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Recently several authors have found additional solu-
tions to the relativistic wave equations. These solutions
are listed here:

1. The E = 0  solution of the Maxwell’s j = 1  equations
[1] which was found by considering the characteristic
equation (in the momentum representation).

2. The  B 3a f  Evans-Vigier field [2], which was obtained
as a cross-product of the transverse modes of electro-
magnetism: B B B1 2 0 3a f a f a f a f¥ = *iB  and cyclics.

3. Non-plane-wave solutions of the Klein-Gordon
equation [3a,b] due to Múnera et al., which were ob-
tained by using unconventional basis functions and
“coupling anzatz”, see [3a, Eqs. (11,12)].

4. The Múnera and Guzmán generalized solution of
Maxwell’s equations in terms of potentials [3c,d].

5. The Chubykalo and Smirnov-Rueda ‘method of
separated potentials’, ref. [4], which enables us to re-
gard a function with implicit time-dependence as a
full-value solution of Maxwell’s (and/or the
D’Alembert) equations.

Why did so many new and unexpected solutions ap-
pear at once? Let us look at this issue using the ordinary
methods of solving the system of partial differential
equations [5,6].

It is well known that the set of dynamical Maxwell’s
equations are equivalent to the following, e.g., [7,
Eqs.(4.21,4.22)]:*
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This is a system of partial differential equations. It is
easy to see that the second equation is just the parity

                                                          
* Issues relating to the source equations will be discussed in detail

elsewhere.

conjugate x xÆ -a f  of the first one if one uses the usual

interpretation of E , a vector, and B , an axial vector.
In the framework of this paper we shall look for solu-

tions of (1a) in the generalized form†

A E B a r∫ + + ◊i t~ exp l ka f ,

where l  and k  are some unknown parameters, which
provide characteristic polynomials, and
a = column a a a1 2 3b g  is some constant vector, which is

defined by the boundary and/or normalization condi-
tions. Thus, at this time we will not restrict our discus-
sion to plane waves. By using the method of characteristic
polynomials for the differential equation
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with Ji jk ijkic h = - e , we obtain the algebraic equation for

the parameters l  and k :
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This has solutions l = 0  and l k= ± . In fact, we have

repeated the procedure in ref. [1], but since this point of
view is the most general, we do not as yet know how l
and k  are connected with energy and momentum. Thus,
the general solution of the first Maxwell equation (1a)
may be given, for instance, in the form:
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with the complex vectors A1 , A2 and A3  and the con-
stants a i  to be defined from normalization and boundary
conditions. The following remarks are warranted:

a) Plane waves are obtained only if we associate l = ± iE
and k = ± ik , which is not obligatory. It becomes

                                                          
† A more rigorous treatment will be given in the extended version.
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clear that the Maxwell equations may describe physi-
cal states which are different from plane waves, so that
the hypothesis on the quanta of light waves may be
regarded as a particular case only, cf. [3a,4];

b) The solution with l = 0  enters into the general solu-
tion of the system of differential equations. It may be
removed only by means of a special choice of bound-
ary conditions;

c) In general, k  can be replaced by -k  (an analog of the
space inversion transformation in the momentum
representation), i.e. the solution can be written in sev-
eral forms, which should be equivalent in physical
content;

d) In the same way, one can find the general solution of
the second equation (1b).

While these issues can certainly be analyzed further
(and more rigorously) we will refrain from further analy-
sis here. An extended version will be published else-
where. However, below we shall show that non-plane-
wave solutions of the Maxwell’s equations also arise from
the different viewpoint [2], that these solutions are not
zero and that the field connected with these unusual
modes may be irrotational under certain conditions. Firstly,
we write particular plane-wave solutions of the Maxwell’s
equations in the form‡
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with the objects a = column a a a1 2 3b g  and

b = column b b b1 2 3b g  at the exponents being constant

vectors with respect to the space inversion operation. In
order to form an axial vector, the space-inverted vectors
must be added to the defined vectors.§ Thus, we obtain
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‡ Here and below the notation may have nothing to do with the

accustomed notation for the vectors of electric and magnetic fields.
§ We are still working in the coordinate representation and want to

form an axial vector with respect to r rÆ - . We are not con-
cerned with the properties of the vectors with respect to k kÆ - .

We shall further prove the following theorems:
Theorem 1. The quantity F C D= ¥ is conserved in time:
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Proof. By straightforward calculation one can find the
explicit form of the axial vector F . It is as follows:
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By definition the a  and b  are the constant vectors. Thus,
Eq. (8) contains no dependence on the time t , so
∂ ∂F t = 0 . The theorem is proved.

