A Compensating Term for the
‘Side Force Component’ Term in
the Barometric Equation

Donald Gilbert Carpenter”

The derivation of the barometric equation concerns central forces in three di-
mensions. It has recently been shown that the sum of the incremental volume’s
side force components in the direction of the center of gravity (the

é- 2p/ z)(Dc)(E)/)(Dz)g force) must be included in the Cartesian derivation.

That results in the side force component term (- 2p/ z) being added to the dif-

ferential equation, or dp/ dz =- gNmMG/ zz) + (2 p/ z)H Meteorological data

does not, though, conform unambiguously to the corrected barometric equa-
tion. This implies that an approximately compensating term might exist. Such a
term results from consideration of the central force due to atmospheric particle
random motion perpendicular to the radial from the center of gravity in a cen-

tral force field (the §+(2(f)p/3z)(Dx)(Dy)(De)f force, where “/” represents
the degrees of freedom). The more-complete barometric equation is:
dp/dz =- (NmMG/2*) +g(f - 3) p/3z.
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1. Introduction

Newton’s' derivation of the barometric equation contains an important inconsistency” in his
treatment of central forces. He started by erecting constant cross-section, flat-bottomed cylin-
ders that extended radially away from the primary’s surface. These cylinders were of very
small, rectangular, cross-sectional area, and were in contact with each other at the surface so
that none of the surface remained uncovered. This divided the fluid into two parts, one part was
within the cylinders and the other part was without. Newton claimed that the part of the fluid
not within the cylinders was held up archwise and contributed nothing to the pressure within the
constant cross-section cylinders. He ignored his own third law, that for every action there is an
equal and opposite reaction. If the sides of the imaginary cylinders hold up the ‘without” fluid
archwise, the ‘without’ fluid must apply a pressure to the cylinder walls. The pressure against
any incremental area of a cylinder’s wall produces a force that has a component in the direction
of the center of gravity. Newton failed to include those force components in his derivation.
When this inconsistency, which led Newton' to an incomplete form of the barometric equation,
is corrected we obtain®
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dp _ a&VmMG 6, é2(f - 3)pu

—_—=- =+ 1 M

dz 8 2 5 & 3z
where p is the atmospheric pressure, z is the vertical height above the center of gravity, NV is the
number of molecules per unit volume of atmosphere, m is the mass of a molecule, M is the
mass of the primary (planet or other body), G is the gravitational constant, the atmosphere
consists of only one type of molecule, and the positive direction is away from the center of
gravity.

Despite the absolute value of the additional term being of the same order of magnitude or
greater than the centrifugal force at Earth’s surface, measurements of the earth’s atmosphere do
not reveal the effect of this additional term. This could be due to instrumentation not yet suffi-
ciently accurate and precise to detect the difference, or it could be that the additional negative
term is approximately balanced by a comparable positive term not yet considered. This latter
possibility suggests there might be yet another important physical condition not used by New-
ton. That possible condition must yield a central force which is directed radially away from the
center of gravity.

The purpose of this paper is to investigate the concept that random motion of atmospheric
molecules provides the approximately compensating term.

2. Theory

The obvious candidate for the approximately compensating term is the acceleration experi-
enced, with respect to the center of gravity, by a particle with a component of its velocity per-
pendicular (v, )to a radial () connecting the particle and the center of gravity. That effect

yields an (mvf ) / r force magnitude. In the Cartesian coordinate system, the magnitude of this
outward force would be (va2 ) / z.

The magnitude of the outward force due to translational motion of the particles in the in-
cremental volume is

(vafA)
Fie =2 ([D)(O)(D), @)

where (wa2 y ) is the average of the squares of the speeds, perpendicular to the radial from the

center of gravity, of all of the particles in the incremental volume.
To make equation (2) compatible for combination with the magnitudes of the other forces

used to derive equation (1), I express it in terms of pressure (p). (vaA2 4 ) / z can be changed to
a more useful form by using the ratio of (vA2 4 ) / (vf1 ) , where (vf1 ) is the average of the squares

of the speeds of all of the particles in the incremental volume.
Start by finding (vf1 ) .

v o (WU (2p)(si;W)(dW)(dv) 3)

where

£=Q) §(U) (20) (sinW) (aW)(av). )
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where U is the probability of particles within the delta volume having a speed that lies within
dv at v,and W is the polar angle between the particles’ direction of motion and the radial
from the primary’s center of gravity to the delta volume.

