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Spreading of Wave Packets, 
Uncertainly Relations and 
the de Broglie Frequency 

H.C.G. Caldas* and P.R. Silva† 

The spreading of quantum mechanical wave packets is studied 
in two cases. Firstly we look at the time behaviour of the 
packet width of a free particle confined in the observable 
Universe. Secondly, by imposing the conservation of the time 
average of the packet width of a particle driven by a harmonic 
oscillator potential, we find a zero-point energy which 
frequency is the de Broglie frequency. 

he quantum mechanical wave-packet spreading is a subject of 
current interest as can be verified in some recently published 
papers [1] and [2]. As pointed out by Grobe and Fedorov [1] 

the ionization of atoms can be suppressed in superstrong fields. This 
phenomenon has been called stabilization and is characterized by 
decreasing probability with increasing laser intensity. The wave-
packet spreading plays a key role in the final degree of stabilization. 
On the other hand, Dodonov and Mizrahi [2] have addressed to the 
“Strict lower bound for the spatial spreading of a relativistic particle 
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“where they provide a strict inequality for the minimal possible 
extension of a wave packet corresponding to the physical state of a 
relativistic particle. 

In this letter we intend to study the spreading of wave-packets in 
two particular situations. In the first case we explore the consequences 
of the finiteness of the Universe in the spreading of a free particle 
wave-packet. In the second one, we want to study the wave-packet of 
a particle described by a one-dimensional harmonic oscillator. As we 
will see this can lead to interesting consequences related to the 
interpretation of the de Broglie frequency of a particle. For a one-
dimensional wave-packet let us define [3]. 

 ( ) 22 2q q q∆ = − , (1) 

 ( ) 22 2p p p∆ = −  (2) 

Where (∆q)2 and (∆p)2 in the above relations are, respectively the 
variances of the quantities q and p, representing the position and the 
momentum of a particle. An interesting interpretation of wave-packet 
spreading can be found in Gasiorowicz [4]. 

As pointed out by Messiah [3], the spreading law for a free wave-
packet turns out to be quite simple if the wave packet is taken to be 
minimum at the initial time, namely: 

 0 0

1
2

q p∆ ∆ = h . (3) 

Besides this, the Heisenberg equation of motion gives in this case: 

 ( )( ) ( ) ( )2
2 2 0 2

0 2  
p

q t q t
m

∆
∆ = ∆ +  (4) 

Now, looking at relation (4) we verify that a lower bound for the 
spreading in the particle localization corresponds to a lower bound on 
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the initial (t=0) variance of the particle momentum (∆po). Can we 
associate this (∆po) minimum with the finiteness of the Universe? In 
the following we are going to look for this possibility. 

In his paper: “Is the Universe a Vacuum Fluctuation?” Tryon [5] 
states that the positive mass energy of a particle could be cancelled by 
an equal amount of negative gravitational energy, due to the 
interaction of this particle with the rest of the Universe. In this way 
the classical mechanical energy of a particle is equal to zero, so that 
the particles are free. However, from the point of view of the quantum 
mechanics, we may permit fluctuations in the energy of this particle. 
Before pursuing further in the calculations we would like to stress that 
if we consider the averaged behavior of a certain particle of the 
Universe (the electron, for instance) we don’t have freedom to 
prepare any kind of wave packets with arbitrary initial conditions. So 
let us consider the uncertainty in time to be equal to the Hubble time 

1
0H − . Now, we write the minimum time-energy uncertainty relation, 

namely: 

 
1

   
2

E t∆ ∆ = h . (5) 

Putting 1
0t H −∆ =  in (5), we obtain: 

 0 1

1
  

2
E H E∆ = ≡h  (6) 

We observe that the Hubble constant is related to the radius of the 
Universe through the equation 

 0
0

c
H

R
=  (7) 

Therefore the lower bound on the kinetic energy of a particle reflects 
the fact that the Universe has a finite radius. We assume that in 
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cosmological grounds each particle has zero total (mechanical) 
energy, but with fluctuations about this zero given by  

 ∆E ≡ ∆E1.  
Now we suppose that the minimum uncertainty in the kinetic 

energy of a particle confined in the Universe corresponds to this 
lowest energy level E1 and we write the equality:  

 
( )2

0
1 0

1
2 2

p
E H

m

∆
= = h  (8) 

By using the relation 0 0p m υ∆ = ∆  , and after solving for 0υ∆  we get: 

 ( ) 0
0

H
m

υ∆ =
h

min  (9) 

The minimum uncertainty in velocity given by (9) can be 
interpreted as a lower bound on a particle velocity. For the electron 
we have ( ) 12

0 4.10 m sυ −∆ =min  . 
From (8), we also have: 

 ( )0 0p m H∆ = h  . (10) 

Putting (10) into (3) ( the minimum uncertainty relation) we obtain  

 ( )0 0
0

1 1
2 2 rcq R

mH
λ∆ = =

h
, (11) 

where 0
0

c
R

H
= is the radius of the Universe and rc mc

λ = h
 is the 

reduced Compton wavelength of the particle. Then we see that, for 
the minimum uncertainty in the momentum, the particle has an 
uncertainty in position which is the geometric average between rcλ  ( 
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a characteristic length of the particle) and R0 ( the radius of the 
observable Universe). Despite this maximum initial uncertainty in the 
position of the particle being very large (it is of the order of 106m, for 
the electron) it is, 1020 times smaller than the radius of the Universe. 
This maximum initial variance of a physical coordinate of a particle 
coupled to the Universe must be compared with its minimum [2] 

which is given by 
1
2 rcλ  . 

