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T h e   E p h e m e r i s
Focus and books

Induction Produces Aharonov-Bohm Effect
A charge e, moving with the velocity v
through a time-constant space-varying mag-
netic potential field A, experiences a force of
motional induction given by
F v A= − ⋅∇e ca f . Although the magnetic
field is zero, B = 0; this force acts on the elec-
trons passing on the two sides of a long sole-
noid to produce the phase shift difference
observed in the Aharonov-Bohm effect.
PACS 03.65 – Quantum theory, quantum
mechanics
PACS 41.70 – Particles in electromagnetic
fields, classical aspects.

1. Introduction
The Aharonov-Bohm (1959) effect is a

shift in the electron interference pattern
produced by an electron beam split to pass
on opposite sides of a long thin solenoid,
when current flows in the solenoid. It is
clearly an electrodynamic effect; because no
effect is produced when no current flows in
the solenoid. According to the Maxwell-
Lorentz theory, an electron moving outside
the solenoid, where there is no magnetic
field, should experience no electrodynamic
force. In particular, the magnetic vector
potential A outside of a long solenoid of
radius a carrying a current per unit length η
is given by

A
e

=
2 2πη φa

cr
, (1)

where eφ  is a unit vector in the direction of
the current and r is the radial distance from

the center of the solenoid to the point of
observation. From Eq. (1) the curl and di-
vergence of A are seen to vanish; thus,

∇ × = ∇ ⋅ =A A0 0, . (2)
Since A does not change with time and no
static charge sources are present; the Lor-
entz force on an electron of charge e, mov-
ing with the velocity v vanishes; thus,

F A v AL

e tc c
= − ∇Φ − ∂

∂
+ × ∇ × =a f 0 . (3)

According to Bohm (1993) the Aharo-
nov-Bohm effect is some sort of mysterious
quantum mechanical interaction between
the electrons and the magnetic potential
field A. But, in fact, a perfectly classical elec-
trodynamic force acts on an electron mov-
ing outside of a long solenoid, the force of
motional induction, which is given by

F v A= − ⋅∇e
c

a f . (4)

It may be seen from Eq. (1) that this force of
motional induction, Eq. (4), does not vanish.

The force of motional induction does not
belong in Eq. (3); because it is not a conser-
vative force, and the Lorentz force, when
valid (Wesley 1990), is a conservative force.

2. Force of Motional Induction
from Faraday Electromagnetic
Induction

It is known empirically that an electro-
motive force (emf) can be induced in a
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closed loop given by Faraday1s law of elec-
tromagnetic induction, where

emf d= FHG IKJ⋅ = − ∂Φ
∂z F

e
s

tc
, (5)

where Φ  is the total magnetic flux through
the loop given by
Φ = ⋅ = ∇ × ⋅ = ⋅z z zB n A n A sd d da aa f . (6)

Equating the integrands of Eqs. (5) and (6),
the force of induction on a charge e is given
by

F A= − ∂
∂
e

tc
. (7)

This force is included in the Lorentz force,
Eq. (3).

It is found empirically that the manner
or way that the A field is increased (or de-
creased) in the loop is a matter of indiffer-
ence. If a magnet is moved with a velocity v
into a loop, an emf is induced. Or, if a loop
is moved toward a magnet, an emf is in-
duced in the loop. Empirically it is, thus,
necessary to include in Eq. (7) the possibility
of increasing the apparent time rate of
change of the A field by virtue of the mo-
tion of the charge or by virtue of the motion
of the source of the A field. In particular, to
fit empirical fact Eq. (7) must be generalized
to read

F A A v A= − = − ∂
∂

− ⋅∇e
tc

e
tc

e
c

d
d

a f . (8)

For the case of ∂ ∂ =A t 0 , of interest for the
Aharonov-Bohm effect, the force of mo-
tional induction on a moving charge e be-
comes simply the second term on the right
of Eq. (8), as already presented in Eq. (4).

It is important to note that the force of
motional induction, Eq. (4), which is empiri-
cally established by Faraday induction, is
not a part of the Lorentz force, Eq. (3). The

nonconservative force of notional induction
must be handled separately.

