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Any divergenceless vector field defined in a 3-dimensional manifold defines an integral
quantity called the helicity that measures the way in which any pair of integral lines curl to
one another. In the case of Classical Electrodynamics in vacuum, the natural helicity invari-
ant, called the electromagnetic helicity, has an important particle meaning: the difference
between the numbers of right- and left-handed photons. In a topological model of Classi-
cal Electrodynamics, the helicity is topologically quantized, in a relation that connects the
wave and particle aspects of the fields.
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1. Introduction
The helicity of a divergenceless vector field was first used by Woltjer in 1958 [1] in an
astrophysical context. Moreau [2] showed the helicity conservation in certain flows in fluid
dynamics, and Moffatt, in a seminal paper [3], coined the term helicity and began the study
of its topological meaning.

LetX(r), r ∈ V , be a real vector field defined in a parallelizable3-dimensinal manifold
V , i.e. X : V → R3. Let X be a divergenceless vector field, i.e.∇ · X = 0. In this
case, another vector field exists inV , at least locally, called a vector potentialY(r), such
that X = ∇ × Y. (The question of the local or global definition ofY is related to the
cohomology of the manifoldV .) We define the helicity of the divergenceless vector field
X(r) in V as the integral quantity

h(X, V ) =
∫

V

X ·Yd3r. (1)

We will write h(X) or simplyh if there is not risk of confussion. There are two physical
contexts in which the helicity (1) has been specially useful: in fluid dynamics, whereY
is the flow velocityv(r, t), X is the vorticityw = ∇ × v, andh(w, V ) is called vortex
helicity, and in electromagnetism, specially in plasma physics, where it is common to talk
about the magnetic helicity,

h =
∫

V

A ·Bd3r. (2)

It can be proved (see [4]) that the helicity (2) is proportional to the linking number of
the field lines. Even in the case that these lines are not closed, the notion of linkage takes
sense, because a mean value of an asymptotic linking number can be defined, and this value
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coincides with the helicity. An important consequence is that the helicity of an unlinked
magnetic field is zero.

The helicity has interesting features in the special case of Maxwell’s theory in vacuum,
because in this situation the electric field is dual to the magnetic field. This duality allows
us to define a natural invariant for Maxwell’s theory: the electromagnetic helicity, that is the
sum of electric and magnetic helicities. This quantity has an important particle meaning,
that complements its topological meaning. In fact, we will see that the electromagnetic he-
licity is the classical quantity formally equivalent to the quantum helicity operator, defined
as the operator that, by acting on a photonic state, is the difference between the numbers of
right- and left-handed photons. For a pedagogical review, see [5].

2. The electromagnetic helicity
In standard classical electrodynamics, the Maxwell equationdF = 0, whereF is the
Faraday2-form F = 1/2Fµνdxµ ∧ dxν , becomes a Bianchi identity by using the elec-
tromagnetic potentialA, defined asF = dA. The dynamical equation for this field in
empty space isd∗F = 0, where∗ is the duality operator,∗F = 1/2F ∗

µνdxµ ∧ dxν and
F ∗

µν = 1
2εµναβFαβ . But the Minkowski spacetimeR4 has trivial cohomology. This means

that the dynamical equationd∗F = 0 implies that∗F is a closed2-form, so it is also an ex-
act form and we can write∗F = dC, whereC is another potential1-form in the Minkowski
space. Now the dynamical equation becomes another Bianchi identity. This simple idea
is a consequence of the electromagnetic duality, that is an exact symmetry in vacuum. In
tensor components, withA = Aµdxµ andC = Cµdxµ, we haveFµν = ∂µAν − ∂νAµ and
F ∗

µν = ∂µCν − ∂νCµ or, in vector components,

B = ∇×A =
∂C
∂t

+∇C0,

E = ∇×C = −∂A
∂t

−∇A0. (3)

Note that the equations (3) are clearly invariants under the gauge transformationsAµ 7→
Aµ + ∂µα, Cµ 7→ Cµ + ∂µβ.

The electric and magnetic fields are dual to each other and they have the same properties
in Maxwell theory in vacuum. Given the divergenceless vector fieldB, we have defined
the magnetic helicity as

hm =
∫

R3
A ·Bd3r, (4)

whereB = ∇ × A, and we have seen that the magnetic helicity is proportional to the
linking number of the magnetic lines. Now, in vacuum, given the divergenceless vector
field E, we can also define an electric helicity through

he =
∫

R3
C ·Ed3r, (5)

whereE = ∇×C. This quantity will be obviously proportional to the linking number of
the electric lines.

