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The Inequivalence of Haldane
Statistics and the Ambiguous

Statistics of Medvedev

C. Wolf*

Two forms of modified B.E. and F.D. statistics are discussed and show to be
inequivalent to first order in a perturbation parameter used to express devia-
tions from both Bose-Einstein and Fermi-Drac statistics

P.A.C.S. 05.20 Statistical Mechanics

1. Introduction

One of the great achievements of relativistic quantum field theory is the spin statistics connection that is
derived from a spin 1/2 theory and intergral spin theory assuming relativistic invariance and commutation of
field operators over spacelike separations.1,2,3 The spin statistics connection also depends on the fact that the
state vector of a quantum field system can be expanded in terms of free states representing individual noninter-
acting particles. It has been pointed out that of all of the tenants of nonrelativistic quantum theory, the exclu-
sion principle represents the most mysterious and ununderstandable aspect of the theory.4,5 Geroch et.al.6 have
pointed out that the exclusion principle might be a principle that cannot be derived from the properties of
space-time but but is the result of topological properties of spin space. Whatever the generic foundations of the
exclusion principle are, we must admit that many key features of the structure of matter depend on it.7 In this
regard both atomic structure and nuclear structure depend on the antisymmetric state for an ensemble of fermi-
ons. Also the hadron spectrum is dependent on the fact that the spin flavor color function for quarks is an
antisymmetric state. With regard to bosons, probably the most accurate test of Bose statistics is in the spectral
distribution of photons in the CMB which confirms Bose statistics to a higher degree of accuracy. There are
however concrete reasons to study nonconventional statistics based on studies of the the (2+1) dimensional
quantatized Hall effect8 and studies of (2+1) dimensional anayons.9 Over the years there have been various
constructions intended to generalize Fermi Bose statistics , the first is due to Gentile10 who considered a statis-
tics with up to k particles in a single quantum state. A more recent attemp is in this study of “quons” which
involves the deformation of the commutation relations of creation and annihilation operators to read

δ+ +− =k l l k kla a a a 11. When q = 1 we have bosons, for q = -1 we have fermions. For values of q between 1

and -1 all representations of the symmetric group are possible. For a n quon state there are |
•

n linearly inde-

pendent states while for q = + 1 there is only one state. One of the weaknesses of the quon theory is that ob-
servables do not commute over spacelike separations which may render the theory inconsistent.

As a consequence of studying a modification of statistics in (2+1) dimensions Haldane12 and Wu13 devel-
oped a modification of Bose Fermi statistics that interpolated between Bose and Fermi statistics when the
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parameter in the theory goes from α= 0 to α = 1. We have applied Haldane statistics to both anomalous pho-
tons14 and anomalous electrons15 and have calculated corrections to the black body spectrum and the properties
of a free electron gas (specific heat) that are induced by Haldane statistics. In another generalization of Fermi
Bose statistics Medvedev16 has introduced a novel form of statistics wherein each particle has a probability of
being a fermion (Pf). and a boson (Pb). In a separate note we have applied this form of “ambiguous statistics” to
the black body spectrum.17 Though the limits on the violation of Bose Fermi statistics are very stringent18 it is
not out of the question that violations might be found under extreme conditions of temperature and pressure
and for condensed astrophysical objects containing exotic matter. The purpose of the present note is to show
that Haldane statistics is inequivalent to the ambiguous statistics of Medvedev to first order in a perturbation
away from Bose and Fermi statistics. This is important for it demonstrates that the distributions upon which the
statistics are founded admit different notions of probability and combinatorics which pertain to the particles
that they describe.

2. Haldane Statistics and the Ambiguous Statistics of Medvedev

To emphasize the difference between the statistical approaches mentioned above we first consider a
generalized expression for the number of ways of realizing a system of N particles within the context
called Haldane statistics (Ref. 12, 13), the expression for w is (number of ways of realizing system)
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(gi = size of cell containing Ni particles), () < α < i). Here α = 1 for Fermi-Drac statistics, α = 0 for Bose-
Einstein statistics. Taking the natural log of Eq. (2.1), varying with respect to Ni, and using Sterling’s approxi-

mation ln | ln
•
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In Eq. (2.2) we set 1− =i iN N  and neglect (1 - α) in comparison to α−i ig N . Eq. (2.2) gives
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We now impose the conditions

0=∑ idN (2.4)

0ε =∑ i idN (2.5)