3. Force of Motional Induction
from the Weber Potential

Contrary to the Maxwell theory, which
fails many empirical tests (Wesley 1990),
Weber (1846) electrodynamics is empirically
correct for slowly varying effects and slowly
moving charges. The Weber theory is based
upon the velocity dependent potential W
for a charge e at r and a charge q’ at r’ given
by

W eq
R

R t
c

= ′F
HG

I
KJ −
L
N
MM

O
Q
PP1

2

2

2
d db g , (9)

where R = r – r’ is the separation distance.
Neglecting the Coulonb potential here and
neglecting the negligibly small velocity
squared terms, v R⋅ cRb g2  and ′⋅v R cRb g2 ,
where v is the velocity of the charge e and v’
is the velocity of the charge q’, the Weber
potential, Eq. (9), becomes

W eq
c R

= ′ ⋅ ′⋅v R v Ra fa f
2 3 . (10)

For a closed current loop source, the case
of interest here, where q’v’ = I’ds’, Eq. (1)
may be integrated to yield the net potential

W eI
c R

= ′F
HG

I
KJ ⋅ ′z2 v sd . (11)

For a volume distribution of such closed
current loops, where I’ds’ = J’d3r’, the
Weber potential* becomes

W e
c R

r e
c

= F
HG

I
KJ ⋅ ′F

HG
I
KJ ′= ⋅z2 v J v Ad3 , (12)

                                                          
* The Weber potential here, Eq. (11), happens to
equal the negative of the nonphysical pseudopo-
tential that is introduced to rescue the usual ad
hoc Lagrangian formalism needed to yield the
Lorentz force (Goldstein 1950).
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from the definition of the vector potential A
in terms of the current distribution J’

To obtain the force implied by Eq. (12)
the rate that energy is taken from the poten-
tial W for a constant velocity v equals the
rate that work is done on the charge e; thus,

− = − ⋅ = ⋅d
d

d
d

W
t

e
tc

v A v F . (13)

This means that the force of motional induc-
tion on e for the case of interest, where
∂ ∂ =A t 0 , is given by

F v A= − ⋅∇e
c

a f , (14)

which is in agreement with the empirical
observations of Faraday induction, as given
by Eq. (4).

4. The Force of Motional Induc-
tion Is Not Conservative

To stress the nonconservative character
of the force of motional induction, Eq. (4), it
may be shown that the work done on a
charge depends upon its path for the Aha-
ronov-Bohm situation. In particular, two
different paths may be considered that
carry charges from the same two end

points, from x = − ∞  to the point at x = b,
y = 0, as indicated in Fig. 1. Path I is taken
along the line y = –b to x = 0 and then
along the quarter circle of radius b from
φ = –π/2 to φ = 0. Path II is taken along the
line y = +b to x = 0 and then along the
quarter circle of radius b from φ = +π/2 to
φ = 0.

For this mathematical example the ve-
locity may be taken as constant in the x
direction, v = vex. The force of motional
induction from Eqs. (4) and (1) becomes

F v A
e

= − ⋅∇ =e
Kv

r
a f cosφ φ

2 , (15)

where K is a constant given by

K e a
c

e
c

= =2
2

2

2
π η φ

π
, (16)

where φ π η= 4 2 2a c  is the total magnetic
flux in the solenoid. The work done in go-
ing from x = –∞  to x = 0 is given by

F x Kvb x x
x b

Kv
bxd d

− ∞ − ∞
z z= ±

+
=

0

2 2 2

0

2c h m , (17)

where the upper sign is for path I, below
the solenoid, and the lower sign is for path
II, above the solenoid. The work in going

Figure 1. The two paths I and II from infinity to x = b, y = 0 to demonstrate the path dependence
of the nonconservative motional induction force F, Eq. (4).
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along a circular path from x = 0, y = mb to
x = b, y = 0 is given by

F e⋅ = FHG IKJ = ±z zφ
π π

φ φ φbd Kv
b

Kv
b

m m2

0

2

0

cos d . (18)

The net work done along the two paths are
then given by

Work along path I= ,

Work along path II=

Kv
b

Kv
b

−
(19)

Thus, the force of motional induction is not
conservative for this mathematical example,
and therefore, not in general.