Eq. (11) also deserves the following comment. Thinking in terms 
of a hypothetical Universe where R is a variable quantity, we can 
write: 

 ( )0

1
2 rcq Rλ∆ =  . (12) 

In this way the initial variance of a particle position will be able to 
vary from its minimum to its maximum value, with R running from 

rcλ  to 0R .  
Now, if we consider that the initial time corresponds to the present 

time, let us see what happens with the spreading of the maximum 
initial uncertainty wave-packet if we wait a time equal to the Hubble 
time ( )1

0t H −= . Using (4) we get:  

 ( )( ) ( )0
0

5
 5

4Hq t q
mH

∆ = = ∆
h

 (13) 

In obtaining (13), we also used (10) and (11). 
Therefore we verify that if we wait a time equal to the Hubble 

time, the initial maximum variance of a physical coordinate of a 
particle is not substantially modified. 
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We will now look to the second case when we study the spreading 
of a wave-packet of a particle described by a one-dimensional 
harmonic oscillator. 

As pointed out by Messiah [3]: In order that the motion of a wave 
packet may be likened to the motion of a classical particle, it is first of 
all necessary that its position and momentum follow the laws of 
classical mechanics. Also according to Messiah the two most 
interesting cases are those of the harmonic oscillator and the free 
particle, cases for which the motion of the center of the packet is 
rigorously identical to that of a classical particle. Let us turn now our 
attention to the harmonic oscillator case. In a pedagogical paper [6] 
the Heisenberg representation was used as a means to study the 
spreading of wave-packets in some simple examples. For the 
harmonic oscillator, whose hamiltonian is given by: 

 
2 2

2

2 2
p q

H m
m

ω= + , (14) 

the evolution in time of the width in the position distribution is given 
by [6]: 

( )( ) ( ) ( ) ( )
( )

( )
2

2 2 02 2
0 2 0 0 0

1
cos sin

2

p t
q t q t t qp pq q p

m
ω ω

ω

∆  ∆ = ∆ + + + −  
 (15) 

Now let us make the requirement that the variance in the position 

( )( )2
q t∆  averaged in time will be conserved. Then we have:  

 ( ) ( ) ( )
( )

( )
2 2

2 20 0
02  average

1
 

2 2time
q p

q t q
mω

∆ ∆ ∆ = + = ∆  , (16) 
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where we have averaged ( )( )q t∆  in a period of time equal to 

2
T

π
ω

=  . Relation (16) implies that:  

 ( ) ( )0 0p m qω∆ = ∆ . (17) 

Putting (17) into the minimum uncertainty relation (3), we obtain: 

 ( )2
0

1
2

m qω ∆ = h  (18) 

Mutiplying both sides of (18) by ω, we get: 

 ( )22
0

1
2

m qω ω∆ = h . (19) 

On the order hand, for a classical harmonic oscillator of amplitude 
A, we can write: 

 ( ) ( )cosclassq t A tω= . (20) 

The above relation leads to: 

 ( )
2

2

  
2

class timeaverage
A

q t ∆ =  . (21) 

Making the requirement that the classical variance to be identified 
with the quantum variance ( )0q∆  , we obtain 

 ( )22 2 2
0

1 1
2 2

m q m Aω ω ω∆ = = h  (22) 

Second and third terms of equation (22) show a classical harmonic 
oscillator which mechanical energy is equal to the zero-point energy 
of the corresponding quantum oscillator.  

An interesting consequence of relation (22) is obtained when we 
make the maximum velocity of the particle undergoing classical 



Apeiron, Vol. 8, No. 1, January 2001 

© 2001 C. Roy Keys Inc. 

harmonic motion to be in magnitude equal to the speed of light c. 
Putting ωA = c in equation (22), we get 

 2
dBmc ω ω= ≡h h  . (23) 

and  

 A
mc

= h
  24) 

Therefore we see that (23) reproduces the definition of the de 
Broglie frequency [7] implying also that the classical amplitude of the 
oscillator to be equal to the reduced Comptom wavelength. The 
driving force amplitude of this oscillator is given by: 

 
2 3

2
1

m c
F m Aω= = h  . (25) 

It can also be interpreted as a string constant. Some numerical 
estimates of it gives order of magnitudes of 10-1N for the electron and 
105N for the nucleons (protons or neutrons). The fact that the force F1 
is proportional to the squared mass of the particle and that is can be 
defined for electrons, protons, neutrons or any other kind of 
elementary particles, lead us to think in the only common kind of 
interaction experimented by these various particles, namely: the 
gravitational interaction. If we multiply and divide equation (25) by G 
(the gravitational constant), we obtain:  

 
2

1 2
P

Gm
F

λ
= . (26) 

where 

 2
3

 
P

G
c

λ = h
 (27) 

is the square of the Planck radius. 
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In conclusion, we would like to take into account the following 
considerations [8]: It was pointed out by Penrose [9] that the existence 
of accurate clocks is ultimately due to the fact that each particle of 
mass m has associated with it, a natural frequency dBω  given by the 

Einstein-Planck’s law 2
dBE mc ω∆ = = h . 

Therefore we can associate this natural frequency with the de 
Broglie frequency, with the driving force behind this clock being 
attributed to the internal degree of freedom of the particle described 
by a harmonic oscillator potential. The same conclusion was reached 
by one of the present authors [10] starting from other initial 
assumptions. 
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