Theorem 2. If A  and B  chosen in the form (5) satisfy Max-
well’s equations (1a,1b) respectively (or vice versa), the quantity
F C D= ¥  a) is irrotational; b) satisfies both equations (1a) and
(1b); c) is zero in all space if and only if A  or B  is zero.
Proof. In order to prove a) and b) it is sufficient to prove
that J F◊ — =a fij j 0 , because of the operator identity

— ¥ ∫ curl , the definition of the j = 1  matrices and the
proof of Theorem 1. By direct calculation we arrive at
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After using the Maxwell’s equations (1a,1b) one finds
k a a¥ = - iw and k b b¥ = + iw .** Substituting these
relations in (9) we demonstrate that F  is irrotational and,
thus, combining this statement with the previous one
(conservation of F  in time) we prove that the quantity F
satisfies both Maxwell’s equations (1a) and (1b). Follow-
ing the usual terminology, it may be termed
“longitudinal”.

Let us now assume that F 0=  in all space. If a 0π
and b 0π  this can occur only if a b 0¥ =  for the propa-
gating wave states. By definition, they are complex vectors.
So, if we write c a= ¬ e , d a= ¡ m , e b= ¬ e  and
f b= ¡ m , we can deduce that in order for the cross
product we are seeking to be equal to zero, we must have

c e d f¥ = + ¥ ,    d e c f¥ = - ¥ , (10)
First, we consider the case where c  and e  are not collin-
ear, d  and f  are not collinear, i.e. the first relation is not
equal to zero. This condition is fulfilled if and only if the
real vectors c , d , e  and f  are all coplanar. Thus, let us
choose two vectors c  and d , which are assumed to be
linearly  independent; the other two can then be ex-
panded as follows

e c d= +a a11 12 , f c d= +a a21 22

with real coefficients aij . Considering c e¥  and d f¥ ,

we have demonstrated that the quantity a a12 21= - .

                                                          
** If we assumed that A is a particular solution of (1b) and B is a

particular solution of (1a), we would have opposite signs in the
written relations.
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Considering the second equation in (10), we are con-
vinced that a a11 22= . Thus, b e f= + =i

a ia i11 12- +a fa fc d  and, hence, b a~ c ei
1

b . We now

have a contradiction with the statement that A  and B ,
which are not phase free, satisfy different Maxwell’s equa-
tions (1a) and (1b). Next, if d c= l , we deduce from the
set (10) that this can occur if and only if l 2 1= - , which
is again in contradiction with the fact that c , d , e  and f
are real vectors. Finally, if c e= l 1  and, then, d f= l 2  we

deduce that:
d e f e e f¥ = ¥ = - ¥l l2 1

and, therefore, l l l1 2= = . Again, b a~ 1 lb g  and we

have a contradiction with the conditions of the theorem.
So, using the “from the inverse statement” method we
can say that a b¥  cannot be equal to zero and, hence,
F π 0 . End of proof.

Theorem 3. If A  and B  are solutions of the same equations
(1a) or (1b) and w = ± k , one can deduce the following rela-

tion for the axial vector F  and the corresponding polar curl F :

curl curlF Fa f + — =4 02 . (11)

Proof. The theorem is proved by direct calculation. We
have

— ¥ = ◊F k r Fm4iw cota f , (12)

The signs depend on whether A  and B  simultaneously
satisfy the first equation (1a), the sign is “–”, or the second
one, the sign is “+”. Next,
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and, if we take into account (8,12),
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By substituting these equations in (11), we have demon-
strated the validity of the theorem. It is necessary to stress
that Eq. (11) is a relation, which was obtained after taking
into account certain constraints between k , a , b  and w .
It cannot be regarded as a dynamical equation. This is due
to the operator identity curlcurl graddiv∫ - — 2 . If we
rewrite (11) taking this identity into account, we demon-
strate that the corresponding equation does not have solu-

tions unless F = constant , and/or k r◊ =
± ±p p4 3 4, ... , or k ∫ 0 .

We may thus conclude that Maxwell’s electromag-
netic theory seen through the eyes of a mathemati-
cian/theoretical physicist has a richer structure compared
with the viewpoint that has been current since it was
proposed that light had a quantum field nature. In a re-
cent series of the papers (see [8] for references), we have
analyzed the shortcomings of this viewpoint and the
advantages compared to the more general Weinberg for-
malism[7]. The issue of whether the former is equivalent
to the latter still requires further rigorous examination.
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