5. Derivation of the Aharonov-
Bohm Phase Difference

The phase changes in the two electron
waves passing on opposite sides of the
solenoid may be readily computed. Consid-
ering the Wesley (1965) wave for a free
particle,

Ψ = ⋅ −L
NM

O
QPsin p r vta f

h
, (20)

where p is the momentum and v the veloc-
ity of the electron, the path length of the
two electron beams is the same on the two
sides of the solenoid, so a phase difference
can only arise due to a time-of-travel differ-
ence. The phase change Θ  of an electron
wave along a path where the momentum p
can change as a function of position is given
from Eq. (20) by

Θ = −
⋅

= − ⋅z zp v pb gd dt s
h h

. (21)

From Eq. (8) and Newton’s second law
d
d

d
d

p A
t

e
tc

= − . (22)

Integrating Eq. (22) yields

p A p= − +e
c o , (23)

where po is a constant of integration. Since
only the phase differences are of interest
and po is a constant, Eqs. (21) and (22) yield

Θ = F
HG

I
KJ ⋅ze

c
s

h
A d . (24)

It may be noted from Eq. (1) that A may
be expressed as the gradient of a scalar ζ ;
thus,

A = F
HG

I
KJ∇

Φ
2π

ζ   where  ζ = ln r , (25)

where Φ = 4 2 2π ηa c  is the magnetic flux
in the solenoid. The integral in Eq. (24) is
thus independent of the path as long as the
origin is not enclosed. Integrating A⋅z ds
once around a closed circle that includes the
origin yields from Eq. (1)

A⋅ =z ds Φ . (26)

Thus, comparing the phase change, Eq.
(24), along path I’ from x = –∞  to x = +∞
along y = –b, below the solenoid, in the
direction of A (where the geometry is indi-
cated in Fig. 1), with the phase change along
path II’ from x = –∞  to x = +∞  along
y = +b, above the solenoid, counter to the
direction of A, then gives the phase differ-
ence of interest

∆Θ Φ= FHG IKJ − ⋅
L
NMM

O
QPP
=

′ ′
z ze

c
s e

cI IIh h
A d . (27)

This phase difference, Eq. (27), is the differ-
ence producing the shift in the interference
pattern observed (Peshkin & Tonomura
1989).

6. Weber Potential, the Force of
Motional Induction, and the
Phase as Functions of the
Electron PositionFigure 2. Weber potential W, the force of motional induction Fx, and the phase change Θ  as functions

of the position x of an electron passing below the solenoid along path I’ and above the solenoid along
path II’.
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The quantities of interest for the Aharo-
nov-Bohm effect as functions of position
along the electron path may be approxi-
mated by considering the charge e to move
with a constant velocity v = vex. The Weber
potential from Eqs. (12) and (1) then be-
comes

W Kvb
x b

= ±
+2 2 2c h , (28)

where the upper sign is for path I’, below
the solenoid in the direction of A, and the
lower sign is for path II’, above the solenoid
counter to the direction of A, and where K is
given by Eq. (16). This result (28) is shown
in Fig. 2.

The component of the force of notional
induction in the x direction from Eqs. (4)
and (1) is given by

F Kvbx
x b

x = ±
+2 2 2c h , (29)

where the upper sign is for path I’ below
the solenoid and the lower sign is for path
II’ above the solenoid. This result (29) is also
shown in Fig. 2.

The phase change Θ , as given by
Eqs.(24) and (1), becomes

Θ = F
HG

I
KJ

F
HG

I
KJ−m

h
K b

x
tan 1 , (30)

where again the upper sign is for path I’
and the lower sign for path II’. This result
(30) is also shown in Fig. 2. The net phase
difference ∆Θ  between paths I’ and II’ at
x = +∞  is seen to be

∆Θ Φ= = =4 22 2

2
π η πa
c

K e
ch h h

, (31)

in agreement with Eq. (28) and the observa-
tions.

7. Some Conclusions
It may be seen from Fig. 2 that an elec-

tron, passing below the solenoid in the
direction of A, climbs a potential hill, which
causes it to take longer to reach its destina-
tion, where it then arrives with a greater
phase change + ∆Θ /2. An electron, passing
above the solenoid counter to the direction
of A, crosses a potential valley, causing it to
take less time to reach its destination, where
it then arrives with a smaller phase
change –∆Θ /2. The net phase difference
between the two paths is ∆Θ . The Aharo-
nov-Bohm effect, thus, measures essentially
the time difference necessary for electrons
to traverse the two paths on opposite sides
of the solenoid. No quantum mechanical
effect per se is involved.