Multiplying Eq. (2.4) by 
µ
τ

 and Eq. (2.5) by 
1

τ
−

 and adding to Eq. (2.3) we have
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Here τ = kT, µ = chemical potential. In Eq. (2.6) we set α = 1 - ε (small deviations from F.D. statistics). Eq.
(2.6) becomes upon taking natural logs
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Eq. (2.7) becomes to order ε after exponentiating,
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Eq.. (2.8) can further be written as
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We now expand Ni as Ni = Ni0 + εNi1 and Eq. (2.9) becomes
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And to first order
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Solving Eq. (2.11) forNi1 and using Eq. (2.10) we find
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Thus for a small deviation from F.D. statistics finally
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If in Eq. (2.6) we set α = ε (small deviation from B.E. statistics) a similar argument gives
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Thus Eq. (2.12) and Eq. (2.13) represent a generalized formula for the occupation of the various states in a
statistics that deviate slightly from F.D. and B.E. statistics.

We now consider the amibiguous statistics of Medevdev (Ref. 16). We consider each particle to have a
probability of being represented as a Boson (Pb) or a Fermion (Pf), the expression for the number of ways for
realizing the system is
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In Eq. (2.14) it is the sorting process of Nj particles to groups of k bosons and to Nj – k fermions that puts them

into a statistical classification (here 
 
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 
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the log of Eq. (2.14) is varied with respect to Nj and the constraints (Eq. (2.4) and Eq. (2.5)) are used with
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In the Eq. (2.15) we first consider the case Pf = ε, Pb = 1 - ε (slight deviation from Bose statistics) Eq. (2.15)

becomes with 
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In Eq. (2.16) we have neglected in terms of order ε within the square root for they will lead to terms of or-

der 
3
2ε  upon expansion of the square root by the binomial expansion. We see that Eq. (2.16) can never be
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made equivalent to Eq. (2.13) for any redefinition of the parameter. Thus ambiguous statistics for slight devia-
tion from the Bose statistics Pb = 1 - ε, Pf = ε is not equivalent to the statistics of haldane for small α which
represents a small deviation from Bose Statistics. If we now consider Pf = 1 - ε, Pb = ε (slight deviation from
Fermi statistics) Eq. (2.15) becomes
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Expanding Eq. (2.17) to order ε we find
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We note that Eq. (218) can never be made equivalent to Eq. (2.12) (Haldane statistics for slight deviation
from F.D. statistics) for any redefinition of the parameter ε. Thus ambiguous statistics for slight deviation from
Fermi statistics is not equivalent to Haldane statistics for slight deviation from Fermi statistics. The fundamen-
tal reason that these two statistical formulations disagree in their predictions stems from the basic constraints
for w in Eq. (2.1) and Eq. (2.14). Eq. (2.1) admits to fractional factorials which destroy our sense of an integral
number of particles in a quantum state, Eq. (2.14) does not destroy this property but admits to a combinatoric

formula with the product of probabilities for bosons and fermions as 
−jk N k

b fP P  for each cell of phase space

gj. One of the unsolved problems is to relate each statistics (Haldane and ambiguous statistics) to a quantum
algebra. To date this has not been achieved, if such a relation was found it would shed light on the notions of
locality and relativistic invariance with regard to identical particles.

3. Conclusion

As mentioned in the introduction in Ref. 14 and Ref. 15, we have applied Haldane statistics to photons and
electrons when these particles admit to a statistics differing slightly from B.E. and F.D. statistics. In these two

studies we actually set 
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 equal to 1 which leads to a slightly different formula as

that derived in Eq. (2.13) and Eq. (2.12). Eq. (2.12) and Eq. (2.13) contain all corrections to order ε. To test
the above two statistical schemes, Eq. (2.12) and Eq. (2.13) along with Eq. (2.16) and Eq. (2.18) would have
to be applied to the black body spectrum for bosons (Eq. (2.13) and Eq. (2.16)) and to a free electron gas for
fermions Eq. (2.12) and Eq. (2.18) and compared with experiment to see if either statistical scheme is in accord
with the experimental deviations from B.E. and F.D. statistics. Also precise measurements of both white
dwarf19 and neutrons star20 limiting masses might provide us with a laboratory to look for deviations from
Fermi statistics. A last place and probably the best place to look for deviations from F.D. and B.E. statistics is
in the deep inelastic scattering of e- off of nucleons21. Here the structure function depends on the statistics of
sea-quarks and gluons which in turn determines the cross section for scattering. Since data on Q.C.D. proc-
esses can only be interpreted to an accuracy of 10% the study of these processes might provide us with an
excellent window through which to set limits on the parameters describing deviations from B.E. and F.D.
statistics.
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