Now it is convenient to specify the contour conditions of the fields, that we take in order
that the energy and the helicities are finite. So the spatial domain will be a compactification
of R3, that is, a simply-connected domain. By inspection of equations (4) and (5), the con-
dition of finiteness of the helicity means that the electric and magnetic fields must decrease
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faster thanr−2 in the surfacer → ∞. This implies that the potentialsAµ andCµ must
decrease faster thanr−1 whenr →∞. We will assume that our fields always satisfy these
conditions.

By covariance questions, it is convenient to work with4-currents of helicity. In [4] the
following magnetic helicity current was introduced,

Hµ
m = AνF ∗νµ. (6)

With this equation as a base, the electric helicity current is

Hµ
e = CνFµν . (7)

The4-divergence of both currents is

∂µHµ
m =

−1
2

F ∗
µνFµν = −2E ·B,

∂µHµ
e =

1
2
F ∗

µνFµν = 2E ·B. (8)

So the magnetic and the electric helicities are time invariants for singular fields, i.e. fields
that satisfyE ·B = 0.

Given any Maxwell field in vacuum, we define the4-vector density of electromagnetic
helicityHµ as the sum of the4-vectors densities of electric and magnetic helicities (6) and
(7),

Hµ = FµνCν − F ∗µνAν . (9)

By construction, and taking into account equations (8), the density of electromagnetic he-
licity is a conserved current for any Maxwell field in vacuum, i.e.∂µHµ = 0. This implies
that the quantity

h =
∫

R3
H0d3r =

∫
R3

(A ·B + C ·E) d3r, (10)

is a constant of the motion,∂h/∂t = 0, called electromagnetic helicity. From now on,
we will call (10) helicity, and (9) will be density of helicity, leaving the adjectives for the
electric and/or magnetic cases.

The helicity is gauge invariant, so we can work in a particular gauge to inform us
about its meaning. The most appropriate one is the Coulomb gauge, in which the duality
equations for the potentials (3) are precisely the Maxwell equations. Then, it is obvious
that the solutionsA andC can be written in terms circularly polarized waves, in the same
way as in Quantum Electrodynamics [6],

A(r, t) =
1

(2π)3/2

∫
d3k√
2ω

(
(eRaR + eLaL)e−ik·x + (eLāR + eRāL)eik·x)

, (11)

wherekµ = (ω,k) is null (kµkµ = ω2 − k2 = 0) andk · x = kµxµ = ωt − k · r. The
factor1/

√
2ω is a normalization factor that allows the measure to be Lorentz invariant.z̄

es el complex conjugate ofz. The Fourier componentsaR andaL in (11) are functions of
the vectork. When the second quantization of the electromagnetic field is done,aR(k) is
interpreted as a destruction operator of photonic states with energyω, linear momentum
k and spink/ω, while the function̄aR becomes the creation operatora+

R of such states.
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Analogously,aL(k) is a destruction operator of photonic states with energyω, linear mo-
mentumk and spin−k/ω, anda+

L is the correspondent creation operator [6]. For the
potentialC, we have

C(r, t) =
i

(2π)3/2

∫
d3k√
2ω

(
(eRaR − eLaL)e−ik·x − (eLāR − eRāL)eik·x)

. (12)

Introducing the expressions (11) and (12) we obtain for the helicity the expression

h = 2
∫

(āR(k)aR(k)− āL(k)aL(k)) d3k. (13)

This is what we were looking for. In Quantum Electrodynamics, the right hand side of (13)
is interpreted (except a factor2) as the helicity operator, that rests the number of left-handed
photons from the number of right-handed photons. We can write the usual expressions

NR =
∫

āR(k)aR(k)d3k,NL =
∫

āL(k)aL(k)d3k, (14)

and equation (13) is written as
h = 2(NR −NL). (15)

The consequence is that (except a factor2) the helicity is the classical limit of the differ-
ence between the numbers of right-handed and left-handed photons [7, 8, 9]. Note that, in
physical units (with̄h 6= 1 andc 6= 1), the equation (15) would be

h = 2h̄c(NR −NL). (16)

We have previously defined the singular fields as those electromagnetic fields that satisfy
E ·B = 0. Consider now the case of singular fields in vacuum, with the previously stated
contour conditions, that we can sum up by saying that the helicity must be finite. In this
case, the Fourier componentsaR andaL should be less singular thanω−3/2 whenω → 0
and they should decrease faster thanω−2 whenω →∞. This behaviour allows us to proof
the following property [9]: The electric and magnetic helicities of any singular field in
vacuum are equal,hm − he = 0. The conclussion (16) for singular fields is then

h = 2hm = 2he = 2h̄c(NR −NL). (17)