The Aharonov-Bohm effect is produced
by the classical macroscopic electrodynamic
force of motional induction acting on the
moving electrons. This force of motional
induction can exist even when the conser-
vative forces vanish and the magnetic field
remains zero. The Aharonov-Bohm effect is,
thus, not per se a quantum mechanical ef-
fect.
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Book Review
Retardation and Re1ativity, Oleg D. Je-
fimenko, Electret Scientific, Star City, 1997.

After his two previous books referred to
hereafter as I,II, [Electricity and Magnetism
(2nd Ed, Electret Scientific, 1989) and Cau-
sality, Electromagnetic Induction and Gravita-
tion (Electret Scientific, Star City, 1992)],
Professor Jefimenko brings a further build-
ing block to logical foundations of electro-
magnetism, relativity and gravitation. In
each case, the author presents new and
fresh approaches to the theory of the physi-
cal processes he analyses.

The book under review subtitled “New
chapters in the classical theory of fields” is
divided into two parts. The first part” pres-
ents the fundamentals of the theory of elec-
tromagnetic retardation with emphasis on
recently discovered relations and recently
developed mathematical techniques”. In
particular, the author uses the time-
dependent generalization of the Biot-Savart
and Coulomb laws that he has previously
obtained (I, pp. 514-517). The second part
presents “the fundamentals of the theory of
relativity based entirely” on the results of
the first part. Since relativity can be consid-
ered historically as a consequence of the
noncovariance of Maxwell’s equations un-

der the Galilei group, it was a logical step to
go from electromagnetism to mechanics
rather than to use the backwards step as
usual.

Electric and magnetic fields propagate
with finite velocity and electromagnetic
retardation is a rather familiar concept since
the principle of causality implies that “a
present-time quantity (the effect) relates to
one or more quantities (causes) that existed
at some previous time”. It is shown in
Chapter 1 how an inhomogeneous vector
wave equation can be solved in terms of
retarded fields and potentials and how
mathematical manipulations using the Del
operator can transform the retarded quanti-
ties into more tractable expressions. These
results are applied in Chapter 2 to retarded
electromagnetic fields and potentials.
Starting from Maxwell’s equations, the
inhomogeneous vector wave equations for
the electric and magnetic fields are first
obtained and solved as described in the
previous chapter. Then, the corresponding
retarded integrals are transformed as time-
dependent Biot-Savart and Coulomb laws
(I, pp 515-517) with the advantage that these
integrals represent now the electric and
magnetic fields in terms of their causative
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sources: the electric charge and current
distributions. They can be also transformed
into surface integrals to analyse the elec-
tromagnetic field generated by a surface of
discontinuity. Similar calculations are made
for retarded electric and magnetic potentials
that sometimes make easier the calculation
of the electromagnetic field. Many examples
illustrate the theory. This chapter ends with
a section devoted to electromagnetic induc-
tion (a summary of Chapter 2 in II): it is
shown there that is no causal relation be-
tween time-dependent electric and mag-
netic fields, their common causative source
is the variable electric current.

With Chapter 3, we enter in the domain
of moving charges for two special cases:
either an arbitrary charge distribution
moving uniformly or a point charge in arbi-
trary motion. In both cases it is shown how
the retarded integrals supply the electric,
magnetic fields and potentials and that
there exists a simple correlation between
the electric and magnetic fields so that one
has just to calculate the electric field. One
may express the retarded integrals in terms
of the position of the charge at The time
where the fields or potentials have to be
determined and it is shown how the vol-
ume and the form of the charge distribution
change when one goes from the retarded to
the present position: an interesting result to
explain the visual shape of moving bodies.
Chapter 4 is devoted to a detailed investiga-
tion of the fields and potentials generated
by a point charge moving first uniformly
and second arbitrarily, the case of a line
charge uniformly moving along its length
also analysed here is used in Chapter 9 to
discuss the Lorentz length contraction. The
author obtains of course the Liénard-
Wiechert potentials but with one important
difference: the approximations made to get

these potentials are clearly stated and justi-
fied, which is not the case for the Liénard or
Wiechert derivation. For a uniformly mov-
ing point charge the electric field can be
expressed in terms of the present position of
the charge instead of its retarded position,
leading to an expression obtained by
Heaviside at the end of the last century.
Similarly for a charge moving with a con-
stant speed along a circle, it is easy to get the
present position expression of the electric
and magnetic fields at the center of the
circle. The result is that the electric field
differs from the Coulomb field so that as far
as atomic systems are concerned the Cou-
lomb law cannot be used as a rigorous basis
for any atomic model.

