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On the Energy-Inertial Mass Relation: 
I. Dynamical Aspects 
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Dynamical aspects of the problem of the connection between energy and inertial mass are consid-
ered. Possible new relativistic expressions for the total energy and inertial mass are derived, and 
are the continuous functions of object velocity in some cases. Conditions for the existence of new 
classes of objects with real rest mass are found; these objects move with arbitrary velocity. Under 
certain assumptions the known results follow from the derived relations.    

Introduction 

The results of experimental investigations of a spec-
trum of superhigh energy primary cosmic protons 
points to the conclusion that the Lorentz transforma-

tions fail at 1 5 102 2 10
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needs further generalization. 
There are some different relativistic relations which 

are determined on an electromagnetic basis from ether 
theory (see, for example, Jammer 1961). However, all 
known relativistic relations have a mathematical singu-
larity of the total energy function E E v= a f , the essence 

of which is the lack of continuity at the point v c= . 
In the case of special relativity, the singularity men-

tioned above has made it possible to define three classes 
of objects (see, for example, Bilaniuk and Sudarshan 
1969). Ordinary real objects (tardions) with the rest 
mass m o ≠ 0 , which cannot reach the velocity of light 
from below (0 ≤ <v c ) fall into class I. Photons and 
neutrons (luxons) with m o = 0 , which move with the 
velocity v c=  and have finite values of mass m, energy 
E = mc2 and momentum p = mc, fall under class II. 
And objects (tachions) with imaginary mass at rest 
m imo = * , which move with velocity c < v < ∞, are 
classified as class III. 

Thus, generalization of the Lorentz-factor is also in-
teresting when considering the motion of objects with 
velocity greater than the velocity of light in vacuo (or in 
ether). The geometrical approach is based on the trans-
formation of coordinates and time between inertial 

systems in vacuo (or in ether). The dynamic approach is 
based on a study of the energy-velocity relationship. 

The purpose of this paper is to find—on the basis of 
the dynamic approach—more general possible relativis-
tic expressions for inertial mass and total energy which 
do have any mathematical singularities under certain 
conditions. It presents an opportunity to determine new 
class objects with real mass at rest moving with arbitrary 
velocity,  and to determine the kind of geometry that 
corresponds to the physical reality as well. 

1. Total relativistic energy and mass inertia 

It is well-known that the initial laws in classic and 
relativistic dynamics have the same form: 
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which connects variations of momentum 
r r
p mv=  and 

energy E with external force 
r
F . 

If mass does not depend on velocity, one can obtain 
the following values for Newtonian dynamics 

 m v m E v mv ma f a f a f= = =, ,1
2

2 const.  (4) 

If mass depends on velocity, one has relations (1) for the 
relativistic dynamics of special relativity. If an object 
does not move (v = 0) one can use the equalities from 
(1) 
 m m E m co o0 0 2a f a f= =,  (5) 

where m co
2 is the rest energy. 

We now write one of the possible connections be-
tween total energy, mass and velocity up to a constant 
value, as follows: 
 E mc mv= + +α β η2 2  (6) 

where α, β and η are arbitrary, real parameters. In the 
expression (6) the simplest dependence of energy on m, 
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v2  and c is shown, as it exists, correspondingly, in the 
Newtonian (4) and relativistic (1) theories. 

We now substitute the momentum p = mv and en-
ergy (1) into (3) and obtain the expression for a varia-
tion of inertial mass: 
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Taking an integral of (7) at a α€=€0, one obtains the 
general mass-velocity relation: 

 m v
v c

a f
c h

=
−

−

µ

ε α ε1 2 2 1 1
2

 (8) 

where µ is an integration constant. 
If the object does not move (v = 0), we have 

µ = m(0) = mo. 
We can use the equality E m co0 2a f =  as a boundary 

condition for energy, which is widely corrolorated in 
nuclear physic. This leads to the value η€= (1 – α)moc2 
and finally we obtain the following expressions: 
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which depend on two parameters. 
Subject to the condition that ε αb gv c2 2<< , from 

the relativistic formula (9) we can derive: 
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This is the Newtonian approximation (4) for energy up 
to the energy at rest. 