The variables in equation (3) are separable’ so the equation can be rewritten as:

(42)=(20)g (w0 () ) (sinw) (w2 ®
Next I find (VA2 A) . The relation between (VA A) and (v A) is

(va,)=(v,)(sinW) (6)

Therefore:
(v2.)=(20)Q (VU (av) § (sin W)’ (aW)/E )

The relationship of (vA2 A) to (vj) is thus

((V “2;)) = § (sinW)' /(aW 3 (sin W) (dw) = 3 ®)

V4
Equation (8) enables (vaA2 y ) in equation (2) to be expressed as
2 2 2
(vaAA) = E(vaA) )

The translational kinetic energy of the average gas particle isl/2 (mvj), which equals

3/2(kT) in the kinetic theory of gasses®”. So,

(mv2) = (3kT) (10)
where k£ is the Boltzmann constant, and 7 is the absolute temperature of the particles. Thus,
(Nmv2,) =§(vaj) =§(N)(3kT) =2(NKT). (11)

In turn, (NkT ) is the gas pressure“’5 (p ) , SO

(vaA2 ) &po
) o) 00) (07) = 22 00) (00) 02). 12
%]
The speed (vA 4 ) is not limited, though, to only the translational motion of the atmospheric
molecules. There are two other (VA2 A) motions that must be considered. One of those is the

kinetic motion of atomic vibration in the case of molecules consisting of two or more atoms®’,
such as N or CO”. The other is molecular rotation of such molecules. The kinetic energy of

motion is k7/2 for each mode. For atmospheric molecules, the collection of (VA2 A) effects

contribute [2 p/ 32] (Dx) ( Dy) ( Dz) to the force on the delta volume, where f* represents the

degrees of freedom.
This means that, for atmospheres, F,. becomes
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Fe = 2200 (0) () (13)

Newton was the scientist who first derived that (va2 ) / r force. He also knew that the ‘static’

e

atmosphere consists of molecules that are moving rapidly with respect to each other. His not
incorporating that force in his derivation is another inconsistency.

Granted, Newton could not have achieved equation (13) because the Kinetic Theory of
Gasses was not sufficiently developed. He could, though, have entered the result in a form
equivalent to equation (2). He did not.

2.1 The More-complete Barometric Equation
The addition of F,. to the derivation of equation (1) leads to a replacement for equation (1).

The new Cartesian coordinate system resultant equation is:

dp _ &NMAﬂ36+§2(f-3)p
ap Oss

dz 8 z? g & 3z

(14)

et e ed

When f =3, this resulting equation (14) is Newton’s barometric equation for a static at-

mosphere in a non-rotating, non-accelerating coordinate system.
Obviously there are two types of atmospheres to be considered. One is a “single-atom
molecules” atmosphere where f =3, the second is a “multiple-atom molecules” atmosphere

where /B . Real atmospheres range from a low near “ f =3 “ to a high of “ f =9 * or higher.
The multiplicative constant ““ 2 ( f- 3) / 3 therefore ranges from a minimum value of “0” to a
value of “4” or higher depending upon three parameters: the density of the gasses, the types of
the gasses, and the temperature of the atmosphere. Earth’s atmosphere is primarily nitrogen and
oxygeng, so the multiplicative constant in our case’ is approximately 1.33 . This means that for
Earth,

d MGG, él.33pu
dp _ @NmMGoH, el.33pu (15)
i & 3 & r H

Newton “lucked-out”. His second and third inconsistencies cancel each other as long as you
constrain use of his barometric equation to “ f* = 3 “ atmospheres with the atmospheric gasses

at appropriate temperatures. Earth’s atmosphere is™® approximately  f =5 <, thus, as long as

instrumentation is not extremely accurate, his equation erroneously appears to be correct.

Other forces could be introduced—such as the van der Waals’ force at the surfaces of the
delta volume. Those forces, though, are not germane to the purposes of this paper.

For physical correctness the term - 2 p/z must be added to the equation that Newton de-
rived. That has already been done?, but it leads to a wrong result for the atmosphere’s pressure
unless the integral form of the (mw2 y ) / z force term is also added. The two additions cancel

for an “ ' =3 “ atmosphere. They do not cancel for Earth’s atmosphere, nor do they cancel for
other planets with “ /B * atmospheres. The correction is obviously significant for several

reasons, including theoretical correctness and anticipation of increased drag on Earth-orbiting
objects with perigees inside the sensible atmosphere.

For Earth, the correction is also important because a barometric equation is used as part of
the equations needed for some attempts at forecasting weather in a chaotic atmosphere. Each
subsequent second of time, the result from the barometric equation for the preceding second
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forms part of the initial condition for evolving weather. Even small errors have enormous con-
sequences. Therefore, replacement of Newton’s erroneous barometric equation by a more
correct barometric equation is quite important.
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