The last chapter of the first part of the
book is devoted to a conversion of retarded
field and potential integrals for a time-
independent uniformly moving charge
distributions into present-time integrals
since this form of retarded integrals makes
easier the comparison with integrals for
fields of stationary charges. As previously
said, in the present time integrals the inte-
gration is performed, not over the retarded
volume, but over the real volume that the
charge distribution occupies at the moment
for which the fields and potentials are to be
determined. Many examples are given to
illustrate the theory. Although velocity is
uniform and charge density constant in
time, calculations are nevertheless subtle
and one has to admire Professor Je-
fimenko’s virtuosity. But throughout the
book, calculations are presented in a very
detailed manner so that one has no diffi-
culty to check them.

Let us now come to the second part of
the book. Chapter 6 starts with a compari-
son of the Cartesian components of the
present time integrals for electric and mag-
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netic fields in the case of a uniformly mov-
ing distribution (1), with the corresponding
expressions for a stationary charge (2).
Then, it is shown that to change (1) into (2),
one needs to apply a Lorentz transforma-
tion to co-ordinates and fields. The same
transformations are valid to change (2) into
(1) with an opposite velocity. One has the
same result for the electromagnetic poten-
tials of uniformly moving and stationary
charge distributions. Clearly, these trans-
formations are only prescriptions to replace
quantities pertaining to uniformly moving
charge distributions by quantities pertain-
ing to stationary charge distributions, and
vice versa. Chapter 7 uses these results to
present the essentials of relativistic electro-
dynamics. The basic relativistic equations
are first given for coordinates, fields, poten-
tials, electric charge and current density.
Then, are easily obtained the transforma-
tion equations for velocity, acceleration and
partial derivatives with respect to coordi-
nates and time. It is proved that the Carte-
sian components of Maxwell’s equations are
invariant under relativistic transformations
but that contrary to a general and erroneous
opinion, Maxwell’s equations in their vector
form are not invariant. These relativistic
transformations are checked on two simple
problems whose solutions, already known
on the basis of general electromagnetic
laws, are given in the first part of the book.
They are the correlation between electric
and magnetic fields of a moving charge
distribution and the electric field of a mov-
ing point charge. Finally several examples
illustrate the Lorentz theorem of corre-
sponding states “according to which to any
electromagnetic system that is a function of
space and time co-ordinates in the rest
frame Σ, there corresponds an electromag-
netic system in the moving frame Σ’, being

the same function of space and time co-
ordinates (primed co-ordinates) in Σ’”. Of
course this theorem is a very effective tool
to get the electromagnetic field of uniformly
moving charge distributions from the corre-
sponding electrostatic and magnetostatic
equations.

In Chapter 8, the author presents the
relativistic mechanics on the basis of already
developed relations of relativistic electrody-
namics. The relativistic transformations of
the following quantities are discussed: Lor-
entz force, electromagnetic energy and
momentum, mechanical momentum of a
charged particle. The dubious concept of
relativistic mass is brushed aside although it
is known that longitudinal and transverse
masses can be used as auxiliary tools. Then,
using the Earnshaw theorem according to
which mechanical forces are needed to
balance the electric forces on a charged
body, relativistic expressions for: force, en-
ergy, momentum and torque are derived
from the electromagnetic counterparts of
these quantities. Finally a careful analysis of
the transformation equations for mechani-
cal energy and momentum lead to the Ein-
stein’s mass-energy equation W = mc2.