3. Topological quantization of the helicity
A topological theory of electromagnetism proposed by one of the authors [10, 11] is based
on the idea of electromagnetic knot and turns out to be locally equivalent to Maxwell’s
standard theory. Electromagnetic knots are electromagnetic fields defined by the condition
that their force lines are closed curves and any pair of magnetic lines, or any pair of electric
lines, is a link. The linking numbers, respectivelynm andne, are two integers that can be
interpreted as the Hopf indices of two applications from the sphereS3 to the sphereS2 at
any instant (taking into account the time dependence, the maps are fromS3 × R to S2)
[8, 9]. For knots in empty space, that is our case,nm = ne. Note that these integers give a
measure of the curling of any pair of force lines around each other.

In references [8, 9] methods can be found to construct electromagnetic knots. This is
done after identifying, via stereographic projection, the physical spaceR3 with the sphere
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S3, and the set of complex numbersC with the sphereS2. This implies to assume that
the physical space has only one point at infinity and that there is only one infinite complex
number. Any mapS3 → S2 is thus equivalent to a scalar complex fieldφ(x) with only one
value at infinity (and vice versa). An electromagnetic knot can be constructed by means of
a pair of such complex scalar fields, the level curves of which coincide with the magnetic
and the electric lines, respectively. Let two mapsφ, θ : S3 → S2 be given. The pull-backs
of the area 2-formω of S2 by φ andθ, respectively, notedF = φ∗ω and∗F = θ∗ω, are
2-forms inS3 with nice properties. In particular their geometrical properties are similar to
those of the electromagnetic fields in vacuum. For convenience and because of dimensional
reasons, we redefine these 2-forms asF = −

√
aφ∗ω and∗F =

√
a θ∗ω, the normalizing

constant
√

a being measured in tesla times square meter. The electromagnetic field defined
by these 2-forms is called an electromagnetic knot. Note that the scalar fieldsφ, θ have to
satisfy the duality equation− ∗ (φ∗ω) = θ∗ω.

A striking consequence follows. As is known, the mapsS3 → S2 can be classified
in classes of homotopy labelled by the so called Hopf index. It is easy to see that, for
the electromagnetic knots in vacuum, this means that their magnetic and electric helicities
satisfy

hm = he = na, (18)

wheren is the Hopf index of bothφ andθ, that is the same for the two maps because of the
duality conditions. It turns out to be equal to the linking number of any pair of level curves
of φ, that is of magnetic lines, and to the linking number of any pair of level curves ofθ,
that is of electric lines [10, 11, 8, 9].

As it was shown in section 2, the magnetic and the electric helicities of any radiation
electromagnetic field are equal. Moreover, in the case of the topological model, the helic-
ities of the knots verify (18). Furthermore, the sum of the two helicitiesh = hm + he,
was shown to be a constant of the motion for any standard electromagnetic field in empty
space. We call it the electromagnetic helicity and it verifies (16). It follows that

n =
h̄c

a
(NR −NL). (19)

Consequently, the value ofNR − NL for a knot is topologically quantized and takes the
valuena/h̄c. (Note that this is true even if the knots are classical fields.) This suggests a
criterion for the value of the normalizing constant. Takinga = h̄c (in natural units, this is
a = 1) one has then

n = NR −NL. (20)

Equation (20) relates, in a very simple and appealing way, two meanings of the term he-
licity, relating to the wave and particle aspects of the field. At left, the wave helicity: the
linking numbern, characterizing the way in which the force lines — either magnetic or
electric — curl around one another. At right, the particle helicity: the difference between
the numbers of right-handed and left-handed photons. This is certainly a nice property. It
suggests that the electromagnetic knots are worth of consideration. Note that this property
gives a new interpretation of the numbern. We new that it is a magnetic and electric linking
number, and also a Hopf index. We see that it is furthermore the difference of the classical
limit of the numbers of right-handed and left-handed photons.

All the electromagnetic knots verify the quantum conditions

hm = he = nh̄c, NR −NL = n. (21)
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Note that the set of the electromagnetic knots contains some with very low energy, for
which n is necessarily very small. Even if they can be defined as classical fields, the real
system would have quantum behaviour, since the action involved would be of the order of
h̄. On the other hand, there are states withn small and even zero, which have however
macroscopic energy. They are those for whichNR, NL are large. Whenn is large, the
photon contents is high and the energy macroscopic. These are the states for which the
classical approximation is valid.

This suggest that the set of the electromagnetic knots gives the classical limit of the
quantum electromagnetic field with the right normalization.
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