2. Functions m=m(v) and E=E(v) with 
mathematical singularity 

Let us consider the case where the functions 
m = m(v) and E = E(v) loose their continuity under 

certain conditions. The variation domains of parameters 
α and ε are shown in Figure 1. The parameters can take 
on positive and negative values. From formula (9), it 
follows that there are two domains where continuity is 

absent at v c= α εb g 1
2 : a) ½ < ε < ∞, α > 0; b) –

∞ < ε < 0, α < 0. The domains mentioned are shown 
by thin lines in Figure 1. 

By analogy to special relativity, we can determine 
three classes of objects. Objects with mo ≠ 0 moving 

with velocity 0 ≤ v ≤ c α εb g1
2  fall under class I. Objects 

with mo = 0 moving with velocity v = c α εb g1
2  fall 

under class II. For this class of objects one obtains finite 
real values m, E mc= + −1 2α εa f  and p = mc. Objects 

moving with the velocity c α εb g1
2  < v < ∞ are classi-

fied as class III. The mass at rest of these objects equals 

m mo = − −1 1 1 2a fb gε
*  and it can be a real or complex 

quantity. For the mass and energy we have: 
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Complex values of mo are admitted at α = 1, since only 
in this case will the total energy (11) assume a real 
value. This condition presents a part of the straight line 
1 in the domain a). 

If a mathematical singularity occurs at v = c, then 
we have the equality α = ε. This condition presents two 
parts of the straight line 2 in the shaded areas in Figure 
1. 

For the total energy we have: 
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At ε = 1 in the domain a), from (9) and (12) we can 

obtain the relativistic relations m = m v co 1 2 2
1

2−
−c h , 

E = mc2 for special relativity (3). For instance, we have 
the formulae at ε = –1 in the domain b) 

m m v c E mc mv m co o= − = − + +
−

1 2 22 2 2 2 2
3

2c h , (13) 

In Figure 1 these two cases are shown, correspond-
ingly, by the points A and B.The point A is a cross of 
lines α = 1 and α = ε. As expected, tachions with 
m = m(v) and imaginary mass at rest are permitted only 
in this case. 

 

Figure 1. Parameter variation diagram. 
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3. Functions m = m(v) and E = E(v) without 
mathematical singularity 

Let us consider the case where m = m(v) and 
E = E(v) are continuous and define new classes of ob-
jects. The relativistic total energy against object veloci-
ties is plotted in Figure 2. From formula (9), three char-
acteristic domains of parameters follow where a conti-
nuity holds: c) 0 < ε < ½, α > 0, α€< 0; d) –
∞ < ε€< 0;^ α > 0; e) ½ < ε < ∞; α < 0. The do-
main c) is shown by the dashed lines, the rest of the 
domains are unshaded. 

Let us consider domain c) where we have the follow-
ing expression for the energy: 
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In this theoretical case we determine three classes of 
objects. 

Ordinary real objects with the real mass at rest mo 

moving with velocity 0 ≤ v ≤ c α εb g1
2 (α > 0) are clas-

sified as class IV. For example, at ε  = α = 1
5  one can 

obtain: 

m m v c E mc mv m co o= − = + +1 1
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Objects moving with the velocity c α εb g1
2 < v < ∞ 

(α > 0) fall under class V. The mass at rest of these 

objects is equal to m mo = − − −1 1 1 2a f ε
*  and it can be a 

real or complex quantity. We have the formulae for 
mass and energy: 
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Complex values of mo are permitted at α = 1 since only 
in this case will energy (16) have a real value. This 
condition presents a part of the straight line 1 in the 

domain c). 
Ordinary real objects moving with arbitrary velocity 

0 ≤ ≤ ∞v  fall under class VI. For instance, at 
α = ε = 1

6  we can obtain: 

m m v c E mc mv m co o= − = + +1 1
6

5
6

5
6

2 2 2 2 2 2c h ,  (17) 

The domains d) and e) in Figure 1 are classified as 
objects of class VI as well. Without loss of generality, let 
us choose two points D and C in these domains.They 
are in the straight line 4 of the relation α = –ε and they 
correspond to the values ε = –1 and ε = 1. From for-
mula (9) we can obtain the relation: 
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from which the expressions follow for the cases under 
consideration 
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In Figure 2 these relations are shown by the curves 1 
and 2& 