In Chapter 9 Professor Jefimenko analy-
ses common misconceptions about relativ-
ity theory. As proved in Chapters 6 and 7, in
relativistic electromagnetism (retardation)
the Lorentz transformations are merely
prescriptions to get the expressions of the
electromagnetic quantities in one inertial
frame when they are given in another iner-
tial frame. So, Lorentz transformations do
‘not generate physical transformations. For
instance, as a phenomenon, Lorentz con-
traction does not exist. This statement is
illustrated by analyzing the electric field of a
uniformly moving line charge calculated
directly by two different methods in Chap-
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ters 4 and 7. But this field can be also found
by integration of the Heaviside field for a
point charge either over the actual or over
the Lorentz-contracted length of the mov-
ing charge. The agreement happens only
for The first case demonstrating that Lor-
entz contraction is not a true physical effect.
The calculations yielding retarded integrals
is obtained in Chapter 3 provide a solution
to the controversial visual shape of a mov-
ing body: clearly it is its retarded shape. The
author discusses also the electric and mag-
netic fields of a moving parallel-plate ca-
pacitor erroneously tackled in the majority
of textbooks. Also important is his solution
of the right-angle lever paradox by using
real forces, such as the forces created by two
interacting opposite electric charges instead
of unspecified abstract forces. A careful
analysis of electromagnetic forces and mo-
menta proves then the existence of an elec-
tromagnetic torque that counterbalances
exactly the mechanical torque. So, the para-
dox is merely a result of an incomplete
statement of the problem, when instead of
real physical forces one uses some abstract
forces and thus fails to take into account the
physical effects that take place when the
forces are created by well-defined physical
interaction.”

Chapter 10 is devoted to an analysis of
time dilation considered by Einstein as a
purely kinematic relativistic effect. Accord-
ing to Einstein “not only clocks run slow,
but time itself is dilated in systems that
move with respect to the systems consid-
ered to be stationary”. But a clock is a physi-
cal device and its lower rate should have a
causal explanation in terms of its mecha-
nism. The author checks this idea on twelve
electromagnetic clocks based on the har-
monic oscillations of a point charge in dif-
ferent configurations of the electric field, the

period of the oscillations of these charges is
compared when these clocks are at rest and
moving with a uniform velocity. The results
are as follows: only six clocks are running in
accordance with Einstein’s special relativity
theory, for the others their rate depends on
the type of the clock and even on the orien-
tation of the clock relative to the direction of
motion. So, contrary to Einstein’s concep-
tion, the slowing down of the moving clocks
is a dynamical effect. Relativity theory,
based on electromagnetism, gives no infor-
mation on the rate of processes other than
the electromagnetic ones: it is meaningless
to speak about biological effects such as
aging. The Langevin twins are folklore.
{Curiously enough, when I was preparing
this review I was also rereading the book Le
temps et la vie by Lecomte du Noüy (an Eng-
lish translation exists: Methuen, London,
1936; Macmillan, New York, 1937) and I am
a bit surprised that he does not mention the
twin paradox since on one hand the prob-
lem of aging leads him to the concept of
physiological time as opposed to the physi-
cal time and since on the other hand he had
a good acquaintance with relativity}. But
what about the µ-meson experiments inter-
preted as proofs of the reality of time dila-
tion? In fact, these experiments prove that
the rate of certain physical processes is
slower in systems moving at high speeds.
According to the author, it is prudent “to
interpret these experiments as indicating
the existence of certain velocity-dependent
interactions in the systems under considera-
tion similar to the electromagnetic interac-
tions that made the clocks discussed in this
chapter run slower when in motion”.

The last chapter of the book is a sum-
mary of the chapters 5-8 of II in which the
author presents a new theory of gravitation
having strong analogies with electromag-
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netism along the lines suggested a long time
ago by Heaviside. Suffice it to say that this
theory is very different from General Rela-
tivity but does not conflict with any known
experimental results. Any interested reader
should consult II. An appendix on vector
identities complete the book and each chap-
ter is closed with references and interesting
remarks often of historical content.

We had the Einstein relativity, the Lor-
entz-Poincaré relativity, we now have the
Jefimenko relativity (retardation) developed
from the causal solutions of Maxwell’s equa-
tions and the Galilean principle of relativity.
No additional postulate, hypothesis or con-

jecture is needed and relativistic mechanics
derives consistently from relativistic elec-
tromagnetism. Cleared of its controversial
elements, Relativity is now a theory with
solid logical foundations and easily open to
any one having some acquaintance with
electromagnetism. Professor Jefimenko
must be congratulated for this fine and
imaginative book, a real think-tank, That
represents a synthesis of the many works
he has published over the years.
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