was shown [2] to reproduce the
dlectromagnetic fields. In particular, the average fluid velocity (u)
corresponds to the magnetic vector-potential. The rotation of the
soliton is seen macroscopically as a singularity—the center of torsion
in the quasidlastic medium. It corresponds to a magnetic dipole i .
The energy of its interaction with the externd vorticity field is given
by

-1 >eurl {u) (13.3)
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<>
Vv ) curl <y

Fig. 6. A right-hand screw helix (bottom) and left-hand screw helix
(top) traveling from the left to the right in the vortex sponge

through an inhomogeneous field of fluid vorticity curl(U). Arrows
on the filaments indicate the direction of their vorticity, V shows
the direction of the translational motion and | the rotational

moment of the helices.

The fluid vorticity curl {u) just corresponds to the magnetic field.

Let two kinds of the helices move in the turbulent substratum from
the left to the right. The first helix (Fig.6, bottom) is right-hand screw
and hence it moves aong a filament whose vorticity is also directed to
the right. The other hdlix (Fig.6, top) is left-hand screw. So, it moves
to the right along a filament whose vorticity is directed opposite to
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direction of the motion. The question is how an observer may
distinguish between these two cases?

It can be done imposing on them the externd field of fluid

vorticity curl (u). So, we have the conditions of the Stern-Gerlach

experiment. The verticd arrow at Fig.6 just shows the fluid vorticity
directed and growing from the bottom to the top. This
inhomogeneous vorticity field will deflect the traveling helices such
as to diminish their energy in accord with formula (13.3). In order to
change somewhat the direction of its motion, a helix must jJump over
to the adjacent filament with similar but dightly different direction of
vorticity. Thus, the helices will behave themsdves in the same way
(see Fig.6) as spin particles in the rea Stern-Gerlach experiment.

14. Concluding remark

The mechanicd modd above congtructed reproduces the man
features of a microparticle including its discreteness. However, there
is a point that should be still ducidated. This is the discrete structure
of the vortex sponge i.e. the fixed strength of the intrinsic vortex tube,
or filament. At the time being, it is taken as a postul ate.
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