4. Functions m = m(v) and E = E(v) for 
boundary conditions of parameters 

Let us consider the cases ε = 0 (the ordinate axis in 
Figure 1) and ε = ½ (the straight line 3) which are not 
included in the domains considered. At ε = ½ from the 
relations (9) we can obtain the exact formulae m = mo 
and E = m c m vo o

2 1
2

2+  from Newtonian dynamics (4) 
where the energy contains the energy at rest. Nonrela-
tivistic dependence is represented by curve 3 in Figure 
2. At ε = 0 from (7) we find the expressions for mass 
and energy 

m m e E mc mv mco
v c= = + + −− 2 22 2 2 21α α αd i a f, ,  (21) 

depending on one parameter α. For the points K and L 
with values α = 1 and α = –1 (Figure 1) we get from 
(21) 

 m m e E mc mvo
v c= = +− 2 22 2 2d i , ,  (22) 

 m m e E mc mv m co
v c

o= = − + +
2 22 2 2 22, ,  (23) 

Corresponding relations are shown in Figure 2 as the 
curves 4 and 5. Values ε = 0 and ε = ½ correspond to 
objects of class VI. 

Let us consider the special case α = 0 (the abscissa 
axis in Figure 1) which does not belong the domains 
considered. We can write the energy in the form: 
 E mv= − +1 2ε ηa f , (24) 

where ε€≠ 1. Taking the integral of (7) at α = 0 we 
obtain the relation  

Figure 2. Relativistic total energy-velocity relation. 
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where µ is an integration constant. To find µ we will 
use the value v = c. Then we will get µ = m(c) = mc. 
Let us use the equality E(c) = mcc2 as a boundary condi-
tion for the energy. This yields a value η = εmcc2 and 
we obtain finally: 

m v
m

v c
E v

m v

v c
m cc c

ca f
c h

a f a f
c h

= =
−

+− −2 2 1 1 2

2

2 2 1 1 2
21

ε ε

ε
ε, (26) 

Continuity of mass and energy disappears at the 
value v = 0 in domain b). In domain a) a mathematical 
singularity at v = 0 is satisfied only for mass. We can 
now define two classes of objects. 
1. Objects always moving with mc ≠ 0 and velocity 

0 < v <∞ are classified as class VII. 
2. Objects always at rest (v = 0) with mc = 0 fall under 

class VIII. For this class of objects we have finite val-
ues m ≠ 0, E = p = 0. 
Continuity of mass and energy holds in domain c) 

which corresponds to objects of class VI with mass and 
energy: 
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At ε = ½ from relations (27) we can get the exact 
formulae m = mc, E m c m vc c= +1

2
2 1

2
2 of the Newto-

nian dynamics (4) where the energy contains a constant 
term equalling 1

2 E ca f . For example, at ε = 1
6  we have 

the formulae for mass and energy 

 m v m v c E mv m cc ca f c h= = +2 2 2 2 25
6

1
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In Figure 2, curve 6 shows E m ccε 2  related to the 

velocity for this case. 

5. Conclusions 

Possible new relativistic expressions for the inertial 
mass and total energy have been determined, and eight 
classes of objects where known objects of relativistic 
dynamics are included have been defined. In the ap-
proach developed here, the inertial mass and total en-
ergy can increase or decrease as the object’s velocity 
increases. The point of greatest interest is class VI, 
which describes ordinary real objects with infinite ve-

locity (0 ≤ v ≤∞). Therefore, in Figure 2 the relations 
for this class only are shown. These relations will be 
discussed in detail elsewhere. In the present work, the 
possibility that class VI objects exist is shown. 

We note that the results found here include the con-
clusions of some authors (Podlaha 1978, 1979; Podlaha 
and Sjödin 1977). On the basis of the kinematic ap-
proach they introduce a relativistic factor in the form 

1 2 2−
−

v cc h γ
 where γ ∈ [–½,0]. This factor corre-

sponds to the quantity 1 2 2 1 1 2
−

−
v cc h ε

 in our consid-

eration where ε ∈ [½,1]. In Figure 1 this case is repre-
sented by the segment AM of curve 2. 

The approach developed here does not change the 
Lagrange formalism of analytical mechanics. The La-
grange function L = 

rr
pv E−  for some cases has the 

following forms: 
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In later work, kinematic and geometric aspects of the 
problem of the connection between energy and inertial 
mass will be discussed in more detail and connections 
between the results of this paper and another impending 
publication will be considered. 
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